1
|
Mohaghegh S, Alirezaei F, Ahmadi N, Kouhestani F, Motamedian SR. Application of chemical factors for acceleration of consolidation phase of the distraction osteogenesis: a scoping review. Oral Maxillofac Surg 2023; 27:559-579. [PMID: 35852720 DOI: 10.1007/s10006-022-01097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE This study aimed to analyze the effect of injecting chemical factors compared to conventional distraction osteogenesis (DO) treatment on the bone formation of the distracted area of the maxillofacial region in human and animal studies. METHOD Electronic search was done in PubMed, Scopus, Embase, and Cochrane database for studies published until September 2021. The studies' risk of bias (ROB) was assessed using the Cochrane Collaborations and NIH quality assessment tools. Meta-analyses were performed to assess the difference in the amount of bone formation and maximal load tolerance. RESULTS Among a total of 58 included studies, eight studies analyzed the bone formation rate of the distracted area in human models and others in animal models. Results of the human studies showed acceptable outcomes in the case of using bone morphogenic protein-2 (BMP-2), autologous bone-platelet gel, and calcium sulfate. However, using platelet reach plasma does not increase the rate of bone formation significantly. Quantitative analyses showed that both BMP-2 (SMD = 26.57; 95% CI = 18.86 to 34.28) and neuron growth factor (NGF) (SMD = 16.19; 95% CI = 9.64 to 22.75) increase the amount of bone formation. Besides, NGF increased the amount of load tolerance significantly (SMD = 30.03; 95% CI = 19.91 to 40.16). Additionally, BMP-2 has no significant impact on the post-treatment maxillary length (SMD = 9.19; 95% CI = - 2.35 to 20.73). CONCLUSION Limited number of human studies with low quality used chemical factors to enhance osteogenesis and showed acceptable results. However, more studies with higher quality are required.
Collapse
Affiliation(s)
- Sadra Mohaghegh
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
| | - Fatemeh Alirezaei
- Department of Orthodontics, School of Dentistry, Babol University of Medical Sciences, Babol, Iran
| | - Nima Ahmadi
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
| | - Farnaz Kouhestani
- Department of Periodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saeed Reza Motamedian
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran.
| |
Collapse
|
2
|
Wu S, Zhang L, Zhang R, Yang K, Wei Q, Jia Q, Guo J, Ma C. Rat bone marrow mesenchymal stem cells induced by rrPDGF-BB promotes bone regeneration during distraction osteogenesis. Front Bioeng Biotechnol 2023; 11:1110703. [PMID: 36959901 PMCID: PMC10027703 DOI: 10.3389/fbioe.2023.1110703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Background: In the clinical treatment of large bone defects, distraction osteogenesis can be used. However, some patients may suffer from poor bone regeneration, or even delayed healing or non-union. Problems with the aggregation and proliferation of primary osteoblasts, or problems with the differentiation of primary osteoblasts will lead to poor bone regeneration. Therefore, supplementing exogenous primary osteoblasts and growth factors when using distraction osteogenesis may be a treatment plan with great potential. Methods: Bone marrow mesenchymal stem cells (BMSCs) were extracted from rats and cultured. Subsequently, Recombinant Rat Platelet-derived Growth Factor BB (rrPDGF-BB) was used to induce bone marrow mesenchymal stem cells. At the same time, male adult rats were selected to make the right femoral distraction osteogenesis model. During the mineralization period, phosphate buffer salt solution (control group), non-induction bone marrow mesenchymal stem cells (group 1) and recombinant rat platelet-derived growth factor BB intervened bone marrow mesenchymal stem cells (group 2) were injected into the distraction areas of each group. Then, the experimental results were evaluated with imaging and histology. Statistical analysis of the data showed that the difference was statistically significant if p < 0.05. Results: After intervention with recombinant rat platelet-derived growth factor BB on bone marrow mesenchymal stem cells, the cell morphology changed into a thin strip. After the cells were injected in the mineralization period, the samples showed that the callus in group 2 had greater hardness and the color close to the normal bone tissue; X-ray examination showed that there were more new callus in the distraction space of group 2; Micro-CT examination showed that there were more new bone tissues in group 2; Micro-CT data at week eight showed that the tissue volume, bone volume, percent bone volume, bone trabecular thickness, bone trabecular number and bone mineral density in group 2 were the largest, and the bone trabecular separation in group 2 was the smallest. There was a statistical difference between the groups (p < 0.05); HE staining confirmed that group 2 formed more blood vessels and chondrocytes earlier than the control group. At 8 weeks, the bone marrow cavity of group 2 was obvious, and some of them had been fused. Conclusion: The study confirmed that injecting bone marrow mesenchymal stem cellsBB into the distraction space of rats can promote the formation of new bone in the distraction area and promote the healing of distraction osteogenesis.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lijie Zhang
