1
|
Du X, Ronayne S, Lee SS, Hendry J, Hoxworth D, Bock R, Ferguson SJ. 3D-Printed PEEK/Silicon Nitride Scaffolds with a Triply Periodic Minimal Surface Structure for Spinal Fusion Implants. ACS APPLIED BIO MATERIALS 2023; 6:3319-3329. [PMID: 37561906 PMCID: PMC10445264 DOI: 10.1021/acsabm.3c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
The issue of spine-related disorders is a global healthcare concern that requires effective solutions to restore normal spine functioning. Spinal fusion implants have become a standard approach for this purpose, making it crucial to develop biomaterials and structures that possess high osteogenic capacities and exhibit mechanical properties and dynamic responses similar to those of the host bone. This study focused on the fabrication of 3D-printed polyether ether ketone/silicon nitride (PEEK/SiN) scaffolds with a triply periodic minimal surface (TPMS) structure, which offers several advantages, such as a large surface area and uniform stress distribution under load. The mechanical properties and dynamic response of PEEK/SiN scaffolds with varying porosities were evaluated through mechanical testing and finite element analysis. The scaffold with 30% porosity exhibited a compressive strength (34.56 ± 1.91 MPa) and elastic modulus (734 ± 64 MPa) similar to those of trabecular bone. In addition, the scaffold demonstrated favorable damping properties. The biological data revealed that incorporating silicon nitride into the PEEK scaffold stimulated osteogenic differentiation. In light of these findings, it can be inferred that PEEK/SiN TPMS scaffolds exhibit significant potential for use in bone tissue engineering and represent a promising option as candidates for spinal fusion implants.
Collapse
Affiliation(s)
- Xiaoyu Du
- Institute
for Biomechanics,ETH Zurich, Zurich 8093, Switzerland
| | - Sean Ronayne
- SINTX
Technologies, Inc., Salt Lake City, Utah 84119, United States
| | - Seunghun S. Lee
- Institute
for Biomechanics,ETH Zurich, Zurich 8093, Switzerland
| | - Jackson Hendry
- SINTX
Technologies, Inc., Salt Lake City, Utah 84119, United States
| | - Douglas Hoxworth
- SINTX
Technologies, Inc., Salt Lake City, Utah 84119, United States
| | - Ryan Bock
- SINTX
Technologies, Inc., Salt Lake City, Utah 84119, United States
| | | |
Collapse
|
2
|
Huddleston SE, Duan C, Ameer GA. Azo polymerization of citrate‐based biomaterial‐ceramic composites at physiological temperatures. NANO SELECT 2022. [DOI: 10.1002/nano.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Chongwen Duan
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago Illinois USA
| | - Guillermo A. Ameer
- Center for Advanced Regenerative Engineering (CARE) Evanston Illinois USA
| |
Collapse
|
3
|
Duta L, Dorcioman G, Grumezescu V. A Review on Biphasic Calcium Phosphate Materials Derived from Fish Discards. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2856. [PMID: 34835621 PMCID: PMC8620776 DOI: 10.3390/nano11112856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022]
Abstract
This review summarizes the results reported on the production of biphasic calcium phosphate (BCP) materials derived from fish wastes (i.e., heads, bones, skins, and viscera), known as fish discards, and offers an in-depth discussion on their promising potential for various applications in many fields, especially the biomedical one. Thus, considerable scientific and technological efforts were recently focused on the capability of these sustainable materials to be transformed into economically attractive and highly valuable by-products. As a consequence of using these wastes, plenty of beneficial social effects, with both economic and environmental impact, will arise. In the biomedical field, there is a strong and continuous interest for the development of innovative solutions for healthcare improvement using alternative materials of biogenic origin. Thus, the orthopedic field has witnessed a significant development due to an increased demand for a large variety of implants, grafts, and/or scaffolds. This is mainly due to the increase of life expectancy and higher frequency of bone-associated injuries and diseases. As a consequence, the domain of bone-tissue engineering has expanded to be able to address a plethora of bone-related traumas and to deliver a viable and efficient substitute to allografts or autografts by combining bioactive materials and cells for bone-tissue ingrowth. Among biomaterials, calcium phosphate (CaP)-based bio-ceramics are widely used in medicine, in particular in orthopedics and dentistry, due to their excellent bioactive, osteoconductive, and osteointegrative characteristics. Recently, BCP materials (synthetic or natural), a class of CaP, which consist of a mixture of two phases, hydroxyapatite (HA) and beta tricalcium phosphate (β-TCP), in different concentrations, gained increased attention due to their superior overall performances as compared to single-phase formulations. Moreover, the exploitation of BCP materials from by-products of fish industry was reported to be a safe, cheap, and simple procedure. In the dedicated literature, there are many reviews on synthetic HA, β-TCP, or BCP materials, but to the best of our knowledge, this is the first collection of results on the effects of processing conditions on the morphological, compositional, structural, mechanical, and biological properties of the fish discard-derived BCPs along with the tailoring of their features for various applications.
