1
|
Sobhy Elnaidany S, Abdo Esmail A, Sobhy Zahran E, Fathi M, Kamal Zewain S. A pilot study of interferon-induced helicase and glutamate decarboxylase gene polymorphism with autoimmune thyroid disease. J Immunoassay Immunochem 2025; 46:106-121. [PMID: 39636204 DOI: 10.1080/15321819.2024.2435856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Numerous genes are involved in immune system modulation, and their polymorphisms may contribute to developing autoimmune disorders. Genetic variation contributes significantly to disease susceptibility to autoimmune thyroid disease (AITD). OBJECTIVES This work aims to investigate the role of single-nucleotide polymorphisms (SNPs) of interferon induced with helicase C domain 1 (IFIH1) rs1990760 and glutamate decarboxylase (GAD) rs769404 in AITD development. METHODS The study had 330 participants, including 153 cases of Hashimoto's thyroiditis (HT), 77 cases of Graves' disease (GD), and 100 healthy controls. All subjects underwent medical history assessment and clinical evaluation. Tests were conducted using real-time PCR, including genotyping of IFIH1 (rs1990760) and GAD (rs769404) via an allele discrimination assay. RESULTS Most patients with AITD were females. About 18.3% of HT cases and 15.6% of GD cases have a positive family history of thyroid disease. A significant statistical difference was observed between AITD cases and control regarding IFIH1 (rs1990760) and GAD (rs769404) gene polymorphism. Moreover, GD patients, HT patients, and the control group showed increased CT and TT alleles in patients compared to those in controls. CONCLUSION IFIH1 and GAD polymorphisms are involved in AITDs (HT and GD) development and are associated with some clinical presentations. HT and GD cases had a positive family history of thyroid disease. There was a significant statistical difference between AITD cases and control regarding IFIH1 (rs1990760) and GAD (rs769404) gene polymorphism.
Collapse
Affiliation(s)
- Sherin Sobhy Elnaidany
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine Menoufia University, Menoufia, Egypt
| | | | - Enas Sobhy Zahran
- Internal Medicine, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Maram Fathi
- Bachelor of Science, Chemistry and Zoology Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| | - Shimaa Kamal Zewain
- Internal Medicine and Endocrinology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
2
|
Pakha DN, Yudhani RD, Irham LM. Investigation of missense mutation-related type 1 diabetes mellitus through integrating genomic databases and bioinformatic approach. Genomics Inform 2024; 22:8. [PMID: 38926794 PMCID: PMC11201337 DOI: 10.1186/s44342-024-00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/03/2024] [Indexed: 06/28/2024] Open
Abstract
Though genes are already known to be responsible for type 1 diabetes mellitus (T1DM), the knowledge of missense mutation of that disease gene has still to be under covered. A genomic database and a bioinformatics-based approach are integrated in the present study in order to address this issue. Initially, nine variants associated with T1DM were retrieved from the GWAS catalogue. Different genomic algorithms such as PolyPhen2.0, SNPs and GTEx analyser programs were used to study the structural and functional effects of these mutations. Subsequently, SNPnexus was also employed to understand the effect of these mutations on the function of the expressed protein. Nine missense variants of T1DM were identified using the GWAS catalogue database. Among these nine SNPs, three were predicted to be related to the progression of T1DM disease by affecting the protein level. TYK2 gene variants with SNP rs34536443 were thought to have a probably damaging effect. Meanwhile, both COL4A3 and IFIH1 genes with SNPs rs55703767 and rs35667974, respectively, might alter protein function through a possibly damaging prediction. Among the variants of the three genes, the TYK2 gene with SNP rs34536443 had the strongest contribution in affecting the development of T1DM, with a score of 0.999. We sincerely hope that the results could be of immense importance in understanding the genetic basis of T1DM.
