1
|
Alwan OM, Jaafar IS. Development of synergistic antifungal in situ gel of miconazole nitrate loaded microemulsion as a novel approach to treat vaginal candidiasis. Sci Rep 2024; 14:23168. [PMID: 39369062 PMCID: PMC11455884 DOI: 10.1038/s41598-024-74021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Limited solubility is the main cause of the low local availability of anti-candidiasis drug, miconazole nitrate (MN). The study's objective was to develop and characterize microemulsion (ME) based temperature-triggered in situ gel of MN for intravaginal administration to enhance local availability and antifungal activity. The solubility of MN was initially studied in different oils, surfactants, and co-surfactants. Then, pseudo-ternary phase diagrams were constructed to select the best ratio of various components. The ME formulations were characterized by thermodynamic study, droplet size, polydispersity index (PDI), viscosity, and in-vitro antifungal mean inhibition zone (MIZ). Selected MEs were incorporated into different in situ gel bases using a combination of two thermosensitive polymers (poloxamer (PLX) 407 and 188), with 0.6% of hydroxypropyl methylcellulose (HPMC K4M) and gellan gum (GG) as mucoadhesive polymer. ME-based gels (MG) were investigated for gelation temperature, gelation time, viscosity, spreadability, mucoadhesive strength, in vitro release profile, and MIZ test. Furthermore, the optimum MG was assessed for in vivo animal irritation test and FESEM investigation. Tea tree oil, lavender oil, tween 80, and propylene glycol (PG) were chosen for ME preparation for the optimal formulation; formulation ME7 and ME10 were chosen. After incorporation of the selected formulation into a mixture of P407 and P188 (18:2% w/w) with 0.6% mucoadhesive polymer, the resultant MG formulation (MG1) revealed optimum gelation temperature (33 ± 0.01℃) and appropriate viscosity with enhanced sustained release (98%) and retention through sheep vaginal mucosa, MG1 exhibited a better MIZ compared to the 2% MN gel formulation and the marketed MN product, and no rabbit vagina irritation. In conclusion, the miconazole nitrate-loaded MG-based formula sustained the duration of action and better antifungal activity than the marketed miconazole nitrate formulation.
Collapse
Affiliation(s)
- Omar M Alwan
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Iman S Jaafar
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
2
|
Čonková E, Váczi P, Malinovská Z. Extracellular phospholipase production by Malassezia pachydermatis strains and its inhibition by selected antimycotics and plant essential oil components. Vet Res Commun 2024; 48:3271-3282. [PMID: 38922388 PMCID: PMC11442620 DOI: 10.1007/s11259-024-10446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Extracellular phospholipase (EPL) plays an important role in the pathogenesis of the yeast Malassezia pachydermatis. Currently, the attention of researchers is focused on studying the virulence factors involved in this process and searching solutions to reduce their activity. One of the options is the use of natural remedies as anti-virulence agents. This study is aimed at investigating the production of extracellular phospholipase in M. pachydermatis strains (18 samples) and followed by the time-dependent inhibitory effect of selected azole antifungals (itraconazole, posaconazole and voriconazole) and plant essential oil components (terpinen-4-ol, thymol, carvacrol, eugenol and geraniol), evaluated by Egg Yolk Agar plate method. Almost all strains (17 isolates, (94.4%) were found to be intense EPL producers. A significant, time-dependent inhibition of EPL was noted after 1-, 3- and 6-h exposure of Malassezia cells to itraconazole (26.4%, 47.2% and 50.9%, respectively) compared to exposure to posaconazole (26.4%, 28.3% and 28.3%, respectively) and voriconazole (18.8%, 20.8% and 35.8%, respectively). After one-hour exposure to plant essential oil components, the best inhibitory effect was recorded for eugenol (62.3%), followed by terpinen-4-ol and thymol (56.6%), geraniol (41.5%) and carvacrol (26.4%). A 3-h exposure revealed that thymol retained the best inhibitory effect (88.7%) on EPL production, followed by carvacrol (73.6%), eugenol (56.6%), terpinen-4-ol (52.8%) and geraniol (49.1%). After 6-h exposure, no growth of M. pachydermatis strains exposed to carvacrol was observed, and the inhibitory efficiency for the other tested essential oil (EO) components achieved 88.7%. The obtained results indicate the promising efficacy of plant essential oils components in the inhibition of virulence factors such as EPL production.
