1
|
Medina-Santos R, Fernandes Costa TG, Silva de Assis TC, Kalapothakis Y, de Almeida Lima S, do Carmo AO, Gonzalez-Kozlova EE, Kalapothakis E, Chávez-Olórtegui C, Guerra-Duarte C. Analysis of NGS data from Peruvian Loxosceles laeta spider venom gland reveals toxin diversity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101017. [PMID: 35932519 DOI: 10.1016/j.cbd.2022.101017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Accidents involving spiders from the genus Loxosceles cause medical emergencies in several countries of South America. The species Loxosceles laeta is ubiquitously present in Peru and is responsible for severe accidents in this country. To further characterize L. laeta venom components and to unveil possible variations in the Peruvian population, we provide an overview of the toxins-related transcripts present in the venom gland of Peruvian L. laeta. A dataset from a cDNA library previously sequenced by MiSeq sequencer (Illumina) was re-analyzed and the obtained data was compared with available sequences from Loxosceles toxins. Phospholipase-D represent the majority (69,28 %) of the transcripts related to venom toxins, followed by metalloproteases (20,72 %), sicaritoxins (6,03 %), serine-proteases (2,28 %), hyaluronidases (1,80 %) and Translationally Controlled Tumor Protein (TCTP) (0,56 %). New sequences of phospholipases D,sicaritoxins, hyaluronidase, TCTP and serine proteinases were described. Differences between the here-described toxin sequences and others, previously identified in venom glands from other spiders, were visualized upon sequence alignments. In addition, an in vitro hyaluronidase activity assay was also performed to complement comparisons between Peruvian and Brazilian L. laeta venom enzymatic activities, revealing a superior activity in the venom from Brazilian specimens. These new data provide a molecular basis that can help to explain the difference in toxicity among L. laeta venoms from different countries in South America.
Collapse
Affiliation(s)
- Raíssa Medina-Santos
- Biochemistry and Immunology Department, Federal University of Minas Gerais, Brazil; Genetic, Ecology and Evolution Department, Federal University of Minas Gerais, Brazil
| | | | | | - Yan Kalapothakis
- Genetic, Ecology and Evolution Department, Federal University of Minas Gerais, Brazil
| | | | | | - Edgar E Gonzalez-Kozlova
- Department of Genetics and Genomic Sciences, Icahn School for Data Science and Genomic Technology, New York, United States of America
| | | | | | | |
Collapse
|
2
|
Lopes PH, Fukushima CS, Shoji R, Bertani R, Tambourgi DV. Sphingomyelinase D Activity in Sicarius tropicus Venom: Toxic Potential and Clues to the Evolution of SMases D in the Sicariidae Family. Toxins (Basel) 2021; 13:256. [PMID: 33916208 PMCID: PMC8066738 DOI: 10.3390/toxins13040256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
The spider family Sicariidae includes three genera, Hexophthalma, Sicarius and Loxosceles. The three genera share a common characteristic in their venoms: the presence of Sphingomyelinases D (SMase D). SMases D are considered the toxins that cause the main pathological effects of the Loxosceles venom, that is, those responsible for the development of loxoscelism. Some studies have shown that Sicarius spiders have less or undetectable SMase D activity in their venoms, when compared to Hexophthalma. In contrast, our group has shown that Sicarius ornatus, a Brazilian species, has active SMase D and toxic potential to envenomation. However, few species of Sicarius have been characterized for their toxic potential. In order to contribute to a better understanding about the toxicity of Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from Sicarius tropicus and compare them with that from Loxosceles laeta, one of the most toxic Loxosceles venoms. We show here that S. tropicus venom presents active SMases D. However, regarding hemolysis development, it seems that these toxins in this species present different molecular mechanisms of action than that described for Loxosceles venoms, whereas it is similar to those present in bacteria containing SMase D. Besides, our results also suggest that, in addition to the interspecific differences, intraspecific variations in the venoms' composition may play a role in the toxic potential of venoms from Sicarius species.
Collapse
Affiliation(s)
- Priscila Hess Lopes
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| | - Caroline Sayuri Fukushima
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo 05503-900, Brazil; (C.S.F.); (R.B.)