Collapse
Affiliation(s)
| | | | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (L.D.); (G.D.)
| |
Collapse
|
4
|
Mandair GS, Akhter MP, Esmonde-White FWL, Lappe JM, Bare SP, Lloyd WR, Long JP, Lopez J, Kozloff KM, Recker RR, Morris MD. Altered collagen chemical compositional structure in osteopenic women with past fractures: A case-control Raman spectroscopic study. Bone 2021; 148:115962. [PMID: 33862262 PMCID: PMC8259347 DOI: 10.1016/j.bone.2021.115962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Incidences of low-trauma fractures among osteopenic women may be related to changes in bone quality. In this blinded, prospective-controlled study, compositional and heterogeneity contributors of bone quality to fracture risk were examined. We hypothesize that Raman spectroscopy can differentiate between osteopenic women with one or more fractures (cases) from women without fractures (controls). This study involved the Raman spectroscopic analysis of cortical and cancellous bone composition using iliac crest biopsies obtained from 59-cases and 59-controls, matched for age (62.0 ± 7.5 and 61.7 ± 7.3 years, respectively, p = 0.38) and hip bone mineral density (BMD, 0.827 ± 0.083 and 0.823 ± 0.072 g/cm3, respectively, p = 0.57). Based on aggregate univariate case-control and odds ratio based logistic regression analyses, we discovered two Raman ratiometric parameters that were predictive of past fracture risk. Specifically, 1244/1268 and 1044/959 cm-1 ratios, were identified as the most differential aspects of bone quality in cortical cases with odds ratios of 0.617 (0.406-0.938 95% CI, p = 0.024) and 1.656 (1.083-2.534 95% CI, p = 0.020), respectively. Both 1244/1268 and 1044/959 cm-1 ratios exhibited moderate sensitivity (59.3-64.4%) but low specificity (49.2-52.5%). These results suggest that the organization of mineralized collagen fibrils were significantly altered in cortical cases compared to controls. In contrast, compositional and heterogeneity parameters related to mineral/matrix ratios, B-type carbonate substitutions, and mineral crystallinity, were not significantly different between cases and controls. In conclusion, a key outcome of this study is the significant odds ratios obtained for two Raman parameters (1244/1268 and 1044/959 cm-1 ratios), which from a diagnostic perspective, may assist in the screening of osteopenic women with suspected low-trauma fractures. One important implication of these findings includes considering the possibility that changes in the organization of collagen compositional structure plays a far greater role in postmenopausal women with osteopenic fractures.
Collapse
Affiliation(s)
- Gurjit S Mandair
- School of Dentistry, Departments of Biologic and Materials, University of Michigan, Ann Arbor, MI, USA.
| | | | | | - Joan M Lappe
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - Susan P Bare
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - William R Lloyd
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jason P Long
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Lopez
- School of Dentistry, Departments of Biologic and Materials, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | - Michael D Morris
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Shanmuganantha L, Baharudin A, Sulong AB, Shamsudin R, Ng MH. Prospect of Metal Ceramic (Titanium-Wollastonite) Composite as Permanent Bone Implants: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E277. [PMID: 33430455 PMCID: PMC7826931 DOI: 10.3390/ma14020277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023]
Abstract
This literature review discusses the influence of titanium ceramic composites as a biomaterial towards the fabrication of implants for orthopedic applications. The concept of applying metal-ceramic composites enable many novel combinations in the design and fabrication of complex materials which enhances functionality to improve cell and tissue matrix interactions particularly in the formation of bone. Specific focus is placed on its plethora of materials selected from the metals and ceramic group and identifying the optimal combination that matches them. The prospect of wollastonite as the ceramic counterpart is also highlighted. In this review, we have highlighted the different fabrication methods for such metal-ceramic materials as well as the role that these hybrids play in an in vitro and in vivo environment. Its economic potential as a bone implant material is also discussed.