Collapse
Affiliation(s)
- Eva Čonková
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, Slovakia.
| | - Peter Váczi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, Slovakia
| | - Zuzana Malinovská
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, Slovakia
| |
Collapse
|
3
|
Prerna, Chadha J, Khullar L, Mudgil U, Harjai K. A comprehensive review on the pharmacological prospects of Terpinen-4-ol: From nature to medicine and beyond. Fitoterapia 2024; 176:106051. [PMID: 38838826 DOI: 10.1016/j.fitote.2024.106051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Owing to their extensive biological potential, essential oils (EOs) and their bioactive phytochemicals have gained attention from the scientific community. Within this domain, Terpinen-4-ol (T-4-ol), a bioactive monoterpene alcohol and the major constituent of tea tree oil (TTO), has made its way into translational research. Recent literature on T-4-ol strongly indicates its diverse pharmacological properties, including but not limited to antimicrobial, antivirulent, anti-oxidant, anti-inflammatory, anti-hypertensive, and anti-cancer effects. Hence, this review is the first to provide a comprehensive overview of the sources, bioavailability, safety, pharmaceutical delivery systems, and multifaceted biological properties of T-4-ol, emphasizing its medicinal potential for widescale application. The antibacterial and antifungal effectiveness of T-4-ol has been discussed, encompassing its role in combating a broad spectrum of bacterial and fungal pathogens. The review delves into the antivirulent prospects of T-4-ol, shedding light on its ability to attenuate virulence and mitigate bacterial pathogenesis. Scientific literature on the anti-oxidant and anti-inflammatory activity of T-4-ol highlighting its role in neutralizing reactive oxygen species and modulating inflammatory pathways has also been collated. Furthermore, the review elaborates on the cardioprotective and anti-hypertensive properties of T-4-ol and augments literature on its anti-cancer mechanism against various cancer cell lines. The review also provides in-depth knowledge of the pharmaceutical formulations of T-4-ol and recent knowledge about its application in clinical/field trials. The exploration of these diverse attributes positions T-4-ol as a promising candidate for further research and therapeutic repurposing in various biomedical applications.
Collapse
Affiliation(s)
- Prerna
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
4
|
Jaiswal N, Kumar A. Modulators of Candida albicans Membrane Drug Transporters: A Lucrative Portfolio for the Development of Effective Antifungals. Mol Biotechnol 2024; 66:960-974. [PMID: 38206530 DOI: 10.1007/s12033-023-01017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
The escalating prevalence of membrane drug transporters and drug efflux pumps in pathogenic yeast like Candida albicans necessitates a comprehensive understanding of their roles in MDR. The overexpression of drug transporter families, ABC and MFS, implicated in MDR through drug efflux and poses a significant challenge in the diagnosis and treatment of fungal infection. Various mechanisms have been proposed for MDR; however, the upregulation of ABC and MFS superfamily transporters is most noticeable in MDR. The direct inhibition of these transporters seems an efficient strategy to overcome this problem. The goal of the article is to present an overview of the prospect of utilizing these modulators of C. albicans drug transports as effective antifungal molecules against MDR addressing a critical gap in the field. The review tries to address to prevent drug extrusion by modulating the expression of drug transporters of C. albicans. The review discussed the progress in identifying potent, selective, and non-toxic modulators of these transporters to develop some effective antifungals and overcome MDR. We reviewed major studies in this area and found that recent work has shifted toward the exploration of natural compounds as potential modulators to restore drug sensitivity in MDR fungal cells. The focus of this review is to survey and interpret current research information on modulators of C. albicans drug transporters from natural sources emphasizing those compounds that are potent antifungal agents.
Collapse
Affiliation(s)
- Neha Jaiswal
- Department of Biotechnology, National Institute of Technology, Raipur, CG, 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, CG, 492010, India.
| |
Collapse
|
5
|
Kamiya H, Haraguchi A, Mitarai H, Yuda A, Wada H, Shuxin W, Ziqing R, Weihao S, Wada N. In vitro evaluation of the antimicrobial properties of terpinen-4-ol on apical periodontitis-associated bacteria. J Infect Chemother 2024; 30:306-314. [PMID: 37922985 DOI: 10.1016/j.jiac.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Manuka oil and tea tree oil are essential oils with known antibacterial properties that are believed to be caused by one main component: terpinen-4-ol. Terpinen-4-ol has potent antibacterial activity against caries-related microorganisms. However, few studies have investigated the antimicrobial effects of terpinen-4-ol on bacteria in apical periodontitis. Thus, the objective of the present study was to evaluate the antibacterial and antibiofilm potential of terpinen-4-ol against Enterococcus faecalis, Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum, which have all been detected in apical periodontitis. The minimum inhibitory and minimum bactericidal concentrations of terpinen-4-ol were determined to assess its activity against biofilms. The minimum inhibitory concentration of terpinen-4-ol was 0.25% against E. faecalis and F. nucleatum, 0.05% against P. gingivalis, and 0.1% against P. intermedia. The minimum bactericidal concentration of terpinen-4-ol was 1.0% against E. faecalis, 0.2% against P. gingivalis and P. intermedia, and 0.5% against F. nucleatum. In the biofilm evaluations, all terpinen-4-ol-treated bacteria had significant reductions in biofilm viability compared with controls in experiments assessing attachment inhibitory activity. Furthermore, structural alterations and decreased bacterial cell clumping were observed under scanning electron microscopy, and significantly decreased cell survival was noted using fluorescence microscopy. Together, these results suggest that terpinen-4-ol is a potential antibacterial agent with bactericidal properties, and can also act on established biofilms.
