1
|
Azzony S, Moria K, Alghamdi J. Detecting Cortical Thickness Changes in Epileptogenic Lesions Using Machine Learning. Brain Sci 2023; 13:brainsci13030487. [PMID: 36979297 PMCID: PMC10046408 DOI: 10.3390/brainsci13030487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by abnormal brain activity. Epileptic patients suffer from unpredictable seizures, which may cause a loss of awareness. Seizures are considered drug resistant if treatment does not affect success. This leads practitioners to calculate the cortical thickness to measure the distance between the brain’s white and grey matter surfaces at various locations to perform a surgical intervention. In this study, we introduce using machine learning as an approach to classify extracted measurements from T1-weighted magnetic resonance imaging. Data were collected from the epilepsy unit at King Abdulaziz University Hospital. We applied two trials to classify the extracted measurements from T1-weighted MRI for drug-resistant epilepsy and healthy control subjects. The preprocessing sequence on T1-weighted MRI images was performed using C++ through BrainSuite’s pipeline. The first trial was performed on seven different combinations of four commonly selected measurements. The best performance was achieved in Exp6 and Exp7, with 80.00% accuracy, 83.00% recall score, and 83.88% precision. It is noticeable that grey matter volume and white matter volume measurements are more significant than the cortical thickness measurement. The second trial applied four different machine learning classifiers after applying 10-fold cross-validation and principal component analysis on all extracted measurements as in the first trial based on the mentioned previous works. The K-nearest neighbours model outperformed the other machine learning classifiers with 97.11% accuracy, 75.00% recall score, and 75.00% precision.
Collapse
Affiliation(s)
- Sumayya Azzony
- Department of Computer Sciences, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | - Kawthar Moria
- Department of Computer Sciences, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamaan Alghamdi
- Diagnostic Radiology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Polyanskaya MV, Demushkina AA, Vasilyev IG, Kostylev FA, Kurbanova FA, Zavadenko NN, Alikhanov AA. [Neuroradiological and pathohistological markers of the main epileptogenic substrates in children.Cortical malformations]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:7-13. [PMID: 37084359 DOI: 10.17116/jnevro20231230417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
High-resolution MRI is an important tool in the diagnosis of structural epilepsy in determining the seizure initiation zones, identification of the mechanisms of epileptogenesis in predicting outcomes and preventing postoperative complications in patients. In this article we demonstrate the neuroradiological and pathohistological characteristics of the main epileptogenic substrates in children using modern classification. The first part of the article is devoted to cortical malformations as the most common epileptogenic cerebral disorders.
Collapse
Affiliation(s)
- M V Polyanskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A A Demushkina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I G Vasilyev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - F A Kostylev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - F A Kurbanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N N Zavadenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A A Alikhanov
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
3
|
Quantitative 1H-MRS reveals metabolic difference between subcategories of malformations of cortical development. Neuroradiology 2021; 63:1539-1548. [PMID: 33758963 DOI: 10.1007/s00234-021-02694-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/16/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To figure out the spectra features of malformations of cortical development (MCDs) and the differences between MCDs subcategories. METHODS Twenty patients and 18 controls were studied. The patients included two subcategories: disorders of migration (DOM) and postmigration (DOPM). Spectra of patients were acquired from both the lesion and the normal-appearing contralateral side (NACS), and they were compared to those of the controls obtained from the frontal lobe. RESULTS Compared to the controls, a decreased NAA (P = 0.002) was identified in MCDs. After dividing the MCDs into the DOM and DOPM, we found that NAA reduction was only notable in the DOM (P = 0.007). Moreover, Ins and Cr of the DOPM were higher than those of the controls (P = 0.017 and 0.013) and the DOM (P = 0.027 and 0.001). Compared to the NACS, a decreased NAA (P = 0.042) and an increased Ins (P = 0.039) were identified in the lesion of MCDs. After dividing the MCDs into the DOM and DOPM, we found no significant differences in the DOM, but Ins, Cr, and Glx of the lesion were higher than those of the NACS (P = 0.007, 0.005 and 0.047) in the DOPM. In addition, we found that Cr and Glx correlated positively to the seizure frequency (P = 0.003 and 0.016). CONCLUSION Decreased NAA was the prominent abnormality confirmed in MCDs. Spectra of different MCDs subcategories were different: the DOM was characterized by decreased NAA, while the DOPM was characterized by increased Ins.