- Department of Neurology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ruidan Zhang
- Guangdong New Omega Medical Centre, Guangzhou, China
| | - Kang Yang
- Hand and foot microsurgery of the third people’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Qin Wei
- Animal Experiment Center of Xinjiang Medical University, Urumqi, China
| | - Qiyu Jia
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jian Guo
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chuang Ma
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chuang Ma,
| |
Collapse
|
3
|
Lin H, Wang X, Li Z, Huang M, Feng J, Chen H, Gao J, Feng Y, Wu J, Tang S, Zhou R, Ren Y, Huang F, Jiang Z. Total flavonoids of Rhizoma drynariae promote angiogenesis and osteogenesis in bone defects. Phytother Res 2022; 36:3584-3600. [PMID: 35960140 DOI: 10.1002/ptr.7525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022]
Abstract
Bone defects are difficult to heal, which conveys a heavy burden to patients' lives and their economy. The total flavonoids of Rhizoma drynariae (TFRD) can promote the osteogenesis of distraction osteogenesis. However, the dose effect is not clear, the treatment period is short, and the quality of bone formation is poor. In our study, we observed the long-term effects and dose effects of TFRD on bone defects, verified the main ingredients of TFRD in combination with network pharmacology for the first time, explored its potential mechanism, and verified these findings. We found that TFRD management for 12 weeks regulated osteogenesis and angiogenesis in rats with 4-mm tibial bone defects through the PI3K/AKT/HIF-1α/VEGF signaling pathway, especially at high doses (135 mg kg-1 d-1 ). The vascularization effect of TFRD in promoting human umbilical vein endothelial cells was inhibited by PI3K inhibitors. These results provide a reference for the clinical application of TFRD.
Collapse
Affiliation(s)
- Haixiong Lin
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Orthopaedics, Ningxia Hui Autonomous Region Hospital and Research Institute of Traditional Chinese Medicine, Yinchuan, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaotong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zige Li
- The 2nd Department of Arthrosis, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beiijing, China
| | - Minling Huang
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Junjie Feng
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huamei Chen
- Knee Surgery, The Fifth People's Hospital of Nanhai District, Foshan, China
| | - Junyan Gao
- Department of Orthopaedics & Traumatology, Shantou Hospital of Traditional Chinese Medicine, Shantou, China
| | - Yuanlan Feng
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Wu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengyao Tang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruoyu Zhou
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueyi Ren
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Huang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwei Jiang
- Department of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Liu Z, Liu Q, Guo H, Liang J, Zhang Y. Overview of Physical and Pharmacological Therapy in Enhancing Bone Regeneration Formation During Distraction Osteogenesis. Front Cell Dev Biol 2022; 10:837430. [PMID: 35573673 PMCID: PMC9096102 DOI: 10.3389/fcell.2022.837430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Distraction osteogenesis (DO) is a kind of bone regeneration technology. The principle is to incise the cortical bone and apply continuous and stable distraction force to the fractured end of the cortical bone, thereby promoting the proliferation of osteoblastic cells in the tension microenvironment and stimulating new bone formation. However, the long consolidation course of DO presumably lead to several complications such as infection, fracture, scar formation, delayed union and malunion. Therefore, it is of clinical significance to reduce the long treatment duration. The current treatment strategy to promote osteogenesis in DO includes gene, growth factor, stem-cell, physical and pharmacological therapies. Among these methods, pharmacological and physical therapies are considered as safe, economical, convenience and effective. Recently, several physical and pharmacological therapies have been demonstrated with a decent ability to enhance bone regeneration during DO. In this review, we have comprehensively summarized the latest evidence for physical (Photonic, Waves, Gas, Mechanical, Electrical and Electromagnetic stimulation) and pharmacological (Bisphosphonates, Hormone, Metal compounds, Biologics, Chinese medicine, etc) therapies in DO. These evidences will bring novel and significant information for the bone healing during DO in the future.
