1
|
A Preliminary Study on the Relationship between Parasitaemia and Cytokine Expression of Peripheral Blood Cells in Trypanosoma vivax-Experimentally Infected Cattle. Animals (Basel) 2021; 11:ani11113191. [PMID: 34827923 PMCID: PMC8614243 DOI: 10.3390/ani11113191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Infections by Trypanosoma vivax in livestock have been reported with increasing frequency worldwide. Nevertheless, information regarding the immune response during the infection is scarce. Regarding that, cytokines play an important role as inflammation modulators, influencing the outcome of trypanosomosis. This study aimed to evaluate host cytokine production during T. vivax infection, in order to assess the increase or decrease of selected cytokines with the cattle’s ability to control the infection. While animals that showed an increase in IL-6 and IFNγ managed T. vivax parasitaemia satisfactorily, cattle that showed reduction of IL-1β, IL-2 and TNFα did not control the parasite multiplication. The presented results are preliminary and shed some light on the role of cytokines during T. vivax-infection. Abstract Trypanosoma vivax outbreaks have been reported with increasing frequency worldwide, causing significant economic losses in livestock. Though several studies have suggested that cytokine responses may influence infection caused by Trypanosoma sp., their exact role remains unclear and may vary according to the animal species and parasite strain. The present study aimed to evaluate cytokine expression of peripheral blood cells from three Girolando dairy cows experimentally infected with T. vivax. For this purpose, blood samples were collected prior to the inoculation on the day of inoculation (D0), the day after inoculation (D1), and then every seven days up to 119 days after infection (DAI). Each animal presented a unique pattern of cytokine expression. While a tendency of a Th1 cytokine response was observed during the patent phase (presence of circulating parasites), an increase of Th2 cytokine expression was found at the beginning of the sub-patent phase (low parasitaemia or aparasitaemic periods). In animals that presented a better control of parasitaemia, IL-6 and IFNγ increased during most of the trial period. On the other hand, the cow that presented reduction of IL-1β, IL-2, and TNFα during the entire period did not control parasitaemia properly. A balance between the Th1 and Th2 profile is beneficial for parasite control and animal health. The results found in the present study are a first step towards elucidating the dynamics of cattle’s inflammatory response against T. vivax, requiring future studies focusing on the role of key cytokines on the controlling of parasitaemia in different stages of bovine trypanosomosis.
Collapse
|
2
|
Comparative pathology of mice infected with high and low virulence of Indonesian Trypanosoma evansi isolates. J Parasit Dis 2021; 45:502-511. [PMID: 34295049 DOI: 10.1007/s12639-020-01328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022] Open
Abstract
Mice infected with T. evansi cause various clinical manifestations and histopathological changes. The aim of this study was to compare the histopathological lesions of mice infected with T. evansi Bang 87 isolates (high virulence) and Pml 287 isolates (low virulence). A total of 15 susceptible mice (DDY) were divided into three groups (five mice/group): Groups I and II each were infected with 104 T. evansi of high virulence (Bang87) and low virulence (Pml 287), respectively, whereas group III served as a control group. A total of three mice from group I, and one mouse from each group II and III were killed at 4 dpi. A total of two mice from each group II and III were killed at 24 dpi. Two remaining mice from each group were observed until succumb. Mice of group I and group II at 4 dpi showed no gross lesions. However, mice of group I showed very acute animal death at 5 dpi and showed mild to moderate histopathological lesions at 4 dpi, namely non-suppurative encephalitis, non-suppurative pneumonia, hepatitis non-suppurative with intravascular trypanosomiasis, tubular degeneration and necrosis. Group II showed chronic death at 26 dpi with significant gross pathological changes at 24 dpi in spleen (swelling 10 times than normal size) accompanied by severe non-suppurative encephalitis, cholangiohepatitis non-suppurative and bile duct proliferation, diffused splenic necrosis. The result of this study is expected to be used as a basis for improved treatment management in cattle infected with high virulence T. evansi isolates that are need to be handled appropriately to avoid fatal consequences.
