1
|
Nikiema S, Soulama I, Sombié S, Tchouatieu AM, Sermé SS, Henry NB, Ouedraogo N, Ouaré N, Ily R, Ouédraogo O, Zongo D, Djigma FW, Tiono AB, Sirima SB, Simporé J. Seasonal Malaria Chemoprevention Implementation: Effect on Malaria Incidence and Immunity in a Context of Expansion of P. falciparum Resistant Genotypes with Potential Reduction of the Effectiveness in Sub-Saharan Africa. Infect Drug Resist 2022; 15:4517-4527. [PMID: 35992756 PMCID: PMC9386169 DOI: 10.2147/idr.s375197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Seasonal Malaria Chemoprevention (SMC), which combines amodiaquine (AQ) with sulfadoxine-pyrimethamine (SP), is an effective and promising strategy, recommended by WHO, for controlling malaria morbidity and mortality in areas of intense seasonal transmission. Despite the effectiveness of this strategy, a number of controversies regarding the impact of the development of malaria-specific immunity and challenges of the strategy in the context of increasing and expanding antimalarial drugs resistance but also the limited coverage of the SMC in children make the relevance of the SMC questionable, especially in view of the financial and logistical investments. Indeed, the number of malaria cases in the target group, children under 5 years old, has increased while the implementation of SMC is been extended in several African countries. This ambivalence of the SMC strategy, the increase in the prevalence of malaria cases suggests the need to evaluate the SMC and understand some of the factors that may hinder the success of this strategy in the implementation areas. The present review discusses the impact of the SMC on malaria morbidity, parasite resistance to antimalarial drugs, molecular and the immunity affecting the incidence of malaria in children. This approach will contribute to improving the malaria control strategy in highly seasonal transmission areas where the SMC is implemented.
Collapse
Affiliation(s)
- Séni Nikiema
- Research Department, Centre National de Recherche et de Formation sur le Paludisme (CNRFP)/Institut National de Santé Publique (INSP), Ouagadougou, Burkina Faso
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Issiaka Soulama
- Research Department, Centre National de Recherche et de Formation sur le Paludisme (CNRFP)/Institut National de Santé Publique (INSP), Ouagadougou, Burkina Faso
- Biomedical and Public Health Department, Institut de Recherche en Sciences de la Santé (IRSS)/Centre National de Recherche Scientifiques et Technologiques (CNRST), Ouagadougou, Burkina Faso
| | - Salif Sombié
- Research Department, Centre National de Recherche et de Formation sur le Paludisme (CNRFP)/Institut National de Santé Publique (INSP), Ouagadougou, Burkina Faso
| | - André-Marie Tchouatieu
- Access and Product Management – Chemoprevention Department, Medicines for Malaria Venture (MMV), Geneva, Switzerland
| | - Samuel Sindie Sermé
- Direction Scientifique, Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Noëlie Béré Henry
- Direction Scientifique, Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Nicolas Ouedraogo
- Research Department, Centre National de Recherche et de Formation sur le Paludisme (CNRFP)/Institut National de Santé Publique (INSP), Ouagadougou, Burkina Faso
| | - Nathalie Ouaré
- Research Department, Centre National de Recherche et de Formation sur le Paludisme (CNRFP)/Institut National de Santé Publique (INSP), Ouagadougou, Burkina Faso
- Institut Supérieur des Sciences de la santé (IN.S.SA), Université Nazi Boni, Bobo Dioulasso, Burkina Faso
| | - Raissa Ily
- Research Department, Centre National de Recherche et de Formation sur le Paludisme (CNRFP)/Institut National de Santé Publique (INSP), Ouagadougou, Burkina Faso
- Institut Supérieur des Sciences de la santé (IN.S.SA), Université Nazi Boni, Bobo Dioulasso, Burkina Faso
| | - Oumarou Ouédraogo
