1
|
Jia X, Chen Q, Wu H, Liu H, Jing C, Gong A, Zhang Y. Exploring a novel therapeutic strategy: the interplay between gut microbiota and high-fat diet in the pathogenesis of metabolic disorders. Front Nutr 2023; 10:1291853. [PMID: 38192650 PMCID: PMC10773723 DOI: 10.3389/fnut.2023.1291853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
In the past two decades, the rapid increase in the incidence of metabolic diseases, including obesity, diabetes, dyslipidemia, non-alcoholic fatty liver disease, hypertension, and hyperuricemia, has been attributed to high-fat diets (HFD) and decreased physical activity levels. Although the phenotypes and pathologies of these metabolic diseases vary, patients with these diseases exhibit disease-specific alterations in the composition and function of their gut microbiota. Studies in germ-free mice have shown that both HFD and gut microbiota can promote the development of metabolic diseases, and HFD can disrupt the balance of gut microbiota. Therefore, investigating the interaction between gut microbiota and HFD in the pathogenesis of metabolic diseases is crucial for identifying novel therapeutic strategies for these diseases. This review takes HFD as the starting point, providing a detailed analysis of the pivotal role of HFD in the development of metabolic disorders. It comprehensively elucidates the impact of HFD on the balance of intestinal microbiota, analyzes the mechanisms underlying gut microbiota dysbiosis leading to metabolic disruptions, and explores the associated genetic factors. Finally, the potential of targeting the gut microbiota as a means to address metabolic disturbances induced by HFD is discussed. In summary, this review offers theoretical support and proposes new research avenues for investigating the role of nutrition-related factors in the pathogenesis of metabolic disorders in the organism.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hongbo Liu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chunying Jing
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Escudero-López B, Cerrillo I, Ortega Á, Martín F, Fernández-Pachón MS. Effect of Acute Intake of Fermented Orange Juice on Fasting and Postprandial Glucose Metabolism, Plasma Lipids and Antioxidant Status in Healthy Human. Foods 2022; 11:foods11091256. [PMID: 35563979 PMCID: PMC9101597 DOI: 10.3390/foods11091256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/03/2023] Open
Abstract
Higher postprandial plasma glucose and lipemia, and oxidative and inflammatory responses, are considered important cardiovascular risk factors. Fermentation of fruits has generated products with high concentrations of bioactive compounds. The aim of this study was to evaluate the potential acute effects that fermented orange juice (FOJ) can exert in healthy humans by modulating postprandial response, and inflammatory/antioxidant status, compared with orange juice (OJ). Nine volunteers were recruited for a randomized, controlled, and crossover study. Participants ingested 500 mL of FOJ. At 4 h post intake, subjects consumed a standardized mixed meal. Blood samples were collected at 0-8 h hours post intake. The subjects repeated the protocol with OJ following a 2-week washout period. Glucose and lipid metabolism, plasma antioxidant capacity (ORAC, FRAP), endogenous antioxidants (albumin, bilirubin, uric acid), C-reactive protein and fibrinogen were measured in plasma samples. There was a trend of a smaller increase in LDL-C after FOJ intake compared with OJ, a significant decrease in apo-B and significant increase in ORAC. The glycemic and triglyceride response of meal was attenuated with FOJ. No differences were obtained in endogenous antioxidants and inflammation status between the treatments. The acute consumption of FOJ could play a protective role against cardiovascular risk factors.
Collapse
|
3
|
Acute whole apple consumption did not influence postprandial lipaemia: a randomised crossover trial. Br J Nutr 2020; 123:807-817. [DOI: 10.1017/s0007114519003441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractWhole apples are a source of pectin and polyphenols, both of which show potential to modulate postprandial lipaemia (PPL). The present study aimed to explore the effects of whole apple consumption on PPL, as a risk factor for CVD, in generally healthy but overweight and obese adults. A randomised, crossover acute meal trial was conducted with seventeen women and nine men (mean BMI of 34·1 (sem0·2) kg/m2). Blood samples were collected for 6 h after participants consumed an oral fat tolerance test meal that provided 1 g fat/kg body weight and 1500 mg acetaminophen per meal for estimating gastric emptying, with and without three whole raw Gala apples (approximately 200 g). Plasma TAG (with peak postprandial concentration as the primary outcome), apoB48, chylomicron-rich fraction particle size and fatty acid composition, glucose, insulin and acetaminophen were analysed. Differences between with and without apples were identified by ANCOVA. Apple consumption did not alter postprandial TAG response, chylomicron properties, glucose or acetaminophen (P> 0·05), but did lead to a higher apoB48 peak concentration and exaggerated insulin between 20 and 180 min (P< 0·05). Overall, as a complex food matrix, apples did not modulate postprandial TAG when consumed with a high-fat meal in overweight and obese adults, but did stimulate insulin secretion, potentially contributing to an increased TAG-rich lipoprotein production.