Collapse
Affiliation(s)
- Dyonisa Nasirochmi Pakha
- Department of Pharmacology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
| | - Ratih Dewi Yudhani
- Department of Pharmacology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, 57126, Indonesia.
| | | |
Collapse
|
3
|
Sagulkoo P, Suratanee A, Plaimas K. Immune-Related Protein Interaction Network in Severe COVID-19 Patients toward the Identification of Key Proteins and Drug Repurposing. Biomolecules 2022; 12:biom12050690. [PMID: 35625619 PMCID: PMC9138873 DOI: 10.3390/biom12050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is still an active global public health issue. Although vaccines and therapeutic options are available, some patients experience severe conditions and need critical care support. Hence, identifying key genes or proteins involved in immune-related severe COVID-19 is necessary to find or develop the targeted therapies. This study proposed a novel construction of an immune-related protein interaction network (IPIN) in severe cases with the use of a network diffusion technique on a human interactome network and transcriptomic data. Enrichment analysis revealed that the IPIN was mainly associated with antiviral, innate immune, apoptosis, cell division, and cell cycle regulation signaling pathways. Twenty-three proteins were identified as key proteins to find associated drugs. Finally, poly (I:C), mitomycin C, decitabine, gemcitabine, hydroxyurea, tamoxifen, and curcumin were the potential drugs interacting with the key proteins to heal severe COVID-19. In conclusion, IPIN can be a good representative network for the immune system that integrates the protein interaction network and transcriptomic data. Thus, the key proteins and target drugs in IPIN help to find a new treatment with the use of existing drugs to treat the disease apart from vaccination and conventional antiviral therapy.
Collapse
Affiliation(s)
- Pakorn Sagulkoo
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Biomedical Informatics, Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
- Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Kitiporn Plaimas
- Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
4
|
Houeiss P, Luce S, Boitard C. Environmental Triggering of Type 1 Diabetes Autoimmunity. Front Endocrinol (Lausanne) 2022; 13:933965. [PMID: 35937815 PMCID: PMC9353023 DOI: 10.3389/fendo.2022.933965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic islet β cells are destroyed by immune cells, ultimately leading to overt diabetes. The progressive increase in T1D incidence over the years points to the role of environmental factors in triggering or accelerating the disease process which develops on a highly multigenic susceptibility background. Evidence that environmental factors induce T1D has mostly been obtained in animal models. In the human, associations between viruses, dietary habits or changes in the microbiota and the development of islet cell autoantibodies or overt diabetes have been reported. So far, prediction of T1D development is mostly based on autoantibody detection. Future work should focus on identifying a causality between the different environmental risk factors and T1D development to improve prediction scores. This should allow developing preventive strategies to limit the T1D burden in the future.
Collapse
Affiliation(s)
- Pamela Houeiss
- Laboratory Immunology of Diabetes, Department EMD, Cochin Institute, INSERMU1016, Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Sandrine Luce
- Laboratory Immunology of Diabetes, Department EMD, Cochin Institute, INSERMU1016, Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Christian Boitard
- Laboratory Immunology of Diabetes, Department EMD, Cochin Institute, INSERMU1016, Paris, France
- Medical Faculty, Paris University, Paris, France
- *Correspondence: Christian Boitard,
| |
Collapse
|
5
|
Erazo Luna EV, Echavarría Sierra CJ, Cornejo-Sánchez DM, Sanclemente G, Pineda Trujillo NG. Protective association exhibited by a single nucleotide polymorphism of the IFIH1 gene in patients with psoriasis: A case-control study. Medwave 2021; 21:e8492. [PMID: 34882124 DOI: 10.5867/medwave.2021.11.002099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/31/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Psoriasis is a chronic inflammatory dermatosis, a with variable clinical presentation and whose multifactorial etiology carries an essential genetic component. Multiple genetic variations associated with psoriasis have been described around the world. However, these variants are unknown among the Colombian population. This study aimed to evaluate the single nucleotide polymorphism rs10930046 (His460Arg) in the IFIH1 gene and its ssociation with the development of psoriasis in a Colombian population. Methods An observational, unmatched, case-control study was performed, including 51 patients with psoriasis and 151 population controls, all with self-reported Paisa ancestry (from the Antioquia region). All individuals were genotyped for the single nucleotide polymorphism rs10930046 (His460Arg) in the IFIH1 gene, and its association with psoriasis was pursued. Both groups were demographically characterized, and cases were also assessed for clinical variables. Results Through the allelic association analysis, cases were found to have a lower frequency of the single nucleotide polymorphism rs10930046 (His460Arg) in the IFIH1 gene than controls; 5% versus 22.67%, respectively. There were no significant differences in age or sex. We also found that psoriasis vulgaris was the most common variant (78%), that about half of the cases had nail psoriasis (56%), 19.6% had psoriatic arthritis, and that 45% had some comorbidity. Conclusions The results obtained from this study confirm that carriers of the single nucleotide polymorphism rs10930046 (His460Arg) in the IFIH1 gene have a decreased risk of developing psoriasis.