Collapse
Affiliation(s)
- Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jieyu Liang, ; Yi Zhang,
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jieyu Liang, ; Yi Zhang,
| |
Collapse
|
5
|
Huang J, Li Y, Wang L, He C. Combined Effects of Low-Frequency Pulsed Electromagnetic Field and Melatonin on Ovariectomy-Induced Bone Loss in Mice. Bioelectromagnetics 2021; 42:616-628. [PMID: 34516671 DOI: 10.1002/bem.22372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 02/05/2023]
Abstract
Pulsed electromagnetic field (PEMF) therapy and melatonin (MEL) supplementation are expected to be important strategies for the treatment of osteoporosis. The aim of the current study was to investigate the efficacy of PEMF therapy, MEL supplementation, a combination of PEMF therapy, and MEL supplementation (PEMF + MEL) in mice with bilateral ovariectomy (OVX)-induced osteoporosis. Forty 12-week-old female C57/BL mice were randomly assigned to five groups (n = 8/group): OVX, PEMF, MEL, PEMF + MEL, and sham-operation (sham) groups. All mice in the first four groups were subjected to OVX. The mice in the PEMF and PEMF + MEL groups were exposed to PEMF (75 Hz, 1.6 mT, 1 h/day for 12 weeks), while those in the MEL and PEMF + MEL groups were administered MEL (50 mg/kg, i.p.). Body mass, micro-computed tomography, histology, immunohistochemistry, and real-time polymerase chain reaction were performed. PEMF + MEL treatment enhanced bone volume fraction (BV/TV) 2.2-fold over OVX control (P < 0.001) and increased expression levels of collagen type I (COL1) 1.9-fold and bone morphogenetic protein 2 (BMP2) 2.5-fold. PEMF + MEL also reduced the ratio of bone surface/bone volume (BS/BV) by 40% (P < 0.05) and appeared to reduce the number of osteoclasts in the metaphysis area. Preservation of bone value and bone microarchitecture in the combined therapy group were found to be superior to those in the single treatment groups. However, there were no apparent differences between the PEMF and MEL groups. The use of a combination of PEMF therapy and MEL supplementation may be an effective method to treat osteoporosis. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Jinming Huang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiong Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Evaluation of Effects of Systemic Zoledronic Acid Application on Bone Maturation in the Consolidation Period in Distraction Osteogenesis. J Craniofac Surg 2021; 32:2901-2905. [PMID: 33935139 DOI: 10.1097/scs.0000000000007698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Distraction osteogenesis (DO) is a physiological process that generates new bone tissue formation, using progressively separated bone fragments. Recently, several techniques have been investigated to develop the maturation of the new bone tissue. Bisphosphonates was an effective material for the acceleration of bone formation in DO procedures. The purpose of this study was to evaluate the effects of the systemic zoledronic acid application at the beginning of the consolidation period on new bone genesis in a DO model of rat femurs. The rats were divided randomly into 3 groups, as follows: Control group (CNT group) (n = 10), zoledronic acid dosage-1 (n = 10), and dosage-2 (n = 10) groups (ZA-D-1 and ZA-D-2). No treatment was administered in controls, but DO was applied to the rat femurs. A single dose of 0.1 mg/kg and 0.2 mg/kg of zoledronic acid was administered systematically at the beginning of the consolidation period after the distraction in treatment groups, respectively. Histomorphometric analyses were performed on the original distracted bone area and the surrounding bone tissue. Osteoblasts, new bone formation, and fibrosis were scored. New bone formation in the ZA-D-1 and ZA-D-2 groups, when compared with the control group, was detected highly (P < 0.05). The numbers of osteoblasts in the ZA-D-1 and ZA-D-2 groups were higher when compared with the controls (P < 0.05). Fibrosis in the controls, when compared with the ZA-D-1 and ZA-D-2 groups, was found to be higher (P < 0.05). Zoledronic acid application is an effective method for bone maturation in consolidation period in DO.