Collapse
|
4
|
Chai D, Yan J, Li C, Sun Y, Jiang H. Sevoflurane inhibits neuronal migration and axon growth in the developing mouse cerebral cortex. Aging (Albany NY) 2020; 12:6436-6455. [PMID: 32271715 PMCID: PMC7185136 DOI: 10.18632/aging.103041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/10/2020] [Indexed: 11/25/2022]
Abstract
The highly organized laminar structure of the mammalian brain is dependent on successful neuronal migration, and migration deficits can cause lissencephaly and behavioral and cognitive defects. Here, we investigated the contribution of neuronal migration dysregulation to anesthesia-induced neurotoxicity in the fetal brain. Pregnant C57BL/6 mice at embryonic day 14.5 received 2.5% sevoflurane daily for two days. Cortical neuron migration and axon lengths were evaluated using GFP immunostaining. Morris water maze tests were performed to assess the effects of sevoflurane exposure on spatial memory in offspring. We found that sevoflurane exposure decreased axon length and caused cognitive defects in young mice. RNA sequencing revealed that these defects were associated with reduced neuro-oncological ventral antigen 2 (Nova2) expression. In utero electroporation experiments using Nova2 shRNA recapitulated this finding. Nova2 shRNA inhibited neuronal migration and decreased axon lengths. Finally, we found that Netrin-1/Deleted in Colorectal Cancer (Dcc) proteins acted downstream of Nova2 to suppresses neuronal migration. These findings describe a novel mechanism by which prenatal anesthesia exposure affects embryonic neural development and postnatal behavior.
Collapse
Affiliation(s)
- Dongdong Chai
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunzhu Li
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
De Catte L, De Keersmaecker B, Joyeux L, Aertsen M. Sonography of the Fetal Central Nervous System. FETAL MEDICINE 2020:275-304.e5. [DOI: 10.1016/b978-0-7020-6956-7.00028-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Reghunath A, Ghasi RG. A journey through formation and malformations of the neo-cortex. Childs Nerv Syst 2020; 36:27-38. [PMID: 31776716 DOI: 10.1007/s00381-019-04429-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Malformations of cortical development (MCD) are a heterogeneous group of disorders characterized by abnormal structure of the cerebral cortex. MCDs are an important cause of development delay and intractable epilepsy in children. In this review, we explore the embryological stages of development of neo-cortex, the imageology of various malformations which may occur during the journey of this development, the recent advances in imaging techniques used for diagnosing these malformations, and finally a simplified radiological approach to malformations of cortical development. REVIEW We discuss the classification of MCD according to the embryologic stage of cerebral cortex at which the abnormality occurred and the unique imaging features of various malformations, including microcephaly, hemimegalencephaly, lissencephaly, focal cortical dysplasia, heterotopias, polymicrogyria, schizencephaly, and neonatal CMV infection. Also, a rare variant of hemimegalencephaly, namely posterior quadrantic dysplasia, is illustrated; the diagnosis of which is crucial for neurosurgeons to decide management. The technological advancement in the imaging of MCD has taken a leap in the recent years. Imaging now also plays an enormous role in mapping of the abnormalities, delineation of proper surgical boundaries, and quantifying risks of visual, language, and sensorimotor dysfunction. With the introduction of various motor-sparing surgeries and disconnection procedures, proper identification and delineation of these malformations have gained utmost significance. CONCLUSION Knowledge of the wide imaging spectrum of MCD, familiarity with recent advances in imaging and an optimal radiological approach is essential for the general radiologist to accurately diagnose and prognosticate MCD as well as provide the best surgical approach to the operating surgeon.
Collapse
Affiliation(s)
- Anjuna Reghunath
- Department of Radiodiagnosis, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India
| | - Rohini Gupta Ghasi
- Department of Radiodiagnosis, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India.
| |
Collapse
|
7
|
|
8
|
Abstract
AbstractAbnormal fetal corticogenesis results in malformations of cortical development (MCD). Abnormal cell proliferation leads to microcephaly or megalencephaly, incomplete neuronal migration results in heterotopia and lissencephaly, neuronal overmigration manifests as cobblestone malformations, and anomalous postmigrational cortical organization is responsible for polymicrogyria and focal cortical dysplasias. MCD comprises various congenital brain disorders, caused by different genetic, infectious, or vascular etiologies and is associated with significant neurological morbidity. Although MCD are rarely diagnosed prenatally, both dedicated multiplanar neurosonography and magnetic resonance imaging enable good demonstration of fetal cortical development. The imaging signs of fetal MCD are: delayed or absent cerebral sulcation; premature abnormal sulci; thin and irregular hemispheric parenchyma; wide abnormal overdeveloped gyri; wide opening of isolated sulci; nodular bulging into the lateral ventricles; cortical clefts; intraparenchymal echogenic nodules; and cortical thickening. The postnatal and prenatal imaging features of four main malformations of cortical development—lissencephaly, cobblestone malformations, periventricular nodular heterotopia, and polymicrogyria—are described.