Collapse
Affiliation(s)
- Evelyn Vanesa Erazo Luna
- Grupo de Investigación Dermatológica (GRID), Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia; Grupo de Mapeo Genético, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia. ORCID: 0000-0002-6116-3191
| | - Claudia Janeth Echavarría Sierra
- Grupo de Investigación Dermatológica (GRID), Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia; Grupo de Mapeo Genético, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia. ORCID: 0000-0003-0373-2031
| | - Diana M Cornejo-Sánchez
- Grupo de Mapeo Genético, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia. ORCID: 0000-0002-2667-7592
| | - Gloria Sanclemente
- Grupo de Investigación Dermatológica (GRID), Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia. Address: Carrera 25 A # 1 A Sur 45, Of 2026, Torre Médica El Tesoro, Medellín, Colombia. EMail: ; . ORCID: 0000-0002-1555-2751
| | - Nicolás Guillermo Pineda Trujillo
- Grupo de Mapeo Genético, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia: ORCID: 0000-0002-8342-2510
| |
Collapse
|
6
|
Hashemi SMA, Thijssen M, Hosseini SY, Tabarraei A, Pourkarim MR, Sarvari J. Human gene polymorphisms and their possible impact on the clinical outcome of SARS-CoV-2 infection. Arch Virol 2021; 166:2089-2108. [PMID: 33934196 PMCID: PMC8088757 DOI: 10.1007/s00705-021-05070-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 pandemic has become one of the most serious health concerns globally. Although multiple vaccines have recently been approved for the prevention of coronavirus disease 2019 (COVID-19), an effective treatment is still lacking. Our knowledge of the pathogenicity of this virus is still incomplete. Studies have revealed that viral factors such as the viral load, duration of exposure to the virus, and viral mutations are important variables in COVID-19 outcome. Furthermore, host factors, including age, health condition, co-morbidities, and genetic background, might also be involved in clinical manifestations and infection outcome. This review focuses on the importance of variations in the host genetic background and pathogenesis of SARS-CoV-2. We will discuss the significance of polymorphisms in the ACE-2, TMPRSS2, vitamin D receptor, vitamin D binding protein, CD147, glucose-regulated protein 78 kDa, dipeptidyl peptidase-4 (DPP4), neuropilin-1, heme oxygenase, apolipoprotein L1, vitamin K epoxide reductase complex 1 (VKORC1), and immune system genes for the clinical outcome of COVID-19.
Collapse
Affiliation(s)
- Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marijn Thijssen
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Karamitros T, Pogka V, Papadopoulou G, Tsitsilonis O, Evangelidou M, Sympardi S, Mentis A. Dual RNA-Seq Enables Full-Genome Assembly of Measles Virus and Characterization of Host-Pathogen Interactions. Microorganisms 2021; 9:1538. [PMID: 34361973 PMCID: PMC8303570 DOI: 10.3390/microorganisms9071538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Measles virus (MeV) has a negative-sense 15 kb long RNA genome, which is generally conserved. Recent advances in high-throughput sequencing (HTS) and Dual RNA-seq allow the analysis of viral RNA genomes and the discovery of viral infection biomarkers, via the simultaneous characterization of the host transcriptome. However, these host-pathogen interactions remain largely unexplored in MeV infections. We performed untargeted Dual RNA-seq in 6 pharyngeal and 6 peripheral blood mononuclear cell (PBMCs) specimens from patients with MeV infection, as confirmed via routine real-time PCR testing. Following optimised DNase treatment of total nucleic acids, we used the pharyngeal samples to build poly-A-enriched NGS libraries. We reconstructed the viral genomes using the pharyngeal datasets and we further conducted differential expression, gene-ontology and pathways enrichment analysis to compare both the pharyngeal and the peripheral blood transcriptomes of the MeV-infected patients vs. control groups of healthy individuals. We obtained 6 MeV genotype-B3 full-genome sequences. We minutely analyzed the transcriptome of the MeV-infected pharyngeal epithelium, detecting all known viral infection biomarkers, but also revealing a functional cluster of local antiviral and inflammatory immune responses, which differ substantially from those observed in the PBMCs transcriptome. The application of Dual RNA-seq technologies in MeV-infected patients can potentially provide valuable information on the virus genome structure and the cellular innate immune responses and drive the discovery of new targets for antiviral therapy.