Collapse
Affiliation(s)
- Harunobu Kamiya
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Haraguchi
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hiromi Mitarai
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Asuka Yuda
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroko Wada
- Laboratory of Oral Pathology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Wang Shuxin
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ran Ziqing
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sun Weihao
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Naohisa Wada
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
6
|
Carvalho-Silva JM, Teixeira ABV, Valente MLDC, Shimano MVW, Dos Reis AC. Antimicrobial activity of essential oils against biofilms formed in dental acrylic resin: a systematic review of in vitro studies. BIOFOULING 2024; 40:114-129. [PMID: 38538551 DOI: 10.1080/08927014.2024.2332709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
This study aimed to answer the question formulated according to the PICO strategy: 'Which essential oils show antimicrobial activity against biofilms formed on dental acrylic resin?' composed by population (dental acrylic resin), intervention (application of essential oils), comparison (denture cleansers, antifungal drugs, chlorhexidine, and oral mouthwashes), and outcome (antibiofilm activity). In vitro experimental studies evaluating the activity of EOs on biofilm formed on acrylic resin were included. PRISMA guidelines were followed, and the search was performed in the PubMed, Science Direct, Embase, and Lilacs databases and in the gray literature using Google Scholar and ProQuest in December 2023. A manual search of the reference lists of the included primary studies was performed. Of the 1467 articles identified, 37 were selected for full-text reading and 12 were included. Twelve EOs were evaluated, of which 11 showed activity against Candida spp., 3 against Staphylococcus aureus, and 1 against Pseudomonas aeruginosa. The EOs of Cymbopogon citratus, Cinnamomum zeylanicum, and Cymbopogon nardus showed higher action than chlorhexidine, C. nardus higher than Listerine, C. citratus higher than nystatin, and Melaleuca alternifolia higher than fluconazole and nystatin. However, chlorhexidine was more effective than Lippia sidoides and Salvia officinalis, sodium hypochlorite was more effective than L. sidoides, nystatin was more effective than Zingiber officinale, Amphotericin B more effective than Eucalyptus globulus and M. alternifolia. In conclusion, the EOs of C. zeylanicum, C. citratus, C. nardus, and M. alternifolia showed antimicrobial activity to reduce biofilm on dental acrylic resin.
Collapse
Affiliation(s)
- João Marcos Carvalho-Silva
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Ana Beatriz Vilela Teixeira
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Mariana Lima da Costa Valente
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Marcos Vinicius Wada Shimano
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Iacovelli F, Romeo A, Lattanzio P, Ammendola S, Battistoni A, La Frazia S, Vindigni G, Unida V, Biocca S, Gaziano R, Divizia M, Falconi M. Deciphering the Broad Antimicrobial Activity of Melaleuca alternifolia Tea Tree Oil by Combining Experimental and Computational Investigations. Int J Mol Sci 2023; 24:12432. [PMID: 37569803 PMCID: PMC10420022 DOI: 10.3390/ijms241512432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Tea Tree Oil (TTO) is an essential oil obtained from the distillation of Melaleuca alternifolia leaves and branches. Due to its beneficial properties, TTO is widely used as an active ingredient in antimicrobial preparations for topical use or in cosmetic products and contains about 100 different compounds, with terpinen-4-ol, γ-terpinene and 1,8-cineole (or eucalyptol) being the molecules most responsible for its biological activities. In this work, the antimicrobial activity of whole TTO and these three major components was evaluated in vitro against fungi, bacteria and viruses. Molecular dynamics simulations were carried out on a bacterial membrane model and a Coxsackievirus B4 viral capsid, to propose an atomistic explanation of their mechanism of action. The obtained results indicate that the strong antimicrobial activity of TTO is attributable to the induction of an altered membrane functionality, mediated by the incorporation of its components within the lipid bilayer, and to a possible ability of the compounds to bind and alter the structural properties of the viral capsid.