- Finnish Museum of Natural History, University of Helsinki, 00014 Helsinki, Finland
| | - Rosana Shoji
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| | - Rogério Bertani
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo 05503-900, Brazil; (C.S.F.); (R.B.)
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| |
Collapse
|
3
|
Lopes PH, Fukushima CS, Shoji R, Bertani R, Tambourgi DV. Searching for the toxic potential of Loxosceles amazonica and Loxosceles willianilsoni spiders' venoms. Toxicon 2020; 191:1-8. [PMID: 33347860 DOI: 10.1016/j.toxicon.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/25/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022]
Abstract
The Loxosceles genus belongs to the Sicariidae family and it comprises species whose venom can cause accidents with potentially fatal consequences. We have previously shown that SMase D is the enzyme responsible for the main pathological effects of Loxosceles venom. Despite the severity of accidents with Loxosceles, few species are considered to be of medical importance. Little is known about the venom of non-synanthropic species that live in natural environments. To contribute to a better understanding about the venom's toxicity of Loxosceles genus, the aim of this study was to (i) characterize the toxic properties of Loxosceles amazonica from two different localities and a recent described cave species Loxosceles willianilsoni and (ii) compare these venoms with that from Loxosceles laeta, which is among the most toxic ones. We show here that both L. amazonica venoms (from the two studied locations) and L. willianilsoni presented SMase D activity similar to that exhibited by L. laeta venom. Although L. amazonica and L. willianilsoni venoms were able to induce complement dependent human erythrocytes lysis, they were not able to induce cell death of human keratinocytes, as promoted by L. laeta venom, in the concentrations tested. These results indicate that other species of Loxosceles, in addition to those classified as medically important, have toxic potential to cause accidents in humans, despite interspecific variations that denote possible less toxicity.
Collapse
Affiliation(s)
| | - Caroline Sayuri Fukushima
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil; Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Rosana Shoji
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | - Rogério Bertani
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil
| | | |
Collapse
|
4
|
Fingermann M, de Roodt AR, Cascone O, Miranda MV. Biotechnological potential of Phospholipase D for Loxosceles antivenom development. Toxicon X 2020; 6:100036. [PMID: 32550591 PMCID: PMC7286061 DOI: 10.1016/j.toxcx.2020.100036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/26/2023] Open
Abstract
Loxoscelism is one of the most important forms of araneism in South America. The Health Authorities from countries with the highest incidence and longer history in registering loxoscelism cases indicate that specific antivenom should be administered during the first hours after the accident, especially in the presence or at risk of the most severe clinical outcome. Current antivenoms are based on immunoglobulins or their fragments, obtained from plasma of hyperimmunized horses. Antivenom has been produced using the same traditional techniques for more than 120 years. Although the whole composition of the spider venom remains unknown, the discovery and biotechnological production of the phospholipase D enzymes represented a milestone for the knowledge of the physiopathology of envenomation and for the introduction of new innovative tools in antivenom production. The fact that this protein is a principal toxin of the venom opens the possibility of replacing the use of whole venom as an immunogen, an attractive alternative considering the laborious techniques and low yields associated with venom extraction. This challenge warrants technological innovation to facilitate production and obtain more effective antidotes. In this review, we compile the reported studies, examining the advances in the expression and application of phospholipase D as a new immunogen and how the new biotechnological tools have introduced some degree of innovation in this field.
Collapse
Affiliation(s)
- Matías Fingermann
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina
| | - Adolfo Rafael de Roodt
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Área de Zootoxicología, Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, 2155, (1113) Buenos Aires, Argentina
| | - Osvaldo Cascone
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina.,Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina
| | - María Victoria Miranda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina.,Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina
| |
Collapse
|
5
|
Lopes PH, Squaiella-Baptistão CC, Marques MOT, Tambourgi DV. Clinical aspects, diagnosis and management of Loxosceles spider envenomation: literature and case review. Arch Toxicol 2020; 94:1461-1477. [PMID: 32232511 DOI: 10.1007/s00204-020-02719-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 01/10/2023]
Abstract
The genus Loxosceles comprises 140 species widely distributed around the world. These spiders are nocturnal, sedentary and remarkably nonaggressive, although they cause accidents in humans with wide degrees of severity, generating signs and symptoms that define the clinical condition known as loxoscelism. Its local signs and symptoms were first reported in 1872, and over the years, a large medical literature has been accumulated; unfortunately, it is not always trustworthy. Assessing the reliability of such information, we reviewed 120 case reports of loxoscelism published in 84 articles over the past 20 years. This search allowed us to gather information on the clinical aspects, diagnosis and treatment of loxoscelism, showing that the severity of these accidents has multiple degrees and that it is influenced by many factors. Thus, coupled with epidemiological and species occurrence information, this study can be a useful tool for the clinical practice of loxoscelism. It may support and provide a multidisciplinary view that should be taken into consideration when establishing the therapeutic approach in cases of Loxosceles envenomation.