- Biomedical and Public Health Department, Institut de Recherche en Sciences de la Santé (IRSS)/Centre National de Recherche Scientifiques et Technologiques (CNRST), Ouagadougou, Burkina Faso
| | - Dramane Zongo
- Biomedical and Public Health Department, Institut de Recherche en Sciences de la Santé (IRSS)/Centre National de Recherche Scientifiques et Technologiques (CNRST), Ouagadougou, Burkina Faso
| | - Florencia Wendkuuni Djigma
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Alfred B Tiono
- Research Department, Centre National de Recherche et de Formation sur le Paludisme (CNRFP)/Institut National de Santé Publique (INSP), Ouagadougou, Burkina Faso
| | - Sodiomon B Sirima
- Direction Scientifique, Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Jacques Simporé
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Centre de recherche biomoléculaire Pietro Annigoni (CERBA), Ouagadougou, Burkina Faso
| |
Collapse
|
2
|
Baptista BO, de Souza ABL, Riccio EKP, Bianco-Junior C, Totino PRR, Martins da Silva JH, Theisen M, Singh SK, Amoah LE, Ribeiro-Alves M, Souza RM, Lima-Junior JC, Daniel-Ribeiro CT, Pratt-Riccio LR. Naturally acquired antibody response to a Plasmodium falciparum chimeric vaccine candidate GMZ2.6c and its components (MSP-3, GLURP, and Pfs48/45) in individuals living in Brazilian malaria-endemic areas. Malar J 2022; 21:6. [PMID: 34983540 PMCID: PMC8729018 DOI: 10.1186/s12936-021-04020-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Background The GMZ2.6c malaria vaccine candidate is a multi-stage Plasmodium falciparum chimeric protein which contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, a fusion protein of GLURP and MSP-3, that has been shown to be well tolerated, safe and immunogenic in clinical trials performed in a malaria-endemic area of Africa. However, there is no data available on the antigenicity or immunogenicity of GMZ2.6c in humans. Considering that circulating parasites can be genetically distinct in different malaria-endemic areas and that host genetic factors can influence the immune response to vaccine antigens, it is important to verify the antigenicity, immunogenicity and the possibility of associated protection in individuals living in malaria-endemic areas with different epidemiological scenarios. Herein, the profile of antibody response against GMZ2.6c and its components (MSP-3, GLURP and Pfs48/45) in residents of the Brazilian Amazon naturally exposed to malaria, in areas with different levels of transmission, was evaluated. Methods This study was performed using serum samples from 352 individuals from Cruzeiro do Sul and Mâncio Lima, in the state of Acre, and Guajará, in the state of Amazonas. Specific IgG, IgM, IgA and IgE antibodies and IgG subclasses were detected by Enzyme-Linked Immunosorbent Assay. Results The results showed that GMZ2.6c protein was widely recognized by naturally acquired antibodies from individuals of the Brazilian endemic areas with different levels of transmission. The higher prevalence of individuals with antibodies against GMZ2.6c when compared to its individual components may suggest an additive effect of GLURP, MSP-3, and Pfs48/45 when inserted in a same construct. Furthermore, naturally malaria-exposed individuals predominantly had IgG1 and IgG3 cytophilic anti-GMZ2.6c antibodies, an important fact considering that the acquisition of anti-malaria protective immunity results from a delicate balance between cytophilic/non-cytophilic antibodies. Interestingly, anti-GMZ2.6c antibodies seem to increase with exposure to malaria infection and may contribute to parasite immunity. Conclusions The data showed that GMZ2.6c protein is widely recognized by naturally acquired antibodies from individuals living in malaria-endemic areas in Brazil and that these may contribute to parasite immunity. These data highlight the importance of GMZ2.6c as a candidate for an anti-malarial vaccine. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04020-6.