Collapse
Affiliation(s)
- Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Patrizio Lattanzio
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Serena Ammendola
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Andrea Battistoni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Giulia Vindigni
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.V.); (V.U.); (S.B.)
| | - Valeria Unida
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.V.); (V.U.); (S.B.)
| | - Silvia Biocca
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.V.); (V.U.); (S.B.)
| | - Roberta Gaziano
- Microbiology Section, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1–00133 Rome, Italy;
| | - Maurizio Divizia
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy;
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| |
Collapse
|
8
|
Iseppi R, Mariani M, Benvenuti S, Truzzi E, Messi P. Effects of Melaleuca alternifolia Chell (Tea Tree) and Eucalyptus globulus Labill. Essential Oils on Antibiotic-Resistant Bacterial Biofilms. Molecules 2023; 28:molecules28041671. [PMID: 36838657 PMCID: PMC9961662 DOI: 10.3390/molecules28041671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
In the present investigation, the anti-biofilm potential of two essential oils (EOs), Melaleuca alternifolia Chell (Tea-Tree) (TTO) and Eucalyptus globulus Labill. (EEO) was characterized and tested "in vitro" against both mature biofilms and biofilms in the process of formation, produced by strains belonging to three main categories of antibiotic resistant bacteria (ARB): Vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA) and broad-spectrum β-lactamase-producing Escherichia coli (ESBL). The study was carried out in 96-well microtiter-plates using EOs alone, in association with each other and in combination with antibiotics against both single and multi-species biofilm. The study demonstrated the ability of TTO and EEO to counteract the ARB strains in sessile form, with promising results in particular against the biofilm in formation. Mature biofilm by ESBL E. coli was the most sensitive in the results from the quantification study of viable cells performed in multi-species biofilms. Lastly, in all tests, carried out using TTO/EEO associations and EOs/antibiotic combinations, the synergistic effect which emerged from the FIC-index has been confirmed, and both the reduction of biofilm in formation, and the removal of mature structure was obtained at very low concentrations, with values from 4 to >512-fold lower than the minimum inhibitory concentration (MIC) of the single compounds.
Collapse
Affiliation(s)
- Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Martina Mariani
- Burn Intensive Care Unit, Hospital A. Cardarelli, Via A. Cardarelli 9, 80131 Naples, Italy
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence:
| |
Collapse
|
9
|
Schönbächler N, Thurnheer T, Paqué PN, Attin T, Karygianni L. In vitro versus in situ biofilms for evaluating the antimicrobial effectiveness of herbal mouthrinses. Front Cell Infect Microbiol 2023; 13:1130255. [PMID: 36798085 PMCID: PMC9927218 DOI: 10.3389/fcimb.2023.1130255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
For centuries, diverse mouthrinses have been applied for medicinal purposes in the oral cavity. In view of the growing resistance of oral microorganisms against conventional antimicrobial agents e.g. chlorhexidine, the implementation of alternative treatments inspired by nature has lately gained increasing interest. The aim of the present study was to compare in vitro biofilm models with in situ biofilms in order to evaluate the antimicrobial potential of different natural mouthrinses. For the in vitro study a six-species supragingival biofilm model containing A. oris, V. dispar, C. albicans, F. nucleatum, S. mutans and S. oralis was used. Biofilms were grown anaerobically on hydroxyapatite discs and treated with natural mouthrinses Ratanhia, Trybol and Tebodont. 0.9% NaCl and 10% ethanol served as negative controls, while 0.2% CHX served as positive control. After 64h hours, biofilms were harvested and quantified by cultural analysis CFU. For the in situ study, individual test splints were manufactured for the participants. After 2h and 72h the biofilm-covered samples were removed and treated with the mouthrinses and controls mentioned above. The biofilms were quantified by CFU and stained for vitality under the confocal laser scanning microscope. In the in vitro study, 0.2% CHX yielded the highest antimicrobial effect. Among all mouthrinses, Tebodont (4.708 ± 1.294 log10 CFU, median 5.279, p<0.0001) compared with 0.9% NaCl showed the highest antimicrobial potential. After 72h there was no significant reduction in CFU after 0.2% CHX treatment. Only Trybol showed a statistically significant reduction of aerobic growth of microorganisms in situ (5.331 ± 0.7350 log10 CFU, median 5.579, p<0.0209). After treatment with the positive control 0.2% CHX, a significant percentage of non-vital bacteria (42.006 ± 12.173 log10 CFU, median 42.150) was detected. To sum up, a less pronounced effect of all mouthrinses was shown for the in situ biofilms compared to the in vitro biofilms.
Collapse
Affiliation(s)
- Nicole Schönbächler
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Pune Nina Paqué
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lamprini Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Lamprini Karygianni,
| |
Collapse
|
10
|
Wang Y, Liu H, Zhan F. Effects of Natural Borneol on Germ Tube Formation and Preformed Biofilm Activity in Candida albicans. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221129128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Candida albicans infection mainly occurs in patients with suppressed immune function and is the main pathogen of nosocomial infections. The use of natural products aimed at controlling fungal diseases is considered an interesting alternative to synthetic fungicides due to their lower adverse reactions and the lower cost of plant preparations compared to modern conventional pharmaceuticals. Natural borneol has a long history of treating ulcers and local infections in traditional Chinese medicine. In this study, we present an analysis of the in vitro effects of natural borneol on planktonic cells of C albicans in the liquid and vapor phases. We also investigated the effects of natural borneol on germ tube formation and mature biofilm activity of C albicans. We found that vapor-phase borneol (minimum inhibitory concentration [MIC] 0.4 mg/cm3) inhibited C albicans more effectively than in the liquid phase (MIC 2 mg/mL). The C albicans germ tube decreased by 99% to 60% at sub-MICs of 0.5 to 0.125 mg/mL. The inhibitory effects of 0.25, 0.5, 1, 2, and 4 mg/mL borneol on the biofilm activity were 33.7%, 48.6%, 49.9%, 52.9%, and 58.2%, respectively. Natural borneol may have potential in the treatment and prevention of C albicans infections.