Collapse
|
3
|
Ramirez-Barrios R, Reyna-Bello A, Parra O, Valeris R, Tavares-Marques L, Brizard JP, Demettre E, Seveno M, Martinez-Moreno A, Holzmuller P. Trypanosoma vivax infection in sheep: Different patterns of virulence and pathogenicity associated with differentially expressed proteomes. Vet Parasitol 2019; 276S:100014. [PMID: 32904712 PMCID: PMC7458391 DOI: 10.1016/j.vpoa.2019.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022]
Abstract
Trypanosoma vivax strains exhibit different virulence and pathogenicity patterns. TvMT1 strain showed low virulence and high pathogenicity. TvLIEM176 strain showed high virulence and moderate pathogenicity. Protein expression varies in high virulence/moderate pathogenicity strain vs low virulence/high pathogenicity strain.
Cattle trypanosomosis caused by Trypanosoma vivax is a widely distributed disease in Africa and Latin America. It causes significant losses in the livestock industry and is characterized by fluctuating parasitemia, anemia, fever, lethargy, and weight loss. In this study we evaluated the virulence (capacity to multiply inside the host and to modulate the host response) and pathogenicity (ability to produce disease and/or mortality) patterns of two T. vivax strains (TvMT1 and TvLIEM176) in experimentally-infected sheep and determined the proteins differentially expressed in the proteomes of these two strains. Hematological and clinical parameters were monitored in experimentally-infected versus non-infected sheep for 60 days. All the infected animals developed discernable parasitemia at 3 days post-infection (dpi), and the first parasitemia peak was observed at 6 dpi. The maximum average value of parasitemia was 1.3 × 107 (95% CI, 7.9 × 105–2 × 108) parasites/ml in TvLIEM176-infected animals, and 2.5 × 106 (95% CI, 1.6 × 105–4 × 107) parasites/ml in TvMT1-infected ones. Anemia and clinical manifestations were more severe in the animals infected by TvMT1 strain than in those infected by TvLIEM176. In the proteomic analysis, a total of 29 proteins were identified, of which 14 exhibited significant differences in their expression levels between strains. Proteins with higher expression in TvLIEM176 were: alpha tubulin, beta tubulin, arginine kinase, glucose-regulated protein 78, paraflagellar protein 3, and T-complex protein 1 subunit theta. Proteins with higher expression in TvMT1 were: chaperonin HSP60, T-complex protein 1 subunit alpha, heat shock protein 70, pyruvate kinase, glycerol kinase, inosine-5'-monophosphate dehydrogenase, 73 kDa paraflagellar rod protein, and vacuolar ATP synthase. There was a difference in the virulence and pathogenicity between the T. vivax strains: TvLIEM176 showed high virulence and moderate pathogenicity, whereas TvMT1 showed low virulence and high pathogenicity. The proteins identified in this study are discussed for their potential involvement in strains’ virulence and pathogenicity, to be further defined as biomarkers of severity in T. vivax infections.