Collapse
Affiliation(s)
- Barbara Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Ana Beatriz Lopes de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Cesare Bianco-Junior
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | | | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susheel Kumar Singh
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Linda Eva Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo Medeiros Souza
- Laboratório de Doenças Infecciosas na Amazônia Ocidental, Universidade Federal do Acre, Acre, Brazil
| | | | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil.
| |
Collapse
|
3
|
Tchum SK, Sakyi SA, Adu B, Arthur F, Oppong FB, Dzabeng F, Amoani B, Gyan T, Poku-Asante K. Impact of IgG response to malaria-specific antigens and immunity against malaria in pre-school children in Ghana. A cluster randomized, placebo-controlled trial. PLoS One 2021; 16:e0253544. [PMID: 34283841 PMCID: PMC8291688 DOI: 10.1371/journal.pone.0253544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
Background Iron fortification and micronutrient initiatives, specifically, vitamin A, and zinc supplementation are the most cost-effective developmental strategies against malnutrition and health emergencies in pre-school children. Iron-deficiency among pre-school children have been documented, however, studies evaluating the impact of immunoglobulin G (IgG) isotype responses among iron-fortified pre-school children in malaria endemic communities has not been assessed. We evaluated the impact of iron fortification on the IgG responses to GLURP R0, GLURP R2 and MSP3 FVO malaria-specific antigens among pre-school children in malaria endemic areas. Methods This community-based, placebo-controlled, double-blinded, cluster-randomized trial study was conducted in Wenchi Municipal and Tain District of Bono Region. The trial was registered at ClinicalTrials.gov-registered trial (Identifier: NCT01001871). Ethical approval was obtained and informed consent were sought from each participant parents/guardian. For the current objective, 871 children aged 6–35 months were screened, from which 435 children received semi-liquid home-made meals mixed with 12.5 mg of iron daily (intervention group), and 436 received micronutrient powder without iron (placebo group) for 5 months. Standardized clinical and epidemiological questionnaires were administered and blood samples taken to measure IgG responses to GLURP R0, GLURP R2 and MSP3 FVO recombinant antigens using the Afro Immunoassay (AIA) protocol. Results Baseline anthropometry, malaria diagnosis, anaemia and iron status, demographic features and dietary intake were identical among the groups (p > 0.05). After the intervention, there was no significant difference in the IgG response against GLUP R0, GLUP R2 and MSP3 FVO between the iron-containing micronutrient and placebo groups (p > 0.05). The iron-containing micronutrient powder group who were iron-sufficient or iron replete had significantly higher IgG response to GLURP R0 and GLURP R2 compared to iron-deficient and iron-deficiency anaemia in the same group (p < 0.05). The IgG responses to all the three malaria specific antigens were low among children without malaria episode but high among those with two and four episodes due to exposure differences. Conclusion Iron fortification did not influence antibody response against endogenous malaria specific antigens among pre-school children in malaria endemic areas, however, IgG response to malaria specific antigens were high among children with sufficient iron status.