Collapse
|
7
|
Köse D, Köse A, Halıcı Z, Gürbüz MA, Aydın A, Ugan RA, Karaman A, Toktay E. Do peripheral melatonin agonists improve bone fracture healing? The effects of agomelatine and ramelteon on experimental bone fracture. Eur J Pharmacol 2020; 887:173577. [PMID: 32949602 DOI: 10.1016/j.ejphar.2020.173577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Melatonin improves fracture healing, but the long-term use of melatonin seems impracticable in the treatment of fracture due to side effects caused by hormonal stress on chronological rhythm. Ramelteon (RAMEL) and agomelatine (AGO) are non-selective peripheral melatonin receptor (MT) agonists. This study investigated the effects on bone fracture healing of these MT agonists, which do not affect the central nervous system. The rats were divided into 6 groups, including Group 1 (SHAM): sham operated group; Group 2 (FRACTURE): femoral fracture control; Group 3 (FR + AGO30): femoral fracture + agomelatine 30 mg/kg; Group 4 (FR + AGO60): femoral fracture + agomelatine 60 mg/kg; Group 5 (FR + RAMEL3): femoral fracture + ramelteon 3 mg/kg; and Group 6 (FR + RAMEL6): femoral fracture + ramelteon 6 mg/kg. After 21 days, the rats were subjected to X-ray imaging. Bone healing was evaluated with hematoxylin-eosin (HE) staining. Messenger RNA (mRNA) expressions of bone formation markers, such as bone alkaline phosphatase (ALP), osteocalcin (OC), and osteopontin (OP), were evaluated by real-time polymerase chain reaction (RT-PCR) and with immunohistochemistry (IHC) staining. The radiographic fracture healing scores were statistically significantly higher in the FR + AGO60 group and the FR + RAMEL3 group than in the FRACTURE group. The histopathology and molecular results supported the radiographic results. It was shown that agomelatine and ramelteon increase bone fracture healing, leading to the conclusion that a preference for agomelatine, an antidepressant, and ramelteon, a sleep aid, will increase bone fracture healing in patients with fractures.
Collapse
Affiliation(s)
- Duygu Köse
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, Turkey.
| | - Ahmet Köse
- Department of Orthopedics and Traumatology, Erzurum Regional Education and Research Hospital, Turkey
| | - Zekai Halıcı
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Muhammed Ali Gürbüz
- Faculty of Medicine, Department of Histology and Embryology Department, Ataturk University, Erzurum, Turkey
| | - Ali Aydın
- Faculty of Medicine, Department of Orthopedics and Traumatology, Ataturk University, Erzurum, Turkey
| | - Rüstem Anıl Ugan
- Faculty of Pharmacy, Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Adem Karaman
- Faculty of Medicine, Department of Radiology, Ataturk University, Erzurum, Turkey
| | - Erdem Toktay
- Faculty of Medicine, Department of Histology and Embryology Department, Kafkas Univeristy, Kars, Turkey
| |
Collapse
|
8
|
Tao ZS, Lu HL, Ma NF, Zhang RT, Li Y, Yang M, Xu HG. Rapamycin could increase the effects of melatonin against age-dependent bone loss. Z Gerontol Geriatr 2019; 53:671-678. [PMID: 31781847 DOI: 10.1007/s00391-019-01659-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
Abstract
Previous studies have demonstrated the beneficial effect of melatonin (MEL) on bone tissue and bone metabolism. Rapamycin (RAP) promotes osteoblast proliferation and inhibits osteoclast proliferation, and positively affects bone regeneration; however, reports about effects of RAP on bone loss for aged female rats with MEL administration are limited. This study investigated the impact of treatment with RAP on bone loss for aged female rats with MEL administration. Female Sprague-Dawley rats weighing approximately 520 g were randomly divided into 3 groups of 10: group CON, group MEL and group MEL + RAP and received saline, MEL, RAP plus MEL treatment until death at 12 weeks, respectively. The results of maintaining bone mass and bone strength with RAP plus MEL administration were evaluated by histology, microcomputerized tomography (Micro-CT), gene expression analysis and biomechanical testing. Results from this study indicated that MEL + RAP had stronger effects on the prevention and treatment of osteoporosis than MEL administration. Administration of MEL + RAP produced the strongest effects on bone parameters and strength for distal femurs and regulation of OPG/RANKL signalling pathway-related gene expression. These results seemed to indicate that RAP could increase the effects of MEL on age-dependent bone loss.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Han-Li Lu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Neng-Feng Ma
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Rou-Tian Zhang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Yang Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China.
| | - Hong-Guang Xu
- Spine Research Center of Wannan Medical College; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution; Dept of Spine Surgery, Yijishan hospital of Wannan Medical College, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China.
| |
Collapse
|