Collapse
|
4
|
Ommati MM, Tanideh N, Rezakhaniha B, Wang J, Sabouri S, Vahedi M, Dormanesh B, Koohi Hosseinabadi O, Rahmanifar F, Moosapour S, Akhlaghi A, Heidari R, Zamiri MJ. Is immunosuppression, induced by neonatal thymectomy, compatible with poor reproductive performance in adult male rats? Andrology 2017; 6:199-213. [PMID: 29195019 DOI: 10.1111/andr.12448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
Abstract
With increasing knowledge that the immune system has a major impact on reproductive health, the potential for cells arising in organs such as the thymus to alleviate oxidative stress has been revealed. This study addresses the impact of neonatal thymectomy on male reproductive function in pubertal and adult animals. Neonatal Sprague Dawley rats were allotted to four treatments consisting of fully thymectomized, partially thymectomized, intact, and sham-operated rats. Half of the rats in each treatment were sacrificed at 40 and the other half at 80 days of age. Testicular volume, ventral prostate and spleen weight, several sperm attributes (concentration, motility, livability, membrane integrity, sperm penetration into mucus, total antioxidant capacity, mitochondrial dehydrogenase activity), plasma superoxide dismutase, glutathione, and testosterone level as well as fertility decreased in thymectomized rats. Adrenal gland weight, sperm malondialdehyde level, indices of oxidative stress, sperm abnormality, testicular and sperm lipid peroxidation, protein carbonylation, and sperm reactive oxygen species generation increased in thymectomized rats. In thymectomized rats, the testes contained high levels of malondialdehyde but low levels of glutathione and ferric-reducing antioxidant power. Epididymal sperm reactive oxygen species, blood lipid peroxidation, and oxidative stress indices in blood and spermatozoa were highest in fully thymectomized, intermediate in partially thymectomized, and lowest in both pubertal and mature control rats. Blood levels of superoxide dismutase, lipid peroxidation indices, and testosterone, and mitochondrial adenosine triphosphate and dehydrogenase activities in epididymal spermatozoa were lowest in fully thymectomized, intermediate in partially thymectomized, and highest in both pubertal and mature control rats. The data indicated that increased oxidative stress and mitochondrial dysfunction might play a role in the mechanism of immunosuppression-induced testicular and sperm abnormalities.
Collapse
Affiliation(s)
- M M Ommati
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - N Tanideh
- Department of Pharmacology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - J Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - S Sabouri
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - M Vahedi
- Center of Comparative and Experimental Medicine, Shiraz, Iran
| | - B Dormanesh
- AJA University of Medical Sciences, Tehran, Iran
| | | | - F Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - S Moosapour
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - A Akhlaghi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - R Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M J Zamiri
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
Bakari SM, Ofori JA, Kusi KA, Aning GK, Awandare GA, Carrington M, Gwira TM. Serum biochemical parameters and cytokine profiles associated with natural African trypanosome infections in cattle. Parasit Vectors 2017; 10:312. [PMID: 28655350 PMCID: PMC5488482 DOI: 10.1186/s13071-017-2255-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
Background Animal African trypanosomiasis (AAT) greatly affects livestock production in sub-Saharan Africa. In Ghana prevalence of AAT is estimated to range between 5 and 50%. Studies have reported serum biochemical aberrations and variability in cytokine profiles in animals during infection. However, information regarding the biochemical parameters and cytokine profiles associated with natural infections are limited. This study was therefore aimed at investigating changes in the levels of serum biochemical parameters and inflammatory cytokines during a natural infection. Methods Nested internal transcribed spacer (ITS)-based PCR and sequencing were used to characterise trypanosome infection in cattle at two areas in Ghana (Adidome and Accra) of different endemicities. The cattle were sampled at four to five-week intervals over a period of six months. Levels of serum biochemical parameters, including creatinine, cholesterol, alkaline phosphatase (ALP), alanine aminotransferase (ALT), total bilirubin and total protein and cytokines (interleukin 10, interleukin 4, interleukin 12, interferon gamma and tumor necrosis factor alpha) were measured in serum samples and then compared between infected cattle and uninfected controls. Results The predominant trypanosome species detected in Accra (non-endemic) and Adidome (endemic) were Trypanosoma theileri and Trypanosoma vivax, respectively. Serum biochemical parameters were similar between infected and uninfected cattle in Accra. Infected cattle at Adidome however, had significantly higher levels of ALP, creatinine, total protein and total bilirubin (P < 0.05) and significantly lower levels of cholesterol (P < 0.05) at specific time points. At basal levels and during infection, significantly higher pro-inflammatory to anti-inflammatory (Th1/Th2) cytokine ratios were observed in cattle at Adidome compared to Accra (P < 0.05), indicating a shift towards Th1 immune response in Adidome. Levels of IL-10 were, however, significantly elevated in infected cattle in Accra (P < 0.05), suggesting high anti-inflammatory cytokine response in Accra. Conclusion These results suggests that cattle in an endemic area repeatedly infected with trypanosomes of different species or different antigenic types demonstrate high pro-inflammatory (Th1) immune response and biochemical alterations whereas cattle in a non-endemic area with predominantly chronic T. theileri infections demonstrate high anti-inflammatory response and no biochemical alterations. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2255-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soale Majeed Bakari
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Jennifer Afua Ofori
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo Asamoah Kusi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - George Kwame Aning
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Gordon Akanzuwine Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Theresa Manful Gwira
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana. .,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.