Collapse
Affiliation(s)
- Samuel Kofi Tchum
- Department of Biochemistry and Biotechnology, College of Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kintampo Health Research Centre, Kintampo-North, Ghana
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- * E-mail:
| | - Bright Adu
- Department of Immunology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Fareed Arthur
- Department of Biochemistry and Biotechnology, College of Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | - Benjamin Amoani
- Department of Biomedical Sciences, School of Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Thomas Gyan
- Kintampo Health Research Centre, Kintampo-North, Ghana
| | | |
Collapse
|
4
|
Sarmah NP, Sarma K, Bhattacharyya DR, Sultan A, Bansal D, Singh N, Bharti PK, Kaur H, Sehgal R, Mohapatra PK, Mahanta J. Molecular characterization of Plasmodium falciparum in Arunachal Pradesh from Northeast India based on merozoite surface protein 1 & glutamate-rich protein. Indian J Med Res 2018; 146:375-380. [PMID: 29355145 PMCID: PMC5793473 DOI: 10.4103/ijmr.ijmr_291_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background & objectives: Northeast (NE) India is one of the high endemic regions for malaria with a preponderance of Plasmodium falciparum, resulting in high morbidity and mortality. The P. falciparum parasite of this region showed high polymorphism in drug-resistant molecular biomarkers. However, there is a paucity of information related to merozoite surface protein 1 (msp-1) and glutamate-rich protein (glurp) which have been extensively studied in various parts of the world. The present study was, therefore, aimed at investigating the genetic diversity of P. falciparum based on msp-1 and glurp in Arunachal Pradesh, a State in NE India. Methods: Two hundred and forty nine patients with fever were screened for malaria, of whom 75 were positive for P. falciparum. Blood samples were collected from each microscopically confirmed patient. The DNA was extracted; nested polymerase chain reaction and sequencing were performed to study the genetic diversity of msp-1 (block 2) and glurp. Results: The block 2 of msp-1 gene was found to be highly polymorphic, and overall allelic distribution showed that RO33 was the dominant allele (63%), followed by MAD20 (29%) and K1 (8%) alleles. However, an extensive diversity (9 alleles and 4 genotypes) and 6-10 repeat regions exclusively of R2 type were observed in glurp. Interpretation & conclusions: The P. falciparum population of NE India was diverse which might be responsible for higher plasticity leading to the survival of the parasite and in turn to the higher endemicity of falciparum malaria of this region.
Collapse
Affiliation(s)
| | - Kishore Sarma
- ICMR-Regional Medical Research Centre, Dibrugarh, India
| | | | - Ali Sultan
- Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
| | - Devendra Bansal
- Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
| | - Neeru Singh
- ICMR-National Institute for Research in Tribal Health, Jabalpur, India
| | - Praveen K Bharti
- ICMR-National Institute for Research in Tribal Health, Jabalpur, India
| | - Hargobinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | | | | |
Collapse
|
5
|
Pinna RA, Dos Santos AC, Perce-da-Silva DS, da Silva LA, da Silva RNR, Alves MR, Santos F, de Oliveira Ferreira J, Lima-Junior JC, Villa-Verde DM, De Luca PM, Carvalho-Pinto CE, Banic DM. Correlation of APRIL with production of inflammatory cytokines during acute malaria in the Brazilian Amazon. IMMUNITY INFLAMMATION AND DISEASE 2018; 6:207-220. [PMID: 29314720 PMCID: PMC5946147 DOI: 10.1002/iid3.208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A proliferation-inducing ligand (APRIL) and B cell activation factor (BAFF) are known to play a significant role in the pathogenesis of several diseases, including BAFF in malaria. The aim of this study was to investigate whether APRIL and BAFF plasma concentrations could be part of inflammatory responses associated with P. vivax and P. falciparum malaria in patients from the Brazilian Amazon. METHODS Blood samples were obtained from P. vivax and P. falciparum malaria patients (n = 52) resident in Porto Velho before and 15 days after the beginning of treatment and from uninfected individuals (n = 12). We investigated APRIL and BAFF circulating levels and their association with parasitaemia, WBC counts, and cytokine/chemokine plasma levels. The expression levels of transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) on PBMC from a subset of 5 P. vivax-infected patients were analyzed by flow cytometry. RESULTS APRIL plasma levels were transiently increased during acute P. vivax and P. falciparum infections whereas BAFF levels were only increased during acute P. falciparum malaria. Although P. vivax and P. falciparum malaria patients have similar cytokine profiles during infection, in P. vivax acute phase malaria, APRIL but not BAFF levels correlated positively with IL-1, IL-2, IL-4, IL-6, and IL-13 levels. We did not find any association between P. vivax parasitaemia and APRIL levels, while an inverse correlation was found between P. falciparum parasitaemia and APRIL levels. The percentage of TACI positive CD4+ and CD8+ T cells were increased in the acute phase P. vivax malaria. CONCLUSION These findings suggest that the APRIL and BAFF inductions reflect different host strategies for controlling infection with each malaria species.