Collapse
Affiliation(s)
- Timokratis Karamitros
- Public Health Laboratories, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (V.P.); (M.E.); (A.M.)
- Bioinformatics and Applied Genomics Unit, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Vasiliki Pogka
- Public Health Laboratories, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (V.P.); (M.E.); (A.M.)
| | - Gethsimani Papadopoulou
- Bioinformatics and Applied Genomics Unit, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Ourania Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Maria Evangelidou
- Public Health Laboratories, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (V.P.); (M.E.); (A.M.)
| | - Styliani Sympardi
- 1st Department of Internal Medicine, Thriasion General Hospital, 19018 Elefsis, Greece;
| | - Andreas Mentis
- Public Health Laboratories, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (V.P.); (M.E.); (A.M.)
| |
Collapse
|
8
|
Genova E, Cavion F, Lucafò M, Pelin M, Lanzi G, Masneri S, Ferraro RM, Fazzi EM, Orcesi S, Decorti G, Tommasini A, Giliani S, Stocco G. Biomarkers and Precision Therapy for Primary Immunodeficiencies: An
In Vitro
Study Based on Induced Pluripotent Stem Cells From Patients. Clin Pharmacol Ther 2020; 108:358-367. [PMID: 32243572 DOI: 10.1002/cpt.1837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Elena Genova
- PhD Course in Reproductive and Developmental Sciences University of Trieste Trieste Italy
- Department of Life Sciences University of Trieste Trieste Italy
| | - Federica Cavion
- Department of Life Sciences University of Trieste Trieste Italy
| | - Marianna Lucafò
- Institute for Maternal and Child Health IRCCS Burlo Garofolo Trieste Italy
| | - Marco Pelin
- Department of Life Sciences University of Trieste Trieste Italy
| | - Gaetana Lanzi
- ″Angelo Nocivelli” Institute for Molecular Medicine ASST Spedali Civili Brescia Italy
- Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | - Stefania Masneri
- ″Angelo Nocivelli” Institute for Molecular Medicine ASST Spedali Civili Brescia Italy
- Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | - Rosalba Monica Ferraro
- ″Angelo Nocivelli” Institute for Molecular Medicine ASST Spedali Civili Brescia Italy
- Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | - Elisa Maria Fazzi
- Child Neurology and Psychiatry Unit ASST Spedali Civili Brescia Italy
- Department of Clinical and Experimental Sciences University of Brescia Brescia Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences University of Pavia Italy
- Child Neurology and Psychiatry Unit IRCCS Mondino Foundation Pavia Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health IRCCS Burlo Garofolo Trieste Italy
- Department of Medical, Surgical and Health Sciences University of Trieste Trieste Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health IRCCS Burlo Garofolo Trieste Italy
| | - Silvia Giliani
- ″Angelo Nocivelli” Institute for Molecular Medicine ASST Spedali Civili Brescia Italy
- Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | - Gabriele Stocco
- Department of Life Sciences University of Trieste Trieste Italy
| |
Collapse
|
9
|
Afkham A, Eghbal-Fard S, Heydarlou H, Azizi R, Aghebati-Maleki L, Yousefi M. Toll-like receptors signaling network in pre-eclampsia: An updated review. J Cell Physiol 2018; 234:2229-2240. [PMID: 30221394 DOI: 10.1002/jcp.27189] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023]
Abstract
Toll-like receptors (TLRs) are innate immune cells receptors. They are expressed on leukocytes, epithelial cells, and more particularly on placental immune cells and chorion trophoblast. Upregulation of innate immune response occurs during normal pregnancy, but its excessive activity is involved in the pathology of pregnancy complications including pregnancy-induced hypertension and pre-eclampsia (PE). The recent studies about the overmuch inflammatory responses and aberrant placentation are associated with increased expression of TLRs in PE patients. This review has tried to focus on the relationship between some activities of TLRs and the risk of preeclampsia development.