| |
Collapse
|
6
|
Molecular diagnosis of cattle trypanosomes in Venezuela: evidences of Trypanosoma evansi and Trypanosoma vivax infections. J Parasit Dis 2016; 41:450-458. [PMID: 28615858 DOI: 10.1007/s12639-016-0826-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/13/2016] [Indexed: 10/21/2022] Open
Abstract
In South America Trypanosoma evansi has been determined by molecular methods in cattle from Bolivia, Brazil, Colombia and Peru, reason for which the presence of this parasite is not excluded in Venezuelan livestock. Therefore, the aim of this study was to perform parasitological and molecular diagnosis of cattle trypanosomosis in small livestock units from two regions in this country. The parasitological diagnosis was carried out by MHCT and the molecular by PCR using genus-specific ITS1 primers that differentiate T. vivax and T. evansi infections. 47 cattle were evaluated in the "Laguneta de la Montaña" sector, Miranda State, where 3 animals were diagnosed as positive (6.4 %) by MHCT and 14 (30 %) by PCR as Trypanosoma spp., out of which 9 animals resulted positive for T. vivax, 3 for T. evansi and 2 with double infections. Whilst in the "San Casimiro" sector, State of Aragua, out of the 38 cattle evaluated 7 animals were diagnosed as positive (18.4 %) by MHCT and 19 (50 %) by PCR, determining only the presence of T. evansi in this locality. The molecular diagnosis by PCR using ITS1 primers allowed T. evansi detection in cattle field populations, which suggests the possible role of these animals as reservoirs in the epidemiology of the disease caused by T. evansi in Venezuela.
Collapse
|
7
|
Frenkel D, Zhang F, Guirnalda P, Haynes C, Bockstal V, Radwanska M, Magez S, Black SJ. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells. PLoS Pathog 2016; 12:e1005733. [PMID: 27403737 PMCID: PMC4942092 DOI: 10.1371/journal.ppat.1005733] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/-) retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK) cell-mediated cytotoxicity: i) B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/-) and FcγRIIIa deficient (CD16-/-) C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii) administration of NK1.1 specific IgG2a (mAb PK136) but not irrelevant IgG2a (myeloma M9144) prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii) splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv) purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v) adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi) degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei infected mice kill B cells, suppress humoral immunity and expedite early mortality.
Collapse
Affiliation(s)
- Deborah Frenkel
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Fengqiu Zhang
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Patrick Guirnalda
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Carole Haynes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Viki Bockstal
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Stefan Magez
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Samuel J. Black
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Haynes CLF, Ameloot P, Remaut H, Callewaert N, Sterckx YGJ, Magez S. Production, purification and crystallization of a trans-sialidase from Trypanosoma vivax. Acta Crystallogr F Struct Biol Commun 2015; 71:577-85. [PMID: 25945712 PMCID: PMC4427168 DOI: 10.1107/s2053230x15002496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/05/2015] [Indexed: 11/10/2022] Open
Abstract
Sialidases and trans-sialidases play important roles in the life cycles of various microorganisms. These enzymes can serve nutritional purposes, act as virulence factors or mediate cellular interactions (cell evasion and invasion). In the case of the protozoan parasite Trypanosoma vivax, trans-sialidase activity has been suggested to be involved in infection-associated anaemia, which is the major pathology in the disease nagana. The physiological role of trypanosomal trans-sialidases in host-parasite interaction as well as their structures remain obscure. Here, the production, purification and crystallization of a recombinant version of T. vivax trans-sialidase 1 (rTvTS1) are described. The obtained rTvTS1 crystals diffracted to a resolution of 2.5 Å and belonged to the orthorhombic space group P212121, with unit-cell parameters a = 57.3, b = 78.4, c = 209.0 Å.