Collapse
Affiliation(s)
- Raquel A Pinna
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Adriana C Dos Santos
- Laboratory of Experimental Pathology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil, 24020-140
| | - Daiana S Perce-da-Silva
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Luciene A da Silva
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Rodrigo N Rodrigues da Silva
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Marcelo R Alves
- Laboratory of Research in Pharmacogenetics, National Institute of Infectology, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Fátima Santos
- Laboratory of Entomology, LACEN/RO, Rua Anita Garibalde, 4130 - Costa e Silva, Porto Velho, RO, Brazil, 76803-620
| | - Joseli de Oliveira Ferreira
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Josué C Lima-Junior
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Déa M Villa-Verde
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Paula M De Luca
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Carla E Carvalho-Pinto
- Laboratory of Experimental Pathology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil, 24020-140
| | - Dalma M Banic
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| |
Collapse
|
6
|
Kaur H, Sehgal R, Goyal K, Makkar N, Yadav R, Bharti PK, Singh N, Sarmah NP, Mohapatra PK, Mahanta J, Bansal D, Sultan AA, Kanwar JR. Genetic diversity of Plasmodium falciparum merozoite surface protein-1 (block 2), glutamate-rich protein and sexual stage antigen Pfs25 from Chandigarh, North India. Trop Med Int Health 2017; 22:1590-1598. [PMID: 29029367 DOI: 10.1111/tmi.12990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To elucidate the genetic diversity of Plasmodium falciparum in residual transmission foci of northern India. METHODS Clinically suspected patients with malaria were screened for malaria infection by microscopy. 48 P. falciparum-infected patients were enrolled from tertiary care hospital in Chandigarh, India. Blood samples were collected from enrolled patients, genomic DNA extraction and nested PCR was performed for further species confirmation. Sanger sequencing was carried out using block 2 region of msp1, R2 region of glurp and pfs25-specific primers. RESULTS Extensive diversity was found in msp1 alleles with predominantly RO33 alleles. Overall allelic prevalence was 55.8% for RO33, 39.5% for MAD20 and 4.7% for K1. Six variants were observed in MAD20, whereas no variant was found in RO33 and K1 alleles. A phylogenetic analysis of RO33 alleles indicated more similarity to South African isolates, whereas MAD20 alleles showed similarity with South-East Asian isolates. In glurp, extensive variation was observed with eleven different alleles based on the AAU repeats. However, pfs25 showed less diversity and was the most stable among the targeted genes. CONCLUSION Our findings document the genetic diversity among circulating strains of P. falciparum in an area of India with low malaria transmission and could have implications for control strategies to reach the national goal of malaria elimination.
Collapse
Affiliation(s)
- Hargobinder Kaur
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kapil Goyal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nikita Makkar
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Richa Yadav
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Praveen K Bharti
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Jabalpur, India
| | - Neeru Singh
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Jabalpur, India
| | - Nilanju P Sarmah
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, India
| | - Pradyumna K Mohapatra
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Deakin University, Geelong, Australia
| |
Collapse
|
7
|