Collapse
Affiliation(s)
- Yazhou Wang
- Department of Clinical Laboratory, Changzhou Cancer Hospital, Changzhou, China
| | - Huiling Liu
- Department of Clinical Laboratory, Changzhou Cancer Hospital, Changzhou, China
| | - Feng Zhan
- Department of Clinical Laboratory, Changzhou Cancer Hospital, Changzhou, China
| |
Collapse
|
11
|
Shariati A, Didehdar M, Razavi S, Heidary M, Soroush F, Chegini Z. Natural Compounds: A Hopeful Promise as an Antibiofilm Agent Against Candida Species. Front Pharmacol 2022; 13:917787. [PMID: 35899117 PMCID: PMC9309813 DOI: 10.3389/fphar.2022.917787] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The biofilm communities of Candida are resistant to various antifungal treatments. The ability of Candida to form biofilms on abiotic and biotic surfaces is considered one of the most important virulence factors of these fungi. Extracellular DNA and exopolysaccharides can lower the antifungal penetration to the deeper layers of the biofilms, which is a serious concern supported by the emergence of azole-resistant isolates and Candida strains with decreased antifungal susceptibility. Since the biofilms' resistance to common antifungal drugs has become more widespread in recent years, more investigations should be performed to develop novel, inexpensive, non-toxic, and effective treatment approaches for controlling biofilm-associated infections. Scientists have used various natural compounds for inhibiting and degrading Candida biofilms. Curcumin, cinnamaldehyde, eugenol, carvacrol, thymol, terpinen-4-ol, linalool, geraniol, cineole, saponin, camphor, borneol, camphene, carnosol, citronellol, coumarin, epigallocatechin gallate, eucalyptol, limonene, menthol, piperine, saponin, α-terpineol, β-pinene, and citral are the major natural compounds that have been used widely for the inhibition and destruction of Candida biofilms. These compounds suppress not only fungal adhesion and biofilm formation but also destroy mature biofilm communities of Candida. Additionally, these natural compounds interact with various cellular processes of Candida, such as ABC-transported mediated drug transport, cell cycle progression, mitochondrial activity, and ergosterol, chitin, and glucan biosynthesis. The use of various drug delivery platforms can enhance the antibiofilm efficacy of natural compounds. Therefore, these drug delivery platforms should be considered as potential candidates for coating catheters and other medical material surfaces. A future goal will be to develop natural compounds as antibiofilm agents that can be used to treat infections by multi-drug-resistant Candida biofilms. Since exact interactions of natural compounds and biofilm structures have not been elucidated, further in vitro toxicology and animal experiments are required. In this article, we have discussed various aspects of natural compound usage for inhibition and destruction of Candida biofilms, along with the methods and procedures that have been used for improving the efficacy of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Soroush
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Shariati A, Chegini Z, Ghaznavi-Rad E, Zare EN, Hosseini SM. PLGA-Based Nanoplatforms in Drug Delivery for Inhibition and Destruction of Microbial Biofilm. Front Cell Infect Microbiol 2022; 12:926363. [PMID: 35800390 PMCID: PMC9253276 DOI: 10.3389/fcimb.2022.926363] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
The biofilm community of microorganisms has been identified as the dominant mode of microbial growth in nature and a common characteristic of different microorganisms such as Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. The biofilm structure helps in the protection from environmental threats including host immune system and antimicrobial agents. Thus, the biofilm community has led to a higher prevalence of multidrug-resistant (MDR) strains in recent years. In this regard, the use of a new class of antibiotics, natural compounds, and anti-biofilm enzymes has been considered for the destruction of the microbial biofilm. However, different drawbacks such as low penetration, high susceptibility to degradation, instability, and poor solubility in aqueous solutions limit the use of anti-biofilm agents (ABAs) in a clinical setting. As such, recent studies have been using poly lactic-co-glycolic acid (PLGA)-based nanoplatforms (PLGA NPFs) for delivery of ABAs that have reported promising results. These particles, due to proper drug loading and release kinetics, could suppress microbial attachment, colonization, and biofilm formation for a long time. Additionally, PLGA NPFs, because of the high drug-loading efficiencies, hydrophilic surface, negative charge, and electrostatic interaction, lead to effective penetration of antibiotics to the deeper layer of the biofilm, thereby eliminating the microbial biofilm. Thus, PLGA NPFs could be considered as a potential candidate for coating catheters and other medical material surfaces for inhibition and destruction of the microbial biofilm. However, the exact interaction of PLGA NPFs and the microbial biofilm should be evaluated in animal studies. Additionally, a future goal will be to develop PLGA formulations as systems that can be used for the treatment of the MDR microbial biofilm, since the exact interactions of PLGA NPFs and these biofilm structures are not elucidated. In the present review article, we have discussed various aspects of PLGA usage for inhibition and destruction of the microbial biofilm along with different methods and procedures that have been used for improving PLGA NPF efficacy against the microbial biofilm.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ehsanollah Ghaznavi-Rad