Collapse
Affiliation(s)
- Priscila Hess Lopes
- Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil
| | | | | | - Denise V Tambourgi
- Laboratório de Imunoquímica, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil.
| |
Collapse
|
6
|
Medina-Santos R, Guerra-Duarte C, de Almeida Lima S, Costal-Oliveira F, Alves de Aquino P, Oliveira do Carmo A, Ferreyra CB, Gonzalez-Kozlova EE, Kalapothakis E, Chávez-Olórtegui C. Diversity of astacin-like metalloproteases identified by transcriptomic analysis in Peruvian Loxosceles laeta spider venom and in vitro activity characterization. Biochimie 2019; 167:81-92. [PMID: 31476328 DOI: 10.1016/j.biochi.2019.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/28/2019] [Indexed: 11/25/2022]
Abstract
Loxosceles spiders are found in almost all countries of South America. In Peru, Loxosceles laeta species is the main responsible for the accidents caused by poisonous animals, being known as "killer spiders", due to the large number of fatal accidents observed. Astacin-like metalloproteases, named LALPs (Loxosceles astacin-like metalloproteases) are highly expressed in Loxosceles spiders venom gland. These proteases may be involved in hemorrhage and venom spreading, being relevant to the envenoming proccess. Thus, the aim of this work was to analyze Peruvian L. laeta venom gland transcripts using bioinformatics tools, focusing on LALPs. A cDNA library from Peruvian L. laeta venom glands was constructed and sequenced by MiSeq (Illumina) sequencer. After assembly, the resulting sequences were annotated, seeking out for similarity with previously described LALPs. Nine possible LALPs isoforms from Peruvian L. laeta venom were identified and the results were validated by in silico and in vitro experiments. This study contributes to a better understanding of the molecular diversity of Loxosceles venom and provide insights about the action of LALPs.
Collapse
Affiliation(s)
- Raíssa Medina-Santos
- Biochemistry and Immunology Department, Federal University of Minas Gerais, Brazil; Genetic, Ecology and Evolution Department, Federal University of Minas Gerais, Brazil
| | | | | | | | | | | | - César Bonilla Ferreyra
- Univesidad Nacional Mayor de San Marcos, Facultad de Odontología, Lima, Peru; Instituto Nacional de Salud, Lima, Peru
| | | | | | | |
Collapse
|
7
|
Canals M, Taucare-Rios A, Brescovit AD, Peña-Gomez F, Bizama G, Canals A, Moreno L, Bustamante R. Niche modelling of the Chilean recluse spider Loxosceles laeta and araneophagic spitting spider Scytodes globula and risk for loxoscelism in Chile. MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:383-391. [PMID: 27424870 DOI: 10.1111/mve.12184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/05/2016] [Accepted: 05/05/2016] [Indexed: 06/06/2023]
Abstract
In Chile, all necrotic arachnidism is attributed to the Chilean recluse spider Loxosceles laeta (Nicolet) (Araneae: Sicariidae). It is predated by the spitting spider Scytodes globula (Nicolet) (Araneae: Scytodidae). The biology of each of these species is not well known and it is important to clarify their distributions. The aims of this study are to elucidate the variables involved in the niches of both species based on environmental and human footprint variables, and to construct geographic maps that will be useful in estimating potential distributions and in defining a map of estimated risk for loxoscelism in Chile. Loxosceles laeta was found to be associated with high temperatures and low rates of precipitation, whereas although S. globula was also associated with high temperatures, its distribution was associated with a higher level of precipitation. The main variable associated with the distribution of L. laeta was the human footprint (48.6%), which suggests that this is a highly invasive species. Similarly to other species, the distribution of L. laeta reaches its southern limit at the Los Lagos region in Chile, which coincides with high levels of precipitation and low temperatures. The potential distribution of L. laeta in Chile corresponds to the distribution of cases of loxoscelism.