Collapse
Affiliation(s)
| | - Azmi Baharudin
- Department of Orthopaedic and Traumatology, National University of Malaysia, Selangor Darul Ehsan 56000, Malaysia;
| | - Abu Bakar Sulong
- Department of Mechanical Engineering, National University of Malaysia, Selangor Darul Ehsan 43600, Malaysia;
| | - Roslinda Shamsudin
- Department of Science and Technology, National University of Malaysia, Selangor Darul Ehsan 43600, Malaysia;
| | - Min Hwei Ng
- Department of Tissue Engineering, National University of Malaysia, Selangor Darul Ehsan 56000, Malaysia;
| |
Collapse
|
6
|
Kiyochi Junior HDJ, Candido AG, Bonadio TGM, da Cruz JA, Baesso ML, Weinand WR, Hernandes L. In vivo evaluation of interactions between biphasic calcium phosphate (BCP)-niobium pentoxide (Nb 2O 5) nanocomposite and tissues using a rat critical-size calvarial defect model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:71. [PMID: 32712717 DOI: 10.1007/s10856-020-06414-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Natural or synthetic biomaterials are increasingly being used to support bone tissue repair or substitution. The combination of natural calcium phosphates with biocompatible alloys is an important route towards the development of new biomaterials with bioperformance and mechanical responses to mimic those of human bones. This article evaluated the structural, physical, mechanical and biological properties of a new mechanical improved nanocomposite elaborated by association of fish biphasic calcium phosphate (BCP) and niobium pentoxide (Nb2O5). The nanocomposite (Nb-BCP) and the pure BCP, used as a positive control, were obtained by powder metallurgy. The density, porosity and microhardness were measured. The structural analysis was determined by X-ray diffraction (XRD) and the biological properties were studied in histological sections of critical size calvaria defects in rats, 7, 15, 30, 45 and 60 days after implantation of disks of both materials. Morphological description was made after scanning electron microscopy (SEM) and optical microscopy analysis. After sintering, the Nb-BCP nanocomposite presented four crystalline phases: 34.36% calcium niobate (CaNb2O6), 21.68% phosphorus niobium oxide (PNb9O25), 42.55% β-tricalcium phosphate (Ca3(PO4)2) and 1.31% of niobium pentoxide (Nb2O5) and exhibited increases of 17% in density, 66% in Vickers microhardness and 180% in compressive strength compared to pure BCP. In vivo study, showed biocompatibility, bioactivity and osteoconductivity similar to pure BCP. SEM showed the formation of globular accretions over the implanted nanocomposites, representing one of the stages of bone mineralization. In conclusion, the BCP and Nb2O5 formed a nanocomposite exhibiting characteristics that are desirable for a biomaterial, such as bioperformance, higher β-TCP percentage and improved physical and mechanical properties compared to pure BCP. These characteristics demonstrate the promise of this material for supporting bone regeneration.
Collapse
Affiliation(s)
| | - Aline Gabriela Candido
- Morphologycal Sciences Department, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | - José Adauto da Cruz
- Physics Department, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | | | - Luzmarina Hernandes
- Morphologycal Sciences Department, Universidade Estadual de Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
7
|
Li Z, Wang J, Song G, Ji C, Han X. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 188:105279. [PMID: 31865093 DOI: 10.1016/j.cmpb.2019.105279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/06/2019] [Accepted: 12/13/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Characterizing the mechanical properties of the cancellous bone from the cervical vertebrae of child or child surrogate is important for the development of spine finite element models and the investigation of injury mechanism, however, there is currently no public data available as far as we know. METHODS Compression tests were conducted on the specimens from the cervical vertebrae of 8-week-old piglets (child surrogates) in axial and radial directions at the strain rates of 0.01, 0.1, 1 and 10/s. The influences of directionality and strain rate on the mechanical properties of the vertebral cancellous bone were statistically investigated. The typical transversely isotropic model, which was added a strain rate item and a plasticity item, was implemented into LS-DYNA finite element code. Based on the material subroutine code, simulation was conducted on the vertebral tissue under compression in axial and radial directions at different strain rates. RESULTS The mechanical properties of the cancellous bone of cervical vertebrae were obtained and most of the stress-strain curves showed major linear elastic stage and short plastic stage before fracture. Significant anisotropic behavior was observed for the vertebral tissue in axial and radial directions. The elastic modulus, ultimate stress,yield stress, and ultimate strain of the speimens in axial direction was obtained, with on average, 2.5 ± 0.6 times, 2.1 ± 0.15 times, and 2.1 ± 0.1 times higher and 0.86 ± 0.076 times lower respecitvely, than those in radial direction. In addition, with the strain rate varying from 0.01/s to 10/s, the mechanical parameters, like elastic modulus, yield and ultimte stresses exhibited significant strain rate effect, however, no significant difference was found for the ultimate strain. CONCLUSIONS The cervical vertebrae showed significant anisotropic and strain rate-dependent behaviors. The self-developed subroutine codes based on the strain rate-dependent transversely isotropic elastic and plastic constitutive model can simulate the behaviors well.
