1
|
High-Throughput Screening Platform To Identify Inhibitors of Protein Synthesis with Potential for the Treatment of Malaria. Antimicrob Agents Chemother 2022; 66:e0023722. [PMID: 35647647 PMCID: PMC9211397 DOI: 10.1128/aac.00237-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Artemisinin-based combination therapies have been crucial in driving down the global burden of malaria, the world’s largest parasitic killer. However, their efficacy is now threatened by the emergence of resistance in Southeast Asia and sub-Saharan Africa. Thus, there is a pressing need to develop new antimalarials with diverse mechanisms of action. One area of Plasmodium metabolism that has recently proven rich in exploitable antimalarial targets is protein synthesis, with a compound targeting elongation factor 2 now in clinical development and inhibitors of several aminoacyl-tRNA synthetases in lead optimization. Given the promise of these components of translation as viable drug targets, we rationalized that an assay containing all functional components of translation would be a valuable tool for antimalarial screening and drug discovery. Here, we report the development and validation of an assay platform that enables specific inhibitors of Plasmodium falciparum translation (PfIVT) to be identified. The primary assay in this platform monitors the translation of a luciferase reporter in a P. falciparum lysate-based expression system. Hits identified in this primary assay are assessed in a counterscreen assay that enables false positives that directly interfere with the luciferase to be triaged. The remaining hit compounds are then assessed in an equivalent human IVT assay. This platform of assays was used to screen MMV’s Pandemic and Pathogen Box libraries, identifying several selective inhibitors of protein synthesis. We believe this new high-throughput screening platform has the potential to greatly expedite the discovery of antimalarials that act via this highly desirable mechanism of action.
Collapse
|
2
|
Ahyong V, Sheridan CM, Leon KE, Witchley JN, Diep J, DeRisi JL. Identification of Plasmodium falciparum specific translation inhibitors from the MMV Malaria Box using a high throughput in vitro translation screen. Malar J 2016; 15:173. [PMID: 26987601 PMCID: PMC4794828 DOI: 10.1186/s12936-016-1231-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major goal in the search for new anti-malarial compounds is to identify new mechanisms of action or new molecular targets. While cell-based, growth inhibition-based screening have enjoyed tremendous success, an alternative approach is to specifically assay a given pathway or essential cellular process. METHODS Here, this work describes the development of a plate-based, in vitro luciferase assay to probe for inhibitors specific to protein synthesis in Plasmodium falciparum through the use of an in vitro translation system derived from the parasite. RESULTS Using the Medicines for Malaria Venture's Malaria Box as a pilot, 400 bioactive compounds with minimal human cytotoxicity profiles were screened, identifying eight compounds that displayed greater potency against the P. falciparum translation machinery relative to a mammalian translation system. Dose-response curves were determined in both translation systems to further characterize the top hit compound (MMV008270). CONCLUSIONS This assay will be useful not only in future anti-malarial screening efforts but also in the investigation of P. falciparum protein synthesis and essential processes in P. falciparum biology.
Collapse
Affiliation(s)
- Vida Ahyong
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Christine M Sheridan
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Kristoffer E Leon
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Jessica N Witchley
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Diep
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Sun M, Li W, Blomqvist K, Das S, Hashem Y, Dvorin JD, Frank J. Dynamical features of the Plasmodium falciparum ribosome during translation. Nucleic Acids Res 2015; 43:10515-24. [PMID: 26432834 PMCID: PMC4666399 DOI: 10.1093/nar/gkv991] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/19/2015] [Indexed: 12/26/2022] Open
Abstract
Plasmodium falciparum, the mosquito-transmitted Apicomplexan parasite, causes the most severe form of human malaria. In the asexual blood-stage, the parasite resides within erythrocytes where it proliferates, multiplies and finally spreads to new erythrocytes. Development of drugs targeting the ribosome, the site of protein synthesis, requires specific knowledge of its structure and work cycle, and, critically, the ways they differ from those in the human host. Here, we present five cryo-electron microscopy (cryo-EM) reconstructions of ribosomes purified from P. falciparum blood-stage schizonts at sub-nanometer resolution. Atomic models were built from these density maps by flexible fitting. Significantly, our study has taken advantage of new capabilities of cryo-EM, in visualizing several structures co-existing in the sample at once, at a resolution sufficient for building atomic models. We have discovered structural and dynamic features that differentiate the ribosomes of P. falciparum from those of mammalian system. Prompted by the absence of RACK1 on the ribosome in our and an earlier study we confirmed that RACK1 does not specifically co-purify with the 80S fraction in schizonts. More extensive studies, using cryo-EM methodology, of translation in the parasite will provide structural knowledge that may lead to development of novel anti-malarials.