- Department of Microbiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- *Correspondence: Seyed Mostafa Hosseini,
| |
Collapse
|
13
|
Villar Rodríguez J, Pérez Pico AM, Mingorance Álvarez E, Mayordomo Acevedo R. Meta-analysis of the antifungal activities of three essential oils as alternative therapies in dermatophytosis infections. J Appl Microbiol 2022; 133:241-253. [PMID: 35332625 PMCID: PMC9545424 DOI: 10.1111/jam.15539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
Aims This work examines the available scientific evidence about the efficiency of essential oils (EO) as an alternative therapy to traditional treatment of fungal infections, including onychomycosis, assessing the effect of the three EO most frequently studied for their antifungal activity (thyme, cinnamon and tea tree EO) against three causative agents of fungal diseases in humans: Trichophyton rubrum, Trichophyton mentagrophytes complex and Candida albicans. Methods and Results The PRISMA statement protocol was followed to conduct a bibliographical search and 54 articles that met all the inclusion criteria were retrieved. Differences were observed in the MIC and MFC values depending on the micro‐organism strain and the EO used. The lowest MIC were observed with Cinnamomum zeylanicum EO (0.013–1120 μl ml−1) against the three micro‐organisms. For MFC, the lowest value was found for Thymus vulgaris EO (4.2 μl ml−1) against Trichophyton rubrum. Conclusions The antifungal effects of EO could be a very promising solution to overcome the therapeutic shortcomings of antimycotic medication. More experiments are needed to examine the properties of these oils to devise effective and nonaggressive therapies for treatment of dermatophytosis. Significance and Impact of Study The results indicate that EO remain good candidates for future treatments and could provide a solution for failed medications and/or adverse reactions to current pharmacological treatments.
Collapse
Affiliation(s)
- Julia Villar Rodríguez
- Department of Anatomy, Cellular Biology and Zoology, University Centre of Plasencia, University of Extremadura, Spain
| | - Ana María Pérez Pico
- Department of Nursing, University Centre of Plasencia, University of Extremadura, Spain
| | - Esther Mingorance Álvarez
- Department of Anatomy, Cellular Biology and Zoology, University Centre of Plasencia, University of Extremadura, Spain
| | - Raquel Mayordomo Acevedo
- Department of Anatomy, Cellular Biology and Zoology, University Centre of Plasencia, University of Extremadura, Spain
| |
Collapse
|
14
|
Borotová P, Galovičová L, Vukovic NL, Vukic M, Tvrdá E, Kačániová M. Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040558. [PMID: 35214891 PMCID: PMC8880210 DOI: 10.3390/plants11040558] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 06/12/2023]
Abstract
The essential oil of Melaleuca alternifolia, commonly known as tea tree oil, has many beneficial properties due to its bioactive compounds. The aim of this research was to characterize the tea tree essential oil (TTEO) from Slovakia and its biological properties, which are specific to the chemical composition of essential oil. Gas chromatography/mass spectroscopy revealed that terpinen-4-ol was dominant with a content of 40.3%. γ-Terpinene, 1,8-cineole, and p-cymene were identified in contents of 11.7%, 7.0%, and 6.2%, respectively. Antioxidant activity was determined at 41.6% radical inhibition, which was equivalent to 447 μg Trolox to 1 mL sample. Antimicrobial activity was observed by the disk diffusion method against Gram-positive (G+), Gram-negative (G-) bacteria and against yeasts, where the best antimicrobial activity was against Enterococcus faecalis and Candida albicans with an inhibition zone of 10.67 mm. The minimum inhibitory concentration showed better susceptibility by G+ and G- planktonic cells, while yeast species and biofilm-forming bacteria strains were more resistant. Antibiofilm activity was observed against Pseudomonas fluorescens and Salmonella enterica by MALDI-TOF, where degradation of the protein spectra after the addition of essential oil was obtained. Good biological properties of tea tree essential oil allow its use in the food industry or in medicine as an antioxidant and antimicrobial agent.