Collapse
Affiliation(s)
- Carole L. F. Haynes
- Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
- Department for Molecular Biomedical Research (DMBR), UGent, Ghent, Belgium
| | - Paul Ameloot
- Department for Molecular Biomedical Research (DMBR), UGent, Ghent, Belgium
| | - Han Remaut
- Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural and Molecular Microbiology (SMM), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Nico Callewaert
- Department for Molecular Biomedical Research (DMBR), UGent, Ghent, Belgium
| | - Yann G.-J. Sterckx
- Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Stefan Magez
- Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
9
|
Camejo MI, Spencer LM, Núñez A. TNF-alpha in bulls experimentally infected with Trypanosoma vivax: a pilot study. Vet Immunol Immunopathol 2014; 162:192-7. [PMID: 25464824 DOI: 10.1016/j.vetimm.2014.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 11/26/2022]
Abstract
There are few studies about the immune response during trypanosomosis in cattle. The objective of this research was to evaluate the effect of experimental infection with Trypanosoma vivax (T. vivax) on serum levels of TNF-alpha in bulls and its relationship to hematocrit, body temperature and parasitemia. Two adult crossbred bulls were infected experimentally with T. vivax and two were used as controls. The bulls were evaluated during a 64 day period in terms of temperature, hematocrit, and parasitemia. Serum TNF-alpha levels were determined by ELISA, using an antibody specific for bovine. TNF-alpha in serum began rising on the seventh day after infection and reached a peak on day 40 of post-infection, then dropped. The lowest hematocrit levels corresponded to the upper levels of TNF-alpha, for each animal. In conclusion, the experimental infection of cattle with T. vivax promotes the release of TNF-alpha, demonstrating a pro-inflammatory immune response to this hemotropic parasite. Moreover, the lowest hematocrit levels coincide with high concentrations of TNF-alpha, suggesting that this cytokine can be linked to the observed anemia during the course of infection by T. vivax in cattle.
Collapse
Affiliation(s)
- María I Camejo
- Departamento de Biología de Organismos, Universidad Simón Bolívar, Baruta, Estado Miranda, Venezuela.
| | - Lilian M Spencer
- Departamento de Biología Celular, Universidad Simón Bolívar, Baruta, Estado Miranda, Venezuela
| | - Armando Núñez
- Departamento de Biología de Organismos, Universidad Simón Bolívar, Baruta, Estado Miranda, Venezuela; Facultad de Ciencias Veterinarias, Universidad Nacional Experimental Rómulo Gallegos, San Juan de Los Morros, Estado Guárico, Venezuela
| |
Collapse
|
10
|
Immunobiology of African trypanosomes: need of alternative interventions. J Biomed Biotechnol 2010; 2010:389153. [PMID: 20182644 PMCID: PMC2826769 DOI: 10.1155/2010/389153] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/29/2009] [Accepted: 12/23/2009] [Indexed: 02/08/2023] Open
Abstract
Trypanosomiasis is one of the major parasitic diseases for which control is still far from reality. The vaccination approaches by using dominant surface proteins have not been successful, mainly due to antigenic variation of the parasite surface coat. On the other hand, the chemotherapeutic drugs in current use for the treatment of this disease are toxic and problems of resistance are increasing (see Kennedy (2004) and Legros et al. (2002)). Therefore, alternative approaches in both treatment and vaccination against trypanosomiasis are needed at this time. To be able to design and develop such alternatives, the biology of this parasite and the host response against the pathogen need to be studied. These two aspects of this disease with few examples of alternative approaches are discussed here.