Collapse
Affiliation(s)
- Zhigang Li
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Jinjin Wang
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Guanghui Song
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Cheng Ji
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xinfeng Han
- HanDan Central Hospital, Handan 056001, China
| |
Collapse
|
8
|
Cesar R, Bravo-Castillero J, Ramos RR, Pereira CAM, Zanin H, Rollo JMDA. Relating mechanical properties of vertebral trabecular bones to osteoporosis. Comput Methods Biomech Biomed Engin 2019; 23:54-68. [DOI: 10.1080/10255842.2019.1699542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- R. Cesar
- Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - J. Bravo-Castillero
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- IIMAS UNAM Mérida, Unidad Académica de Yucatán, Parque Científico Tecnológico de Yucatán, Mérida, México
| | - R. R. Ramos
- Facultad de Matemática y Computación, Universidad de La Habana, Havana, Cuba
| | - C. A. M. Pereira
- Orthopedics and Traumatology Institute at the Clinical Hospital, University of São Paulo (USP), São Paulo, Brazil
| | - H. Zanin
- Carbon Sci-Tech labs, School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | - J. M. D. A. Rollo
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
9
|
Ghavimi SAA, Lungren ES, Faulkner TJ, Josselet MA, Wu Y, Sun Y, Pfeiffer FM, Goldstein CL, Wan C, Ulery BD. Inductive co-crosslinking of cellulose nanocrystal/chitosan hydrogels for the treatment of vertebral compression fractures. Int J Biol Macromol 2019; 130:88-98. [DOI: 10.1016/j.ijbiomac.2019.02.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 01/08/2023]
|
10
|
Ghavimi SAA, Lungren ES, Stromsdorfer JL, Darkow BT, Nguyen JA, Sun Y, Pfieffer FM, Goldstein CL, Wan C, Ulery BD. Effect of Dibasic Calcium Phosphate Incorporation on Cellulose Nanocrystal/Chitosan Hydrogel Properties for the Treatment of Vertebral Compression Fractures. AAPS JOURNAL 2019; 21:41. [DOI: 10.1208/s12248-019-0311-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/17/2019] [Indexed: 12/16/2022]
|
11
|
Zhao S, Arnold M, Ma S, Abel RL, Cobb JP, Hansen U, Boughton O. Standardizing compression testing for measuring the stiffness of human bone. Bone Joint Res 2018; 7:524-538. [PMID: 30258572 PMCID: PMC6138811 DOI: 10.1302/2046-3758.78.bjr-2018-0025.r1] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Objectives The ability to determine human bone stiffness is of clinical relevance in many fields, including bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured using compression testing, an experimental technique commonly used to test bone specimens in vitro. This systematic review aims to determine how best to perform compression testing of human bone. Methods A keyword search of all English language articles up until December 2017 of compression testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Studies using bulk tissue, animal tissue, whole bone, or testing techniques other than compression testing were excluded. Results A total of 4712 abstracts were retrieved, with 177 papers included in the analysis; 20 studies directly analyzed the compression testing technique to improve the accuracy of testing. Several influencing factors should be considered when testing bone samples in compression. These include the method of data analysis, specimen storage, specimen preparation, testing configuration, and loading protocol. Conclusion Compression testing is a widely used technique for measuring the stiffness of bone but there is a great deal of inter-study variation in experimental techniques across the literature. Based on best evidence from the literature, suggestions for bone compression testing are made in this review, although further studies are needed to establish standardized bone testing techniques in order to increase the comparability and reliability of bone stiffness studies. Cite this article: S. Zhao, M. Arnold, S. Ma, R. L. Abel, J. P. Cobb, U. Hansen, O. Boughton. Standardizing compression testing for measuring the stiffness of human bone. Bone Joint Res 2018;7:524–538. DOI: 10.1302/2046-3758.78.BJR-2018-0025.R1.
Collapse
Affiliation(s)
- S Zhao
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - M Arnold
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - S Ma
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK and Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - R L Abel
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - J P Cobb
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - U Hansen
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - O Boughton
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK and Department of Mechanical Engineering, Imperial College London, London, UK
| |
Collapse
|