Kaufman J, Jeon J, Oreskovic J, Fossat Y. Linear effects of glucose levels on voice fundamental frequency in type 2 diabetes and individuals with normoglycemia.
Sci Rep 2024;
14:19012. [PMID:
39198592 PMCID:
PMC11358324 DOI:
10.1038/s41598-024-69620-z]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Glucose levels in the body have been hypothesized to affect voice characteristics. One of the primary justifications for voice changes are due to Hooke's law, in which a variation in the tension, mass, or length of the vocal folds, mediated by the body's glucose levels, results in an alteration in their vibrational frequency. To explore this hypothesis, 505 participants were fitted with a continuous glucose monitor (CGM) and instructed to record their voice using a custom mobile application up to six times daily for 2 weeks. Glucose values from CGM were paired to voice recordings to create a sampled dataset that closely resembled the glucose profile of the comprehensive CGM dataset. Glucose levels and fundamental frequency (F0) had a significant positive association within an individual, and a 1 mg/dL increase in CGM recorded glucose corresponded to a 0.02 Hz increase in F0 (CI 0.01-0.03 Hz, P < 0.001). This effect was also observed when the participants were split into non-diabetic, prediabetic, and Type 2 Diabetic classifications (P = 0.03, P = 0.01, & P = 0.01 respectively). Vocal F0 increased with blood glucose levels, but future predictive models of glucose levels based on voice may need to be personalized due to high intraclass correlation.
Collapse