Collapse
Affiliation(s)
- Amir Afkham
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Eghbal-Fard
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Heydarlou
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramyar Azizi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Rydzewska M, Góralczyk A, Gościk J, Wawrusiewicz-Kurylonek N, Bossowska A, Krętowski A, Bossowski A. Analysis of chosen polymorphisms rs2476601 a/G - PTPN22, rs1990760 C/T - IFIH1, rs179247 a/G - TSHR in pathogenesis of autoimmune thyroid diseases in children. Autoimmunity 2018; 51:183-190. [PMID: 29973096 DOI: 10.1080/08916934.2018.1486824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Autoimmune thyroid diseases are multifactorial diseases with a genetic susceptibility and environmental factors. A potential role of the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene, the interferon-induced helicase domain 1 (IFIH1) gene, the thyroid-stimulating hormone receptor (TSHR) gene polymorphisms on autoimmune thyroid diseases (AITDs) in adults has been established unequivocally, but there is still lack of research articles including group of children. Objective and hypotheses: To estimate the association of polymorphisms of PTPN22, IFIH1 and TSH-R genes with the pre-disposition to Graves' disease (GD) and Hashimoto's thyroiditis (HT) in children. METHODS The study was performed in 142 patients with GD, 57 with HT and 160 healthy volunteers. The three single-nucleotide polymorphisms (SNPs): rs2476601 - PTPN22, rs1990760 - IFIH1 and rs179247 - TSHR were genotyped by TaqMan SNP genotyping assay using the real-time PCR. RESULTS Rs2476601 A alleles were more frequent in patients with GD in comparison to healthy subjects (p = .009 with odds ratio [OR] = 2.13). Rs2476601 A alleles were more frequent in patients with HT in comparison to healthy subjects (p = .008, OR = 2.48). Rs1990760 T alleles were more frequent in male patients with GD in comparison to healthy males (p = .003, OR = 3.00). In case of HT patients, rs1990760 T alleles were also more frequent in males compared to healthy subjects (p = .086, OR =2.47). Rs179247 A alleles were more frequent in patients with GD in comparison to healthy subjects (p = 0.039, OR = 1.51). CONCLUSIONS Rs2476601 A/G, Rs1990760 C/T and Rs179247 A/G polymorphisms could contribute to the development of AITDs in children. The main risk factor for rs2476601 and rs179247 is allele A. In case of rs1990760, the main risk factor is allele T.
Collapse
Affiliation(s)
- Marta Rydzewska
- a Department of Pediatric Endocrinology , Diabetology with Cardiology Division, Medical University of Białystok , Białystok , Poland
| | - Aleksandra Góralczyk
- a Department of Pediatric Endocrinology , Diabetology with Cardiology Division, Medical University of Białystok , Białystok , Poland
| | - Joanna Gościk
- b Software Department, Faculty of Computer Science , Białystok University of Technology , Białystok , Poland
| | - Natalia Wawrusiewicz-Kurylonek
- c Department of Endocrinology and Diabetes with Internal Medicine , Medical University in Białystok , Białystok , Poland
| | - Anna Bossowska
- d Division of Cardiology , Internal Affairs and Administration Ministry Hospital in Białystok , Białystok , Poland
| | - Adam Krętowski
- c Department of Endocrinology and Diabetes with Internal Medicine , Medical University in Białystok , Białystok , Poland
| | - Artur Bossowski
- a Department of Pediatric Endocrinology , Diabetology with Cardiology Division, Medical University of Białystok , Białystok , Poland
| |
Collapse
|
11
|
Bouças AP, de Souza BM, Bauer AC, Crispim D. Role of Innate Immunity in Preeclampsia: A Systematic Review. Reprod Sci 2017; 24:1362-1370. [PMID: 28891416 DOI: 10.1177/1933719117691144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Innate immune system dysfunction has been known to be a key player in preeclampsia (PE). Activation of the maternal innate immunity may be triggered by invading microorganisms or endogenous ligands, which are detected by different pattern recognition receptors (PRRs). Although some studies have linked PRR activation to PE, it is still unclear if dysregulated PRR expression is associated with the development of this complication. Therefore, we conducted a systematic review of the literature, searching articles that evaluated associations of PRRs with