Collapse
|
11
|
Duffy CW, Morrison LJ, Black A, Pinchbeck GL, Christley RM, Schoenefeld A, Tait A, Turner CMR, MacLeod A. Trypanosoma vivax displays a clonal population structure. Int J Parasitol 2009; 39:1475-83. [PMID: 19520081 DOI: 10.1016/j.ijpara.2009.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 10/20/2022]
Abstract
African animal trypanosomiasis, or Nagana, is a debilitating and economically costly disease with a major impact on animal health in sub-Saharan Africa. Trypanosoma vivax, one of the principal trypanosome species responsible for the disease, infects a wide host range including cattle, goats, horses and donkeys and is transmitted both cyclically by tsetse flies and mechanically by other biting flies, resulting in a distribution covering large swathes of South America and much of sub-Saharan Africa. While there is evidence for mating in some of the related trypanosome species, Trypanosoma brucei, Trypanosoma congolense and Trypanosoma cruzi, very little work has been carried out to examine this question in T. vivax. Understanding whether mating occurs in T. vivax will provide insight into the dynamics of trait inheritance, for example the spread of drug resistance, as well as examining the origins of meiosis in the order Kinetoplastida. With this in mind we have identified orthologues of eight core meiotic genes within the genome, the presence of which imply that the potential for mating exists in this species. In order to address whether mating occurs, we have investigated a sympatric field population of T. vivax collected from livestock in The Gambia, using microsatellite markers developed for this species. Our analysis has identified a clonal population structure showing significant linkage disequilibrium, homozygote deficits and disagreement with Hardy-Weinberg predictions at six microsatellite loci, indicative of a lack of mating in this population of T. vivax.
Collapse
Affiliation(s)
- Craig W Duffy
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, Faculty of Veterinary Medicine, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Efficacy of the novel diamidine compound 2,5-Bis(4-amidinophenyl)- furan-bis-O-Methlylamidoxime (Pafuramidine, DB289) against Trypanosoma brucei rhodesiense infection in vervet monkeys after oral administration. Antimicrob Agents Chemother 2008; 53:953-7. [PMID: 19064893 DOI: 10.1128/aac.00831-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Owing to the lack of oral drugs for human African trypanosomiasis, patients have to be hospitalized for 10 to 30 days to facilitate treatment with parenterally administered medicines. The efficacy of a novel orally administered prodrug, 2,5-bis(4-amidinophenyl)-furan-bis-O-methlylamidoxime (pafuramidine, DB289), was tested in the vervet monkey (Chlorocebus [Cercopithecus] aethiops) model of sleeping sickness. Five groups of three animals each were infected intravenously with 10(4) Trypanosoma brucei rhodesiense KETRI 2537 cells. On the seventh day postinfection (p.i.) in an early-stage infection, animals in groups 1, 2, and 3 were treated orally with pafuramidine at dose rates of 1, 3, or 10 mg/kg of body weight, respectively, for five consecutive days. The animals in groups 4 and 5 were treated with 10 mg/kg for 10 consecutive days starting on the 14th day p.i. (group 4) or on the 28th day p.i. (group 5), when these animals were in the late stage of the disease. In the groups treated in the early stage, 10 mg/kg of pafuramidine completely cured all three monkeys, whereas lower doses of 3 mg/kg and 1 mg/kg cured only one of three and zero of three monkeys, respectively. Treatment of late-stage infections resulted in cure rates of one of three (group 4) and zero of three (group 5) monkeys. These studies demonstrated that pafuramidine was orally active in monkeys with early-stage T. brucei rhodesiense infections at dose rates above 3 mg/kg for 5 days. It was also evident that the drug attained only minimal efficacy against late-stage infections, indicating the limited ability of the molecule to cross the blood-brain barrier. This study has shown that oral diamidines have potential for the treatment of early-stage sleeping sickness.
Collapse
|
13
|
Osório ALAR, Madruga CR, Desquesnes M, Soares CO, Ribeiro LRR, Costa SCGD. Trypanosoma (Duttonella) vivax: its biology, epidemiology, pathogenesis, and introduction in the New World--a review. Mem Inst Oswaldo Cruz 2008; 103:1-13. [PMID: 18368231 DOI: 10.1590/s0074-02762008000100001] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 01/24/2008] [Indexed: 01/06/2024] Open
Abstract
The biology, epidemiology, pathogenesis, diagnostic techniques, and history of the introduction of Trypanosoma (Duttonella) vivax in the New World are reviewed. The two main immunological responses of trypanosome-infected animals - antibody production and immunodepression - are discussed in the context of how these responses play a role in disease tolerance or susceptibility. Isolation and purification of T. vivax are briefly discussed. The recent reports of bovine trypanosomiasis diagnosed in cattle on farms located in the Pantanal region of the states of Mato Grosso do Sul and Mato Grosso, Brazil, are also discussed.