Collapse
|
9
|
Assessment of the diagnostic reliability of brain CT and MRI in pediatric epilepsy patients. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2015. [DOI: 10.1016/j.ejrnm.2015.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Nikolova S, Bartha R, Parrent AG, Steven DA, Diosy D, Burneo JG. Functional MRI of neuronal activation in epilepsy patients with malformations of cortical development. Epilepsy Res 2015; 116:1-7. [PMID: 26354161 DOI: 10.1016/j.eplepsyres.2015.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 06/03/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
Malformations of cortical development are disturbances in brain formation that arise from abnormalities affecting the processes of cortical development. Surgical treatment of intractable epilepsy in patients with malformations of cortical development requires localization of both epileptogenic and eloquent cortices. Functional magnetic resonance imaging has been shown to detect the reorganization of activation patterns in such patients. The purpose of this study was to determine whether functional reorganization of the primary sensory and motor cortices occurs in patients with epileptogenic malformations of cortical development. Functional MRI data were obtained for 11 patients (four male, seven female) with a mean age of 36 years (range 18-55 years). The mean age at epilepsy onset was 23 years (range 3-55 years). Twelve healthy controls (six male, six female) with mean age of 33 years (range 28-51 years) were also recruited for comparison. High resolution anatomical MRI was used to confirm the presence and the location of the malformation. All imaging experiments were performed using a 3.0T Siemens Tim Trio whole body MRI. Each subject performed four block-paradigm fMRI experiments to study motor and sensory activation for each hand. A total of 132 image sets were collected for each paradigm over 5.5min (2.5s per image). Each paradigm consisted of seven stimulus periods lasting 30s (12 images) and stimulus onset of 30, 90, 150, 210 and 270s. Functional data were obtained from all eligible patients and compared to those of controls. Reorganization and reduction in function in the motor and sensory areas were observed in patients with cortical dysplasia. Patients with polymicrogyria did not present with significant functional reorganization and patients with heterotopias and coexisting polymicrogyria and/or cortical dysplasia had variable patterns of activation. In summary, this study showed evidence of functional reorganization of sensory and motor cortices in patients with cortical dysplasia development. Such information should be carefully considered in surgical planning and treatment.
Collapse
Affiliation(s)
- Simona Nikolova
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada
| | - Robert Bartha
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Andrew G Parrent
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - David A Steven
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - David Diosy
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jorge G Burneo
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
11
|
Wen M, Yan Y, Yan N, Chen XS, Liu SY, Feng ZH. Upregulation of RBFOX1 in the malformed cortex of patients with intractable epilepsy and in cultured rat neurons. Int J Mol Med 2015; 35:597-606. [PMID: 25571999 PMCID: PMC4314424 DOI: 10.3892/ijmm.2015.2061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023] Open
Abstract
Mutations in RNA-binding Fox 1 (RBFOX1) are known to be associated with neurodevelopmental disorders including epilepsy, mental retardation and autism spectrum disorder. The deletion of the Rbfox1 gene in mice has been shown to result in heightened susceptibility to seizures. However, other studies have revealed mutations or the downregulation of RBFOX1 in specimens obtained from patients with epilepsy or malformations of cortical development (MCD). Generally, the expression of RBFOX1 varies according to tissue type. In this study, we demonstrated the upregulation of RBFOX1 protein in the cortex of patients with MCD and intractable epilepsy. Electrophysiological recordings of cultured rat cortical neurons with increased Rbfox1 expression also revealed a significantly increased amplitude of action potential (AP) and Na+ current density. Some of these neurons (26.32%) even displayed spontaneous, recurrent, epileptiform discharges (SREDs). Additionally, certain Rbfox1 target transcripts associated with epilepsy, including glutamate receptor, ionotropic, N-methyl D-aspartate 1 [Grin1, also known as N-methyl-D-aspartate receptor subunit NR1 (NMDAR1)], synaptosomal-associated protein, 25 kDa (SNAP-25 or Snap25) and sodium channel, voltage gated, type VIII, alpha subunit (Scn8a, also known as Nav1.6) were identified to be upregulated in these cultured cortical neurons with an upregulated Rbfox1 expression. These data suggest that the upregulation of RBFOX1 contributes to neuronal hyperexcitation and seizures. The upregulation of NMDAR1 (Grin1), SNAP-25 (Snap25) and Scn8a may thus be involved in Rbfox1-related neuronal hyperexcitation.