PE. Twenty-six studies met the inclusion criteria: 20 of them analyzed PRR expressions and 6 studies investigated the association between PRR polymorphisms and PE. Among the PRRs, only few studies analyzed retinoic acid-inducible gene I-like helicase (RLH) and/or toll-like receptor (TLR)-1, 5, 6, 7, 8, and 9 expressions in immune cells or placentas from women with PE and controls; thus, it is inconclusive if these PRRs are involved in PE. Results from the 10 studies that analyzed TLR-2 expressions in women with PE and controls are also contradictory. The majority of the studies that investigated TLR-3 and -4 expressions indicate that these PRRs are increased in placenta or immune cells from women with PE compared to pregnant control woman. To date, polymorphisms in TLR-2, - 3, and - 4 and nucleotide-binding oligomerization domain-like receptor 2 genes do not seem to be associated with PE development. No study has evaluated the association between polymorphisms in genes codifying other TLRs or RLHs genes. In conclusion, available data in literature support a role for TLR-3 and TLR-4 in the pathogenesis of PE.
Collapse
Affiliation(s)
- Ana P Bouças
- 1 Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- 2 Postgraduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bianca M de Souza
- 1 Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- 2 Postgraduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea C Bauer
- 1 Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- 1 Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- 2 Postgraduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Rheinheimer J, de Souza BM, Cardoso NS, Bauer AC, Crispim D. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism 2017; 74:1-9. [PMID: 28764843 DOI: 10.1016/j.metabol.2017.06.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/17/2017] [Accepted: 06/07/2017] [Indexed: 12/13/2022]
Abstract
NLRP3 inflammasome activation seems to be a culprit behind the chronic inflammation characteristic of obesity and insulin resistance (IR). Nutrient excess generates danger-associated molecules that activate NLRP3 inflammasome-caspase 1, leading to maturation of IL-1β and IL-18, which are proinflammatory cytokines released by immune cells infiltrating the adipose tissue (AT) from obese subjects. Although several studies have reported an association of the NLRP3 inflammasome with obesity and/or IR; contradictory results were also reported by other studies. Therefore, we conducted a systematic review to summarize results of studies that evaluated the association of the NLRP3 with obesity and IR. Nineteen studies were included in the review. These studies focused on NLRP3 expression/polymorphism analyses in AT. Overall, human studies indicate that obesity and IR are associated with increased NLRP3 expression in AT. Studies in obese mice corroborate this association. Moreover, high fat diet (HFD) increases Nlrp3 expression in murine AT while calorie-restricted diet decreases its expression. Hence, Nlrp3 blockade in mice protects against HFD-induced obesity and IR. NLRP3 rs10754558 polymorphism is associated with risk for T2DM in Chinese Han populations. In conclusion, available studies strongly points for an association between NLRP3 inflammasome and obesity/IR.
Collapse
Affiliation(s)
- Jakeline Rheinheimer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bianca M de Souza
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natali S Cardoso
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea C Bauer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
13
|
The genetics of diabetic pregnancy. Best Pract Res Clin Obstet Gynaecol 2014; 29:102-9. [PMID: 25438929 DOI: 10.1016/j.bpobgyn.2014.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/16/2014] [Indexed: 01/19/2023]
Abstract
Advancements in molecular technology coupled with a greater awareness of the human genome and epigenome have broadened our understanding of the genetic contributions to the diabetic pregnancy. There are multiple genes and pathways that can result in a hyperglycemic environment for the fetus. Exposure to this environment in utero has an impact on the risk of adult-onset chronic diseases. How identification of an individual's genetic variants will impact clinical care and outcomes will continue to evolve as our understanding grows.
Collapse
|