1
|
Wang S, Wuniqiemu T, Tang W, Teng F, Bian Q, Yi L, Qin J, Zhu X, Wei Y, Dong J. Luteolin inhibits autophagy in allergic asthma by activating PI3K/Akt/mTOR signaling and inhibiting Beclin-1-PI3KC3 complex. Int Immunopharmacol 2021; 94:107460. [PMID: 33621850 DOI: 10.1016/j.intimp.2021.107460] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022]
Abstract
Allergic asthma is a common chronic inflammatory disease characterized by airway inflammation, mucus hypersecretion and airway remodeling. Autophagy is a highly conserved intracellular degradation pathway in eukaryotic cells. There is growing evidence suggesting that dysregulation of autophagy is involved in the pathological process of asthma. Luteolin is a typical flavonoid compound with anti-inflammatory, anti-allergic and immune-enhancing functions. Previous studies have shown that luteolin can attenuate airway inflammation and hypersensitivity in asthma. However, whether luteolin can play a role in treating asthma by regulating autophagy remains unclear. The aim of the present study was to evaluate the therapeutic effect of luteolin on ovalbumin (OVA)-induced asthmatic mice, observe its effect on the level of autophagy in lung tissues, and further elucidate its underlying mechanism. The results showed that OVA-induced mice developed airway hyperresponsiveness, mucus over-production and collagen deposition. The number of inflammatory cells, levels of interleukin (IL)-4, IL-5 and IL-13 in bronchoalveolar lavage fluid (BALF) and OVA-specific IgE in serum were significantly increased. Furthermore, the infiltration of inflammatory cells was observed along with the activation of autophagy in lung tissues. Luteolin treatment significantly inhibited the OVA-induced inflammatory responses and the level of autophagy in lung tissues as well. Moreover, luteolin activated the PI3K/Akt/mTOR pathway and inhibited the Beclin-1-PI3KC3 protein complex in lung tissues of asthmatic mice. In conclusion, this study explored the regulatory mechanism of luteolin on autophagy in allergic asthma, providing biologic evidence for its clinical application.
Collapse
Affiliation(s)
- Shiyuan Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Qin Bian
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Lee J, Kim HS. The Role of Autophagy in Eosinophilic Airway Inflammation. Immune Netw 2019; 19:e5. [PMID: 30838160 PMCID: PMC6399092 DOI: 10.4110/in.2019.19.e5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a homeostatic mechanism that discards not only invading pathogens but also damaged organelles and denatured proteins via lysosomal degradation. Increasing evidence suggests a role for autophagy in inflammatory diseases, including infectious diseases, Crohn's disease, cystic fibrosis, and pulmonary hypertension. These studies suggest that modulating autophagy could be a novel therapeutic option for inflammatory diseases. Eosinophils are a major type of inflammatory cell that aggravates airway inflammatory diseases, particularly corticosteroid-resistant inflammation. The eosinophil count is a useful tool for assessing which patients may benefit from inhaled corticosteroid therapy. Recent studies demonstrate that autophagy plays a role in eosinophilic airway inflammatory diseases by promoting airway remodeling and loss of function. Genetic variant in the autophagy gene ATG5 is associated with asthma pathogenesis, and autophagy regulates apoptotic pathways in epithelial cells in individuals with chronic obstructive pulmonary disease. Moreover, autophagy dysfunction leads to severe inflammation, especially eosinophilic inflammation, in chronic rhinosinusitis. However, the mechanism underlying autophagy-mediated regulation of eosinophilic airway inflammation remains unclear. The aim of this review is to provide a general overview of the role of autophagy in eosinophilic airway inflammation. We also suggest that autophagy may be a new therapeutic target for airway inflammation, including that mediated by eosinophils.
Collapse
Affiliation(s)
- Jinju Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.,Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.,Stem Cell Immunomodulation Research Center (SCIRC), Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
3
|
Chorley BN, Crews AL, Li Y, Adler KB, Minnicozzi M, Martin LD. Differential Muc2 and Muc5ac secretion by stimulated guinea pig tracheal epithelial cells in vitro. Respir Res 2006; 7:35. [PMID: 16504136 PMCID: PMC1484480 DOI: 10.1186/1465-9921-7-35] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 02/25/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mucus overproduction is a characteristic of inflammatory pulmonary diseases including asthma, chronic bronchitis, and cystic fibrosis. Expression of two mucin genes, MUC2 and MUC5AC, and their protein products (mucins), is modulated in certain disease states. Understanding the signaling mechanisms that regulate the production and secretion of these major mucus components may contribute significantly to development of effective therapies to modify their expression in inflamed airways. METHODS To study the differential expression of Muc2 and Muc5ac, a novel monoclonal antibody recognizing guinea pig Muc2 and a commercially-available antibody against human MUC5AC were optimized for recognition of specific guinea pig mucins by enzyme-linked immunosorbent assay (ELISA), Western blot, and immunohistochemistry (IHC). These antibodies were then used to analyze expression of Muc2 and another mucin subtype (likely Muc5ac) in guinea pig tracheal epithelial (GPTE) cells stimulated with a mixture of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-alpha), interleukin 1beta (IL-1beta), and interferon- gamma (IFN-gamma)]. RESULTS The anti-Muc2 (C4) and anti-MUC5AC (45M1) monoclonal antibodies specifically recognized proteins located in Muc2-dominant small intestinal and Muc5ac-dominant stomach mucosae, respectively, in both Western and ELISA experimental protocols. IHC protocols confirmed that C4 recognizes murine small intestine mucosal proteins while 45M1 does not react. C4 and 45M1 also stained specific epithelial cells in guinea pig lung sections. In the resting state, Muc2 was recognized as a highly expressed intracellular mucin in GPTE cells in vitro. Following cytokine exposure, secretion of Muc2, but not the mucin recognized by the 45M1 antibody (likely Muc5ac), was increased from the GPTE cells, with a concomitant increase in intracellular expression of both mucins. CONCLUSION Given the tissue specificity in IHC and the differential hybridization to high molecular weight proteins by Western blot, we conclude that the antibodies used in this study can recognize specific mucin subtypes in guinea pig airway epithelium and in proteins from GPTE cells. In addition, Muc2 is highly expressed constitutively, modulated by inflammation, and secreted differentially (as compared to Muc5ac) in GPTE cells. This finding contrasts with expression patterns in the airway epithelium of a variety of mammalian species in which only Muc5ac predominates.
Collapse
Affiliation(s)
- Brian N Chorley
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Anne L Crews
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Yuehua Li
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Kenneth B Adler
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | | | - Linda D Martin
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| |
Collapse
|