Collapse
Affiliation(s)
- Ming Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, P.R. China
| | - Yong Yan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, P.R. China
| | - Ning Yan
- Department of Neurology, University‑Town Hospital of Chongqing Medical University, Chongqing 401331, P.R. China
| | - Xiao Shan Chen
- Department of Neurology, Xi'an Central Hospital, Xi'an 710003, P.R. China
| | - Shi Yong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Zhan Hui Feng
- Department of Neurology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
12
|
Cooper CJ, McConnell F, Walmsley G, Gonçalves R. Focal cortical dysplasia resulting in seizures in an adult dog. VETERINARY RECORD CASE REPORTS 2015. [DOI: 10.1136/vetreccr-2015-000254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | | | - Gemma Walmsley
- Small Animal Teaching HospitalUniversity of LiverpoolNestonUK
| | - Rita Gonçalves
- Small Animal Teaching HospitalUniversity of LiverpoolNestonUK
| |
Collapse
|
13
|
Widespread pH abnormalities in patients with malformations of cortical development and epilepsy: a phosphorus-31 brain MR spectroscopy study. Brain Dev 2014; 36:899-906. [PMID: 24485900 DOI: 10.1016/j.braindev.2013.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/26/2013] [Accepted: 12/27/2013] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Neuroimaging studies demonstrate that not only the lesions of malformations of cortical development (MCD) but also the normal-appearing parenchyma (NAP) present metabolic impairments, as revealed with (1)H-MRS. We have previously detected biochemical disturbances in MCD lesions with phosphorus-31 magnetic resonance spectroscopy (31P-MRS). Our hypothesis is that pH abnormalities extend beyond the visible lesions. METHODS Three-dimensional 31P-MRS at 3.0 T was performed in 37 patients with epilepsy and MCD, and in 31 matched-control subjects. The patients were assigned into three main MCD subgroups: cortical dysplasia (n=10); heterotopia (n=14); schizencephaly/polymicrogyria (n=13). Voxels (12.5 cm3) were selected in five homologous regions containing NAP: right putamen; left putamen; frontoparietal parasagittal cortex; right centrum semiovale; and left centrum semiovale. Robust methods of quantification were applied, and the intracellular pH was calculated with the chemical shifts of inorganic phosphate (Pi) relative to phosphocreatine (PCr). RESULTS In comparison to controls and considering a Bonferroni adjusted p-value <0.01, MCD patients presented significant reduction in intracellular pH in the frontoparietal parasagittal cortex (6.985±0.022), right centrum semiovale (7.004±0.029), and left centrum semiovale (6.995±0.030), compared to controls (mean values±standard deviations of 7.087±0.048, 7.096±0.042, 7.088±0.045, respectively). Dunnet and Dunn tests demonstrated that the differences in pH values remained statistically significant in all MCD subgroups. No significant differences were found for the putamina. CONCLUSION The present study demonstrates widespread acidosis in the NAP, and reinforces the idea that MCD visible lesions are only the tip of the iceberg.
Collapse
|
14
|
Caksen H, Kızılyıldız BS, Avcu S. Cortical dysplasias, and corpus callosum and posterior fossa abnormalities: correlation of clinical findings with magnetic resonance imaging (MRI) characteristics. J Child Neurol 2014; 29:450-8. [PMID: 23589375 DOI: 10.1177/0883073813482771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study examined clinical findings and magnetic resonance imaging (MRI) characteristics in 114 patients with cortical dysplasia and corpus callosum and posterior fossa abnormalities to determine the clinical findings with the extent of the lesions on MRI. The age of patients was between 1 day and 15 years. Group 1 included 74 patients with corpus callosum abnormalities and/or cortical dysplasias and group 2 included 40 patients with posterior fossa abnormalities, which were isolated and/or associated with cortical dysplasia and/or corpus callosum abnormalities. Although associated congenital abnormality apart from central nervous system abnormalities, syndrome, or systemic disorder were more common in group 2 than group 1 patients (P < .05), we did not find a difference between the groups for psychomotor retardation and epilepsy (P > .05).
Collapse
Affiliation(s)
- Hüseyin Caksen
- 1Divisions of Pediatric Neurology and Pediatric Genetics, Department of Pediatrics, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | | | | |
Collapse
|