Collapse
Affiliation(s)
- Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Karin Blomqvist
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sanchaita Das
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yaser Hashem
- CNRS, Architecture et Réactivité de l'ARN, Université de Strasbourg, Strasbourg 67084, France
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Lacsina JR, LaMonte G, Nicchitta CV, Chi JT. Polysome profiling of the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2011; 179:42-6. [PMID: 21605599 DOI: 10.1016/j.molbiopara.2011.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/26/2011] [Accepted: 05/07/2011] [Indexed: 10/18/2022]
Abstract
In the malaria parasite Plasmodium falciparum, global studies of translational regulation have been hampered by the inability to isolate malaria polysomes. We describe here a novel method for polysome profiling in P. falciparum, a powerful approach which allows both a global view of translation and the measurement of ribosomal loading and density for specific mRNAs. Simultaneous lysis of infected erythrocytes and parasites releases stable, intact malaria polysomes, which are then purified by centrifugation through a sucrose cushion. The polysomes are resuspended, separated by velocity sedimentation and then fractionated, yielding a characteristic polysome profile reflecting the global level of translational activity in the parasite. RNA isolated from specific fractions can be used to determine the density of ribosomes loaded onto a particular transcript of interest, and is free of host ribosome contamination. Thus, our approach opens translational regulation in malaria to genome-wide analysis.
Collapse
Affiliation(s)
- Joshua R Lacsina
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
5
|
Becker JVW, Mtwisha L, Crampton BG, Stoychev S, van Brummelen AC, Reeksting S, Louw AI, Birkholtz LM, Mancama DT. Plasmodium falciparum spermidine synthase inhibition results in unique perturbation-specific effects observed on transcript, protein and metabolite levels. BMC Genomics 2010; 11:235. [PMID: 20385001 PMCID: PMC2867828 DOI: 10.1186/1471-2164-11-235] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 04/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Plasmodium falciparum, the causative agent of severe human malaria, has evolved to become resistant to previously successful antimalarial chemotherapies, most notably chloroquine and the antifolates. The prevalence of resistant strains has necessitated the discovery and development of new chemical entities with novel modes-of-action. Although much effort has been invested in the creation of analogues based on existing drugs and the screening of chemical and natural compound libraries, a crucial shortcoming in current Plasmodial drug discovery efforts remains the lack of an extensive set of novel, validated drug targets. A requirement of these targets (or the pathways in which they function) is that they prove essential for parasite survival. The polyamine biosynthetic pathway, responsible for the metabolism of highly abundant amines crucial for parasite growth, proliferation and differentiation, is currently under investigation as an antimalarial target. Chemotherapeutic strategies targeting this pathway have been successfully utilized for the treatment of Trypanosomes causing West African sleeping sickness. In order to further evaluate polyamine depletion as possible antimalarial intervention, the consequences of inhibiting P. falciparum spermidine synthase (PfSpdSyn) were examined on a morphological, transcriptomic, proteomic and metabolic level. Results Morphological analysis of P. falciparum 3D7 following application of the PfSpdSyn inhibitor cyclohexylamine confirmed that parasite development was completely arrested at the early trophozoite stage. This is in contrast to untreated parasites which progressed to late trophozoites at comparable time points. Global gene expression analyses confirmed a transcriptional arrest in the parasite. Several of the differentially expressed genes mapped to the polyamine biosynthetic and associated metabolic pathways. Differential expression of corresponding parasite proteins involved in polyamine biosynthesis was also observed. Most notably, uridine phosphorylase, adenosine deaminase, lysine decarboxylase (LDC) and S-adenosylmethionine synthetase were differentially expressed at the transcript and/or protein level. Several genes in associated metabolic pathways (purine metabolism and various methyltransferases) were also affected. The specific nature of the perturbation was additionally reflected by changes in polyamine metabolite levels. Conclusions This study details the malaria parasite's response to PfSpdSyn inhibition on the transcriptomic, proteomic and metabolic levels. The results corroborate and significantly expand previous functional genomics studies relating to polyamine depletion in this parasite. Moreover, they confirm the role of transcriptional regulation in P. falciparum, particularly in this pathway. The findings promote this essential pathway as a target for antimalarial chemotherapeutic intervention strategies.
Collapse
|
6
|
Ferreras A, Triana L, Sánchez E, Herrera F. Effect of antimalarial drugs on plasmodia cell-free protein synthesis. Mem Inst Oswaldo Cruz 2002; 97:377-80. [PMID: 12048568 DOI: 10.1590/s0074-02762002000300018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A cell-free system from Plasmodium falciparum able to translate endogenous mRNA was used to determine the effect of artemisinin, chloroquine and primaquine on the protein synthesis mechanism of the parasite. The antimalarial drugs did not inhibit the incorporation of [3H] methionine into parasite proteins even at concentrations higher than the ones found to strongly inhibit the parasite growth. Results clearly indicate that these compounds do not have a direct effect on protein synthesis activity of P. falciparum coded by endogenous mRNA.
Collapse
Affiliation(s)
- Ana Ferreras
- Centro de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Universidad de Carabobo-Núcleo Aragua, Aragua, Venezuela
| | | | | | | |
Collapse
|