Collapse
Affiliation(s)
- Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Lucia Galovičová
- Faculty of Horticulture and Landscape Engineering, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Milena Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Eva Tvrdá
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Miroslava Kačániová
- Faculty of Horticulture and Landscape Engineering, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza Str., 35-601 Rzeszow, Poland
| |
Collapse
|
15
|
Cid-Chevecich C, Müller-Sepúlveda A, Jara JA, López-Muñoz R, Santander R, Budini M, Escobar A, Quijada R, Criollo A, Díaz-Dosque M, Molina-Berríos A. Origanum vulgare L. essential oil inhibits virulence patterns of Candida spp. and potentiates the effects of fluconazole and nystatin in vitro. BMC Complement Med Ther 2022; 22:39. [PMID: 35139827 PMCID: PMC8827202 DOI: 10.1186/s12906-022-03518-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Background Recurrence and resistance of Candida spp. infections is associated with the ability of these microorganisms to present several virulence patterns such as morphogenesis, adhesion, and biofilm formation. In the search for agents with antivirulence activity, essential oils could represent a strategy to act against biofilms and to potentiate antifungal drugs. Objective To evaluate the antivirulence effect of Origanum vulgare L. essential oil (O-EO) against Candida spp. and to potentiate the effect of fluconazole and nystatin. Methods The effect of O-EO was evaluated on ATCC reference strains of C. albicans and non-albicans Candida species. Minimum inhibitory concentration (MIC) was determined through broth microdilution assay. Adhesion to microplates was determined by crystal violet (CV) assay. An adapted scratch assay in 24-well was used to determine the effect of essential oil on biofilms proliferation. Viability of biofilms was evaluated by MTT reduction assay and through a checkerboard assay we determined if O-EO could act synergistically with fluconazole and nystatin. Results MIC for C. albicans ATCC-90029 and ATCC-10231 was 0.01 mg/L and 0.97 mg/L, respectively. For non-albicans Candida strains MIC values were 2.6 mg/L for C. dubliniensis ATCC-CD36 and 5.3 mg/L for C. krusei ATCC-6258. By using these concentrations, O-EO inhibited morphogenesis, adhesion, and proliferation at least by 50% for the strains assayed. In formed biofilms O-EO decreased viability in ATCC 90029 and ATCC 10231 strains (IC50 7.4 and 2.8 mg/L respectively). Finally, we show that O-EO interacted synergistically with fluconazole and nystatin. Conclusions This study demonstrate that O-EO could be considered to improve the antifungal treatment against Candida spp. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03518-z.
Collapse
Affiliation(s)
- Camila Cid-Chevecich
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile
| | - Andrea Müller-Sepúlveda
- Institute of Agrifood, Animals and Environmental Sciences, Universidad de O'Higgins, San Fernando, Chile
| | - José Antonio Jara
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile
| | - Rodrigo López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Rocío Santander
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Mauricio Budini
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile
| | - Alejandro Escobar
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile
| | - Raúl Quijada
- Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile
| | - Mario Díaz-Dosque
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile.
| | - Alfredo Molina-Berríos
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile.
| |
Collapse
|
16
|
Das S, Vishakha K, Banerjee S, Nag D, Ganguli A. Exploring the antibacterial, antibiofilm, and antivirulence activities of tea tree oil-containing nanoemulsion against carbapenem-resistant Serratia marcescens associated infections. BIOFOULING 2022; 38:100-117. [PMID: 35012385 DOI: 10.1080/08927014.2021.2022125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Carbapenem-resistant Serratia marcescens (CRE-S. marcescens) has recently emerged as an opportunistic human pathogen that causes various nosocomial and respiratory tract infections. The prognosis for CRE-S. marcescens-related infections is very poor and these infections are difficult to treat. This study investigated the synthesis of tea tree oil nanoemulsion (TTO-NE) and its impact on CRE-S. marcescens both in vitro and in vivo. TTO-NE was characterized by dynamic light scattering (DLS) and effectively eradicated bacterial planktonic and sessile forms, reduced bacterial virulence factors, and generated reactive oxygen species (ROS) in the bacterial cell. Notably, TTO-NE was efficient in reducing the colonization of CRE-S. marcescens in a C. elegans in vivo model. The data suggest that TTO-NE might be an excellent tool to combat infections associated with CRE-S. marcescens.