Collapse
|
4
|
Sato M, Okuno A, Suzuki K, Ohsawa N, Inoue E, Miyaguchi Y, Toyoda A. Dietary intake of the citrus flavonoid hesperidin affects stress-resilience and brain kynurenine levels in a subchronic and mild social defeat stress model in mice. Biosci Biotechnol Biochem 2019; 83:1756-1765. [DOI: 10.1080/09168451.2019.1621152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
ABSTRACT
Depressive disorders are partly caused by chronic inflammation through the kynurenine (KYN) pathway. Preventive intervention using anti-inflammatory reagents may be beneficial for alleviating the risk of depression. In this study, we focused on the Japanese local citrus plant, Citrus tumida hort. ex Tanaka (C. tumida; CT), which contains flavonoids such as hesperidin that have anti-inflammatory actions. The dietary intake of 5% immature peels of CT fruits slightly increased stress resilience in a subchronic and mild social defeat (sCSDS) model in mice. Moreover, the dietary intake of 0.1% hesperidin significantly increased stress resilience and suppressed KYN levels in the hippocampus and prefrontal cortex in these mice. In addition, KYN levels in the hippocampus and prefrontal cortex were significantly correlated with the susceptibility to stress. In conclusion, these results suggest that dietary hesperidin increases stress resilience by suppressing the augmentation of KYN signaling under sCSDS.
Collapse
Affiliation(s)
- Mizuho Sato
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
- United Graduate School of Agricultural Science, Department of Biological Production Science, Tokyo University of Agriculture and Technology, Fuchu-city, Tokyo, Japan
| | - Alato Okuno
- Department of Health and Nutrition, Tsukuba International University, Tsuchiura-city, Ibaraki, Japan
| | - Kazunori Suzuki
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
| | - Natsuki Ohsawa
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
| | - Eiichi Inoue
- United Graduate School of Agricultural Science, Department of Biological Production Science, Tokyo University of Agriculture and Technology, Fuchu-city, Tokyo, Japan
- Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki, Japan
- Department of Reginal and Comprehensive Agriculture, College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
| | - Yuji Miyaguchi
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
- United Graduate School of Agricultural Science, Department of Biological Production Science, Tokyo University of Agriculture and Technology, Fuchu-city, Tokyo, Japan
- Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki, Japan
| | - Atsushi Toyoda
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
- United Graduate School of Agricultural Science, Department of Biological Production Science, Tokyo University of Agriculture and Technology, Fuchu-city, Tokyo, Japan
- Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki, Japan
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Postprandial lipemia (PPL), the prolonged increase in plasma triglyceride-rich lipoproteins following food consumption, is an independent risk factor for cardiovascular disease. Genetic variation, environment and the interplay between these direct an individual's postprandial lipid response. From such interplay, inducible and reversible epigenetic changes arise. Increasing evidence suggests epigenetic variation contributes to postprandial response in lipids and risk. RECENT FINDINGS Diet and exercise are central agents affecting postprandial lipemia - triglyceride, but heterogeneity of the findings warrant more and larger studies. Several epigenetic loci identified from a human intervention study account for a substantial proportion of PPL phenotype variation, but the burden to conduct an intervention study of postprandial responses likely limits translation to personalized nutrition. SUMMARY The impact of both DNA methylation patterns and environmental factors such as diet, exercise, sleep and medication on PPL is multifaceted. Discovery of interactions that modify the association between CpG (oligodeoxydinucleotide) methylation and postprandial phenotypes is unfolding.
Collapse
Affiliation(s)
| | - Jose M Ordovas
- Jean Mayer-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
- IMDEA Food Institute, CEI UAM + CSIC
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | |
Collapse
|
6
|
Lim Y, Kwon O, Kim JY. The Model for Evaluation on Blood Flow of Functional Food in Human Intervention Study. J Lipid Atheroscler 2018. [DOI: 10.12997/jla.2018.7.2.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yeni Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, Korea
| |
Collapse
|