Collapse
|
14
|
Abstract
Human African trypanosomiasis or sleeping sickness is caused by infection with two subspecies of the tsetse-fly-vectored haemoflagellate parasite Trypanosoma brucei. Historically, epidemic sleeping sickness has caused massive loss of life, and related animal diseases have had a crucial impact on development in sub-Saharan Africa. After a period of moderately successful control during the mid-part of the 20th century, sleeping sickness incidence is currently rising, and control is hampered by a combination of factors, including civil unrest and the possible development of drug resistance by the parasites. The prevailing view is that the disease is invariably fatal without anti-trypanosomal drug treatment. However, there have also been intriguing reports of wide variations in disease severity as well as evidence of asymptomatic carriers of trypanosomes. These differences in the presentation of the disease will be discussed in the context of our knowledge of the immunology of trypanosomiasis. The impact of dysregulated inflammatory responses in both systemic and CNS pathology will be examined and the potential for host genotype variation in disease severity and control will be discussed.
Collapse
Affiliation(s)
- J M Sternberg
- Zoology Building, School of Biological Sciences, University of Aberdeen, UK.
| |
Collapse
|
15
|
Abstract
Protozoa are responsible for considerable morbidity and mortality in domestic and companion animals. Preventing infection may involve deliberate exposure to virulent or attenuated parasites so that immunity to natural infection is established early in life. This is the basis for vaccines against theilerosis and avian coccidiosis. Vaccination may not be effective or practical with diseases, such as cryptosporidiosis, that primarily afflict the immune-compromised or individuals with an incompletely developed immune system. Strategies for combating these diseases often rely on passive immunotherapy using serum or colostrums containing antibodies to parasite surface proteins. Subunit vaccines offer an attractive alternative to virulent or attenuated parasites for several reasons. These include the use of bacteria or lower eukaryotes to produce recombinant proteins in batch culture, the relative stability of recombinant proteins compared to live parasites, and the flexibility to incorporate only those antigens that elicit "protective" immune responses. Although subunit vaccines offer many theoretical advantages, our lack of understanding of immune mechanisms to primary and secondary infection and the capacity of many protozoa to evade host immunity remain obstacles to developing effective vaccines. This review examines the progress made on developing recombinant proteins of Eimeria, Giardia, Cryptosporidium, Toxoplasma, Neospora, Trypanosoma, Babesia, and Theileria and attempts to use these antigens for vaccinating animals against the associated diseases.
Collapse
Affiliation(s)
- M C Jenkins
- Immunology and Disease Resistance Laboratory, Agricultural Research Service, US Department of Agriculture (USDA), Beltsville, MA 20705, USA.
| |
Collapse
|
16
|
Tabel H, Kaushik RS, Uzonna JE. Susceptibility and resistance to Trypanosoma congolense infections. Microbes Infect 2000; 2:1619-29. [PMID: 11113381 DOI: 10.1016/s1286-4579(00)01318-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have put emphasis on recent findings in experimental Trypanosoma congolense infections in highly susceptible BALB/c and relatively resistant C57Bl/6 mice. Based on various analyses, it has been shown that a major difference in resistance to T. congolense infections is expressed early in infection at the macrophage level. A novel plastic-adherent Thy1.2(+) suppressor lymphocyte, which in absolute synergy with a Thy 1.2(-) cell exerts its suppression via interleukin-10 and interferon-gamma opens up an exciting new field of research.
Collapse
Affiliation(s)
- H Tabel
- Department of Veterinary Microbiology, University of Saskatchewan, SK, S7N 5B4, Saskatoon, Canada.
| | | | | |
Collapse
|