Collapse
Affiliation(s)
- M Canals
- Departamento de Medicina and Programa de Salud Ambiental, Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - A Taucare-Rios
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - A D Brescovit
- Laboratório Especial de Coleções Zoológicas, Instituto Butantan, São Paulo, Brazil
| | - F Peña-Gomez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - G Bizama
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - A Canals
- Departamento de Medicina and Programa de Salud Ambiental, Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Dirección Académica, Clínica Santa Maria, Santiago, Chile
| | - L Moreno
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - R Bustamante
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Dias-Lopes C, Felicori L, Rubrecht L, Cobo S, Molina L, Nguyen C, Galéa P, Granier C, Molina F, Chávez-Olortegui C. Generation and molecular characterization of a monoclonal antibody reactive with conserved epitope in sphingomyelinases D from Loxosceles spider venoms. Vaccine 2014; 32:2086-92. [DOI: 10.1016/j.vaccine.2014.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 01/21/2014] [Accepted: 02/06/2014] [Indexed: 02/05/2023]
|
9
|
Lopes PH, Bertani R, Gonçalves-de-Andrade RM, Nagahama RH, van den Berg CW, Tambourgi DV. Venom of the Brazilian spider Sicarius ornatus (Araneae, Sicariidae) contains active sphingomyelinase D: potential for toxicity after envenomation. PLoS Negl Trop Dis 2013; 7:e2394. [PMID: 23991242 PMCID: PMC3749972 DOI: 10.1371/journal.pntd.0002394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 07/17/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The spider family Sicariidae includes two genera, Sicarius and Loxosceles. Bites by Sicarius are uncommon in humans and, in Brazil, a single report is known of a 17-year old man bitten by a Sicarius species that developed a necrotic lesion similar to that caused by Loxosceles. Envenomation by Loxosceles spiders can result in dermonecrosis and severe ulceration. Sicarius and Loxosceles spider venoms share a common characteristic, i.e., the presence of Sphingomyelinases D (SMase D). We have previously shown that Loxosceles SMase D is the enzyme responsible for the main pathological effects of the venom. Recently, it was demonstrated that Sicarius species from Africa, like Loxosceles spiders from the Americas, present high venom SMase D activity. However, despite the presence of SMase D like proteins in venoms of several New World Sicarius species, they had reduced or no detectable SMase D activity. In order to contribute to a better understanding about the toxicity of New World Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from the Brazilian Sicarius ornatus spider and compare these with venoms from Loxosceles species of medical importance in Brazil. METHODOLOGY/PRINCIPAL FINDINGS SDS-PAGE analysis showed variations in the composition of Loxosceles spp. and Sicarius ornatus venoms. Differences in the electrophoretic profiles of male and female venoms were also observed, indicating a possible intraspecific variation in the composition of the venom of Sicarius spider. The major component in all tested venoms had a Mr of 32-35 kDa, which was recognized by antiserum raised against Loxosceles SMases D. Moreover, male and female Sicarius ornatus spiders' venoms were able to hydrolyze sphingomyelin, thus showing an enzymatic activity similar to that determined for Loxosceles venoms. Sicarius ornatus venoms, as well as Loxosceles venoms, were able to render erythrocytes susceptible to lysis by autologous serum and to induce a significant loss of human keratinocyte cell viability; the female Sicarius ornatus venom was more efficient than male. CONCLUSION We show here, for the first time, that the Brazilian Sicarius ornatus spider contains active Sphingomyelinase D and is able to cause haemolysis and keratinocyte cell death similar to the South American Loxosceles species, harmful effects that are associated with the presence of active SMases D. These results may suggest that envenomation by this Sicarius spider has the potential to cause similar pathological events as that caused by Loxosceles envenomation. Our results also suggest that, in addition to the interspecific differences, intraspecific variations in the venoms composition may play a role in the toxic potential of the New World Sicarius venoms species.