Pratt-Riccio LR, De Souza Perce-Da-Silva D, Da Costa Lima-Junior J, Pratt Riccio EK, Ribeiro-Alves M, Santos F, Arruda M, Camus D, Druilhe P, Oliveira-Ferreira J, Daniel-Ribeiro CT, Banic DM. Synthetic Antigens Derived from Plasmodium falciparum Sporozoite, Liver, and Blood Stages: Naturally Acquired Immune Response and Human Leukocyte Antigen Associations in Individuals Living in a Brazilian Endemic Area. Am J Trop Med Hyg 2017; 97:1581-1592. [PMID: 29016339 DOI: 10.4269/ajtmh.17-0359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Peptide vaccine strategies using Plasmodium-derived antigens have emerged as an attractive approach against malaria. However, relatively few studies have been conducted with malaria-exposed populations from non-African countries. Herein, the seroepidemiological profile against Plasmodium falciparum of naturally exposed individuals from a Brazilian malaria-endemic area against synthetic peptides derived from vaccine candidates circumsporozoite protein (CSP), liver stage antigen-1 (LSA-1), erythrocyte binding antigen-175 (EBA-175), and merozoite surface protein-3 (MSP-3) was investigated. Moreover, human leukocyte antigen (HLA)-DRB1* and HLA-DQB1* were evaluated to characterize genetic modulation of humoral responsiveness to these antigens. The study was performed using blood samples from 187 individuals living in rural malaria-endemic villages situated near Porto Velho, Rondônia State. Specific IgG and IgM antibodies and IgG subclasses were detected by enzyme-linked immunosorbent assay, and HLA-DRB1* and HLA-DQB1* low-resolution typing was performed by PCR-SSP. All four synthetic peptides were broadly recognized by naturally acquired antibodies. Regarding the IgG subclass profile, only CSP induced IgG1 and IgG3 antibodies, which is an important fact given that the acquisition of protective immunity appears to be associated with the cytophilicity of IgG1 and IgG3 antibodies. HLA-DRB1*11 and HLA-DQB1*7 had the lowest odds of responding to EBA-175. Our results showed that CSP, LSA-1, EBA, and MSP-3 are immunogenic in natural conditions of exposure and that anti-EBA antibody responses appear to be modulated by HLA class II antigens.
Collapse
Affiliation(s)
| | | | | | | | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST/AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Fátima Santos
- Laboratório Central de Saúde Pública (LACEN), Rondônia, Brazil
| | - Mercia Arruda
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fiocruz, Recife, Brazil
| | - Daniel Camus
- Service de Parasitologie-Mycologie, Faculte de Médecine, Lille, France
| | | | | | | | - Dalma Maria Banic
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Mbengue B, Kpodji P, Sylla Niang M, Varela ML, Thiam A, Sow A, Ndiaye K, Aidara M, Thiam F, Ndiaye R, Diop G, Nguer CM, Perraut R, Dièye A. [Profiles of IgG responses against CSP, GLURP and LSA-3NR2 in urban malaria (Dakar): relations with haemoglobin levels and parasite densities]. BULLETIN DE LA SOCIETE DE PATHOLOGIE EXOTIQUE (1990) 2016; 109:91-98. [PMID: 27100862 DOI: 10.1007/s13149-016-0485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Malaria remains a major health problem in sub- Saharan African countries despite substantial decreases in morbidity and mortality due to sustained control programs. Vaccines candidates were mainly tested in rural endemic setting; however increasing proportion of the population is living in urban area. Evaluation of the qualitative or quantitative immune responses to key targets of anti-Plasmodium immunity requires further investigation in urban area. In a cohort of 144 patients with mild malaria living in Dakar, we analyzed IgG responses against target antigens of P. falciparum: CSP, LSA-3NR2 and GLURP by ELISA. A mean age of 15 yrs (4-65 yrs) was found and patients were separated in 59 adults (<15yrs) and 85 children (≤15 yrs). Parasites densities (0,01-15%) did not differ between the two age groups. In contrast, haemoglobin levels appeared lower in children (4.5-16.6 g/dl) (p<0.01). For the immune results, the most recognized antigens were GLURP and CSP compared to LSA-3NR2. Levels of IgG against these antigens were significantly different between the two age groups and they were positively correlated (rho = 0.32; p<0.001). In addition, levels of IgG anti-GLURP were associated with low parasitemia (≤1%) and absence of anemia (≥11g/dl), particularly in adults (p<0.001). In a multiple regression analysis, no significant relationship was found between parasite densities and IgG responses against all the tested antigens. Our study shows the implication of IgG anti-GLURP in humoral immune response against the parasite. The present work contributes to determine IgG levels that can be used as relevant immunologic biomarkers in urban clinical malaria.