Collapse
Affiliation(s)
- Shatabdi Das
- Department of Microbiology, Techno India University, Kolkata, West Bengal, India
| | - Kumari Vishakha
- Department of Microbiology, Techno India University, Kolkata, West Bengal, India
| | - Satarupa Banerjee
- Department of Microbiology, Techno India University, Kolkata, West Bengal, India
| | - Debasish Nag
- Department of Biotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, Kolkata, West Bengal, India
| |
Collapse
|
17
|
Maia CMDA, Pasetto S, Nonaka CFW, Costa EMMDB, Murata RM. Yeast-Host Interactions: Anadenanthera colubrina Modulates Virulence Factors of C. albicans and Inflammatory Response In Vitro. Front Pharmacol 2021; 12:629778. [PMID: 34168555 PMCID: PMC8217765 DOI: 10.3389/fphar.2021.629778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
Oral candidiasis is one of the most common fungal infections in humans. Its incidence has increased widely, as well as the antifungal resistance, demanding for the search for novel antifungal therapeutic agents. Anadenanthera colubrina (Vell.) Brenan is a plant species that has been proven to possess pharmacological effects, including antifungal and anti-inflammatory activities. This study evaluated in vitro the effects of standardized A. colubrina extract on virulence factors of Candida albicans and its regulation on immune response through C. albicans-host interaction. Antifungal activity was evaluated by Broth Microdilution Method against reference Candida strains (C. albicans, C. glabrata, C. tropicalis; C. dubliniensis). Anti-biofilm effect was performed on C. albicans mature biofilm and quantified by CFU/mL/g of biofilm dry weight. Proleotlytic enzymatic activities of proteinase and phospholipase were assessed by Azocasein and Phosphatidylcholine assays, respectively. Cytotoxicity effect was determined by Cell Titer Blue Viability Assay on Human Gingival Fibroblasts. Co-cultured model was used to analyze C. albicans coexisting with HGF by Scanning Electron Microscopy and fluorescence microscopies; gene expression was assessed by RT-PCR of C. albicans enzymes (SAP-1, PLB-1) and of host inflammatory cytokines (IL-6, IL-8, IL-1β, IL-10). Cytokines secretion was analysed by Luminex. The extract presented antifungal effect with MIC<15.62 μg/ml against Candida strains. Biofilm and proteolytic activity were significant reduced at 312.4 μg/ml (20 × 15.62 μg/ml) extract concentration. Cell viability was maintained higher than 70% in concentrations up to 250 μg/ml (LD50 = 423.3 μg/ml). Co-culture microscopies demonstrated a substantial decreased in C. albicans growth and minimal toxicity against host cells. Gene expressions of SAP-1/PLB-1 were significantly down-regulated and host immune response was modulated by a significant decreased on IL-6 and IL-8 cytokines secretion. A. colubrina had antifungal activity on Candida strains, antibiofilm, and anti-proteolytic enzyme effects against C. albicans. Presented low cytotoxicity to the host cells and modulatory effects on the host immune response.
Collapse
Affiliation(s)
- Carolina Medeiros de Almeida Maia
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Brazil
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Silvana Pasetto
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | | | | | - Ramiro Mendonça Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
18
|
Sahal G, Woerdenbag HJ, Hinrichs WLJ, Visser A, van der Mei HC, Bilkay IS. Candida Biofilm Formation Assay on Essential Oil Coated Silicone Rubber. Bio Protoc 2021; 11:e3941. [PMID: 33796615 DOI: 10.21769/bioprotoc.3941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/02/2022] Open
Abstract
Development of biofilm associated candidemia for patients with implanted biomaterials causes an urgency to develop antimicrobial and biofilm inhibitive coatings in the management of recalcitrant Candida infections. Recently, there is an increase in the number of patients with biofilm formation and resistance to antifungal therapy. Therefore, there is a growing interest to use essential oils as coating agents in order to prevent biomaterial-associated Candida infections. Often high costs, complicated and laborious technologies are used for both applying the coating and determination of the antibiofilm effects hampering a rapid screening of essential oils. In order to determine biofilm formation of Candida on essential oil coated surfaces easier, cheaper and faster, we developed an essential oil (lemongrass oil) coated surface (silicone-rubber) by using a hypromellose ointment/essential oil mixture. Furthermore, we modified the "crystal violet binding assay" to quantify the biofilm mass of Candida biofilm formed on the lemongrass oil coated silicone rubber surface. The essential oil coating and the biomass determination of biofilms on silicone rubber can be easily applied with simple and accessible equipment, and will therefore provide rapid information about whether or not a particular essential oil is antiseptic, also when it is used as a coating agent.
Collapse
Affiliation(s)
- Gulcan Sahal
- Hacettepe University, Faculty of Sciences, Department of Biology (Biotechnology Division), Beytepe, Ankara, Turkey
| | - Herman J Woerdenbag
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, Groningen, the Netherlands
| | - Wouter L J Hinrichs
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, Groningen, the Netherlands
| | - Anita Visser
- University of Groningen and University Medical Center Groningen, Department of Oral and Maxillofacial Surgery and Maxillofacial Prosthodontics, Groningen, the Netherlands.,University of Groningen and University Medical Center Groningen, Department of Geriatric Dentistry, Dental school, Center for Dentistry and Oral Hygiene, Groningen, the Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, Groningen, the Netherlands
| | - Isil Seyis Bilkay
- Hacettepe University, Faculty of Sciences, Department of Biology (Biotechnology Division), Beytepe, Ankara, Turkey
| |
Collapse
|