Collapse
Affiliation(s)
| | - Rogério Bertani
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil
| | | | - Roberto H. Nagahama
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil
| | - Carmen W. van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff, United Kingdom
| | | |
Collapse
|
10
|
Gonçalves-de-Andrade RM, Bertani R, Nagahama RH, Barbosa MFR. Loxosceles niedeguidonae (Araneae, Sicariidae) a new species of brown spider from Brazilian semi-arid region. Zookeys 2012:27-36. [PMID: 22451789 PMCID: PMC3307346 DOI: 10.3897/zookeys.175.2259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 03/05/2012] [Indexed: 11/26/2022] Open
Abstract
A new species of recluse spider, Loxosceles niedeguidonaesp. n., is described from the Parque Nacional Serra da Capivara, State of Piauí, Brazil. This is the first endemic species described from Brazilian semi-arid environment. The species is included in gaucho group of Gertsch (1967) due to its spermathecal shape and is considered close to Loxosceles chapadensis Bertani, Fukushima & Nagahama, 2010 by the unusual long male palpal tibia, a character not common for species of this group. An updated key for Loxosceles species of gaucho group is presented.
Collapse
|
11
|
Tambourgi DV, Gonçalves-de-Andrade RM, van den Berg CW. Loxoscelism: From basic research to the proposal of new therapies. Toxicon 2010; 56:1113-9. [DOI: 10.1016/j.toxicon.2010.01.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 11/27/2022]
|
12
|
Dias-Lopes C, Felicori L, Guimarães G, Gomes ERM, Roman-Campos D, Duarte H, Damasceno D, Martins M, Kalapothakis E, Almeida AP, Granier C, Cruz JS, Guatimosim S, Chávez-Olórtegui C. Cardiotoxic effects of Loxosceles intermedia spider venom and the recombinant venom toxin rLiD1. Toxicon 2010; 56:1426-35. [PMID: 20826175 DOI: 10.1016/j.toxicon.2010.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 01/01/2023]
Abstract
Loxosceles spider bites cause many human injuries worldwide. Injections in mice of whole Loxosceles (L.) intermedia venom or a recombinant toxin (rLiD1) produce systemic symptoms similar to those detected in envenomed humans. This animal model was used to characterize the effects of Loxosceles intermedia venom in cardiac tissues. L. intermedia antigens were detected by ELISA in kidney, heart, lung and liver of experimentally envenomed mice. In addition, rLiD1 binding to cardiomyocytes was demonstrated by immunofluorescence and confocal microscopy. Furthermore, isolated perfused heart preparations and ventricular cardiomyocytes from envenomed mice showed heart function impairment, and a significant increase of I(Ca,L) density and intracellular Ca(2+) transients, respectively. Thus, L. intermedia spider venom, as shown through the use of the recombinant toxin rLiD1, causes cardiotoxic effects and a protein from the sphingomyelinase D family plays a key role in heart dysfunction. Thus, L. intermedia spider venom and the Loxtox rLiD1 play a key role in heart dysfunction.
Collapse
Affiliation(s)
- Camila Dias-Lopes
- Biochemistry Departament, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP: 486, CEP: 30161-970, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dias-Lopes C, Guimarães G, Felicori L, Fernandes P, Emery L, Kalapothakis E, Nguyen C, Molina F, Granier C, Chávez-Olórtegui C. A protective immune response against lethal, dermonecrotic and hemorrhagic effects of Loxosceles intermedia venom elicited by a 27-residue peptide. Toxicon 2010; 55:481-7. [DOI: 10.1016/j.toxicon.2009.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/18/2009] [Accepted: 09/29/2009] [Indexed: 11/29/2022]
|
14
|
Silveira AL. Primeiro registro sinantrópico de Loxosceles laeta (Nicolet, 1849) (Araneae, Sicariidae) no Município do Rio de Janeiro, Estado do Rio de Janeiro. Rev Soc Bras Med Trop 2009; 42:723-6. [DOI: 10.1590/s0037-86822009000600021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/09/2009] [Indexed: 11/22/2022] Open
Abstract
Loxosceles laeta é a espécie de aranha-marrom de maior importância médica, causando acidentes de maior gravidade, além de apresentar hábito sinantrópico. No presente trabalho, é apresentado o primeiro registro sinantrópico de Loxosceles laeta no Município do Rio de Janeiro, RJ, Brasil, a partir de encontro e coleta ocasional de espécimes, no período de agosto de 2005 a junho de 2009. A espécie foi registrada em um prédio do Museu Nacional/UFRJ, localizado no parque da Quinta da Boa Vista, área urbana na Zona Norte da Cidade do Rio de Janeiro. O foco foi considerado localizado e restrito. Loxosceles laeta é adaptável às condições climáticas da região metropolitana do Rio de Janeiro, o que torna possível o estabelecimento de novos focos da espécie e a ocorrência de loxoscelismo na região.