Collapse
Affiliation(s)
- B Mbengue
- Service d'immunologie FMPO, Université Cheikh Anta Diop, Dakar, Sénégal.
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal.
| | - P Kpodji
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - M Sylla Niang
- Service d'immunologie FMPO, Université Cheikh Anta Diop, Dakar, Sénégal
| | - M L Varela
- Unité d'immunologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | - A Thiam
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - A Sow
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - K Ndiaye
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - M Aidara
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - F Thiam
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - R Ndiaye
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - G Diop
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - C M Nguer
- Département génie chimique et biologie appliquée, ESP, Université Cheikh Anta Diop, Dakar, Sénégal
| | - R Perraut
- Unité d'immunologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | - A Dièye
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
9
|
Pratt-Riccio LR, Perce-da-Silva DDS, Lima-Junior JDC, Theisen M, Santos F, Daniel-Ribeiro CT, de Oliveira-Ferreira J, Banic DM. Genetic polymorphisms in the glutamate-rich protein of Plasmodium falciparum field isolates from a malaria-endemic area of Brazil. Mem Inst Oswaldo Cruz 2014; 108:523-8. [PMID: 23828006 DOI: 10.1590/s0074-02762013000400022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/26/2012] [Indexed: 11/22/2022] Open
Abstract
The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in clinical trials as a malaria vaccine candidate, from isolates found circulating in the Brazilian Amazon at variable transmission levels. The study was performed using samples collected in 1993 and 2008 from rural villages situated near Porto Velho, in the state of Rondônia. DNA was extracted from 126 P. falciparum-positive thick blood smears using the phenol-chloroform method and subjected to a nested polymerase chain reaction protocol with specific primers against two immunodominant regions of GLURP, R0 and R2. Only one R0 fragment and four variants of the R2 fragment were detected. No differences were observed between the two time points with regard to the frequencies of the fragment variants. Mixed infections were uncommon. Our results demonstrate conservation of GLURP-R0 and limited polymorphic variation of GLURP-R2 in P. falciparum isolates from individuals living in Porto Velho. This is an important finding, as genetic polymorphisms in B and T-cell epitopes could have implications for the immunological properties of the antigen.
Collapse
Affiliation(s)
- Lilian Rose Pratt-Riccio
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lelliott PM, Lampkin S, McMorran BJ, Foote SJ, Burgio G. A flow cytometric assay to quantify invasion of red blood cells by rodent Plasmodium parasites in vivo. Malar J 2014; 13:100. [PMID: 24628989 PMCID: PMC4004390 DOI: 10.1186/1475-2875-13-100] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria treatments are becoming less effective due to the rapid spread of drug resistant parasites. Increased understanding of the host/parasite interaction is crucial in order to develop treatments that will be less prone to resistance. Parasite invasion of the red blood cell (RBC) is a critical aspect of the parasite life cycle and is, therefore, a promising target for the development of malaria treatments. Assays for analysing parasite invasion in vitro have been developed, but no equivalent assays exist for in vivo studies. This article describes a novel flow cytometric in vivo parasite invasion assay. METHODS Experiments were conducted with mice infected with erythrocytic stages of Plasmodium chabaudi adami strain DS. Exogenously labelled blood cells were transfused into infected mice at schizogony, and collected blood samples stained and analysed using flow cytometry to specifically detect and measure proportions of labelled RBC containing newly invaded parasites. A combination of antibodies (CD45 and CD71) and fluorescent dyes, Hoechst (DNA) and JC-1 (mitochondrial membrane potential), were used to differentiate parasitized RBCs from uninfected cells, RBCs containing Howell-Jolly bodies, leukocytes and RBC progenitors. Blood cells were treated ex vivo with proteases to examine the effects on in vivo parasite invasion. RESULTS The staining and flow cytometry analysis method was accurate in determining the parasitaemia down to 0.013% with the limit of detection at 0.007%. Transfused labelled blood supported normal rates of parasite invasion. Protease-treated red cells resulted in 35% decrease in the rate of parasite invasion within 30 minutes of introduction into the bloodstream of infected mice. CONCLUSIONS The invasion assay presented here is a versatile method for the study of in vivo red cell invasion efficiency of Plasmodium parasites in mice, and allows direct comparison of invasion in red cells derived from two different populations. The method also serves as an accurate alternative method of estimating blood parasitaemia.