Collapse
|
15
|
Felicori L, Fernandes PB, Giusta MS, Duarte CG, Kalapothakis E, Nguyen C, Molina F, Granier C, Chávez-Olórtegui C. An in vivo protective response against toxic effects of the dermonecrotic protein from Loxosceles intermedia spider venom elicited by synthetic epitopes. Vaccine 2009; 27:4201-8. [PMID: 19389441 DOI: 10.1016/j.vaccine.2009.04.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/08/2009] [Accepted: 04/13/2009] [Indexed: 11/19/2022]
Abstract
Loxoscelism is a necrotic-hemolytic syndrome caused by bites of brown spiders belonging to the genus Loxosceles. Many approaches for the treatment of Loxosceles poisoning have already been proposed, among which administration of specific antivenom is thought to be the more specific. We have evaluated the use of peptides as immunogen to raise in rabbits an antibody response that could protect animals from a challenge by the Loxtox isoform LiD1, one of the main toxic component of Loxosceles intermedia venom. Six antigenic regions of LiD1 were mapped by using the SPOT method. The corresponding peptides were further chemically synthesized, mixed, and used as immunogens in rabbits. Control animal received recombinant LiD1 alone or together with peptides. We found that the rabbit antibody response to peptides was cross-reactive with LiD1, although only one peptide from the mix of six was immunogenic. The dermonecrotic, hemorrhagic and oedema forming activities induced by LiD1 in naïve rabbits were inhibited by 82%, 35% and 35% respectively, by preincubation of LiD1 with anti-peptide antibodies prepared from immunized rabbits. Animals that were immunized with peptides or LiD1r, were found to be protected from the dermonecrotic, hemorrhagic and oedema forming activities induced by a challenge with LiD1. The protection conferred by peptides was, however, lower than that provided by the peptide protein combination or by the full-length protein. These results encourage us in the utilization of synthetic peptides for therapeutic serum development or vaccination approaches.
Collapse
Affiliation(s)
- Liza Felicori
- Departamento de Bioquímica-Imunologia, ICB, Universidade Federal de Minas Gerais, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pauli I, Puka J, Gubert IC, Minozzo JC. The efficacy of antivenom in loxoscelism treatment. Toxicon 2006; 48:123-37. [PMID: 16808942 DOI: 10.1016/j.toxicon.2006.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 04/26/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
Loxoscelism or brown spider envenomation is the most important form of araneism in some countries and constitutes the third cause of accidents by venomous animals in Brazil. The treatment of Loxosceles bites is still controversial, with a variety of interventions proposed and tried, such as antivenom. The majority of clinical studies demonstrate a significant delay between a spider's bite and presentation for treatment, and this delay is thought to lead to an ineffective administration of a specific antivenom. Even in Brazil, where the antivenom therapy has been indicated more frequently than in other countries, there are still doubts about its real capacity to neutralize local and systemic effects of the envenomation and the ideal period for its administration. Thus, various studies in animal models have tried to correlate the time of envenomation with the application of the antivenom and the permanence of the venom in circulation or in dermonecrotic lesions. The purpose of this study was to evaluate the use of antivenom in loxoscelism treatment and to systematize the results of studies in animals and humans available in the last 30 years, making possible a more critical analysis of the efficacy of the antivenom or its therapeutic value in bites by spiders of the genus Loxosceles.
Collapse
Affiliation(s)
- Isolete Pauli
- Production and Research Centre of Immunobiological Products, State Department of Health, Paraná, Brazil.
| | | | | | | |
Collapse
|