Collapse
Affiliation(s)
- Patrick M Lelliott
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
11
|
Monocytes and macrophages in malaria: protection or pathology? Trends Parasitol 2012; 29:26-34. [PMID: 23142189 DOI: 10.1016/j.pt.2012.10.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 02/07/2023]
Abstract
Recruitment and activation of monocytes and macrophages are essential for clearance of malaria infection, but these have also been associated with adverse clinical outcomes. In this review we discuss recent discoveries on how distinct molecular interactions between monocytes, macrophages, and malaria parasites may alter the balance between protection and pathology in malaria-infected individuals. The immunopathology of severe malaria often originates from excessive immune activation by parasites. The involvement of monocytes and macrophages in these events is highlighted, and priorities for future research to clarify the roles of these cells in malaria are proposed. Knowledge of the factors influencing the balance between protection and pathology can assist in the design of therapeutics aimed at modulating monocyte and macrophage functions to improve outcomes.
Collapse
|
12
|
Jogdand PS, Singh SK, Christiansen M, Dziegiel MH, Singh S, Theisen M. Flow cytometric readout based on Mitotracker Red CMXRos staining of live asexual blood stage malarial parasites reliably assesses antibody dependent cellular inhibition. Malar J 2012; 11:235. [PMID: 22818754 PMCID: PMC3418546 DOI: 10.1186/1475-2875-11-235] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022] Open
Abstract
Background Functional in vitro assays could provide insights into the efficacy of malaria vaccine candidates. For estimating the anti-parasite effect induced by a vaccine candidate, an accurate determination of live parasite count is an essential component of most in vitro bioassays. Although traditionally parasites are counted microscopically, a faster, more accurate and less subjective method for counting parasites is desirable. In this study mitochondrial dye (Mitotracker Red CMXRos) was used for obtaining reliable live parasite counts through flow cytometry. Methods Both asynchronous and tightly synchronized asexual blood stage cultures of Plasmodium falciparum were stained with CMXRos and subjected to detection by flow cytometry and fluorescence microscopy. The parasite counts obtained by flow cytometry were compared to standard microscopic counts obtained through examination of Giemsa-stained thin smears. A comparison of the ability of CMXRos to stain live and compromised parasites (induced by either medium starvation or by anti-malarial drug treatment) was carried out. Finally, parasite counts obtained by CMXRos staining through flow cytometry were used to determine specific growth inhibition index (SGI) in an antibody-dependent cellular inhibition (ADCI) assay. Results Mitotracker Red CMXRos can reliably detect live intra-erythrocytic stages of P. falciparum. Comparison between staining of live with compromised parasites shows that CMXRos predominantly stains live parasites with functional mitochondria. Parasite counts obtained by CMXRos staining and flow cytometry were highly reproducible and can reliably determine the ability of IgG from hyper-immune individuals to inhibit parasite growth in presence of monocytes in ADCI assay. Further, a dose-dependent parasite growth inhibitory effect could be detected for both total IgG purified from hyper-immune sera and affinity purified IgGs against the N-terminal non-repeat region of GLURP in ADCI assays coupled with determination of parasite counts through CMXRos staining and flow cytometry. Conclusions A flow cytometry method based on CMXRos staining for detection of live parasite populations has been optimized. This is a rapid and sensitive method with high inter-assay reproducibility which can reliably determine the anti-parasite effect mediated by antibodies in functional in vitro assays such as ADCI assay.
Collapse
Affiliation(s)
- Prajakta S Jogdand
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|