1
|
Kim H, Heredia MY, Chen X, Ahmed M, Qasim M, Callender TL, Hernday AD, Rauceo JM. Mitochondrial targeting of Candida albicans SPFH proteins and requirement of stomatins for SDS-induced stress tolerance. Microbiol Spectr 2025; 13:e0173324. [PMID: 39641539 PMCID: PMC11705831 DOI: 10.1128/spectrum.01733-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The SPFH (stomatin, prohibitin, flotillin, and HflK/HflC) protein superfamily is conserved across all domains of life. Fungal SPFH proteins are required for respiration, stress adaptation, and membrane scaffolding. In the yeast Candida albicans, stomatin-like protein 3 (Slp3) forms punctate foci at the plasma membrane, and SLP3 overexpression causes cell death following exposure to the surfactant, SDS, and the oxidative stressor, H2O2. Here, we sought to determine the cellular localization and functionally characterize stomatin-like protein 2 (Slp2), prohibitin-1 (Phb1), prohibitin-2 (Phb2), and prohibitin-12 (Phb12) in C. albicans. Cytological and western blotting results showed that Slp2-Gfp/Rfp and prohibitin-Gfp fusion proteins localize to the mitochondrion in yeast cells. Growth assay results did not identify any respiration defects in a panel of stomatin and prohibitin mutant strains, suggesting that SPFH respiratory function has diverged in C. albicans from other model eukaryotes. However, a slp2Δ/Δ/slp3Δ/Δ double mutant strain grew poorly in the presence of 0.08% SDS, accumulated intracellular reactive oxidative species, and displayed aberrant ergosterol distribution in the plasma membrane. These phenotypes were not observed in slp2Δ/Δ or slp3Δ/Δ single mutants, indicating a possible indirect genetic interaction between SLP2 and SLP3. In addition, slp2Δ/Δ and slp2Δ/Δ/slp3Δ/Δ mutant strains were slightly resistant to the antifungal drug, fluconazole. Collectively, these findings reveal the cellular localization of Slp2, Phb1, Phb2, and Phb12, highlight the significance of stomatins in C. albicans SDS stress tolerance, and, for the first time, associate stomatins with antifungal resistance. IMPORTANCE Stomatins and prohibitins coordinate respiration and stress adaptation in fungi. Invasive mycoses caused by Candida albicans are a significant cause of morbidity, and candidemia patients show high mortality rates worldwide. Mitochondria are essential for C. albicans commensalism and virulence, and mitochondrial proteins are targets for antifungal interventions. C. albicans encodes five SPFH proteins: two stomatin-like proteins and three prohibitins. We have previously shown that Slp3 is important for C. albicans adaptation to various types of environmental stress. Moreover, synthetic compounds that bind to mammalian prohibitins inhibit C. albicans filamentation and are fungicidal. However, there is limited information available regarding the remaining SPFH proteins. Our findings show that mitochondrial localization of SPFH proteins is conserved in C. albicans. In addition, we demonstrate the importance of stomatins in plasma membrane and mitochondrial stress tolerance.
Collapse
Affiliation(s)
- Hyunjeong Kim
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Marienela Y. Heredia
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Xiao Chen
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Maisha Ahmed
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Mohammad Qasim
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Tracy L. Callender
- Department of Biology, Farmingdale State College of the State University of New York, Farmingdale, New York, USA
| | - Aaron D. Hernday
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| |
Collapse
|
2
|
Swenson KA, Min K, Konopka JB. Candida albicans pathways that protect against organic peroxides and lipid peroxidation. PLoS Genet 2024; 20:e1011455. [PMID: 39432552 PMCID: PMC11527291 DOI: 10.1371/journal.pgen.1011455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Human fungal pathogens must survive diverse reactive oxygen species (ROS) produced by host immune cells that can oxidize a range of cellular molecules including proteins, lipids, and DNA. Formation of lipid radicals can be especially damaging, as it leads to a chain reaction of lipid peroxidation that causes widespread damage to the plasma membrane. Most previous studies on antioxidant pathways in fungal pathogens have been conducted with hydrogen peroxide, so the pathways used to combat organic peroxides and lipid peroxidation are not well understood. The most well-known peroxidase in Candida albicans, catalase, can only act on hydrogen peroxide. We therefore characterized a family of four glutathione peroxidases (GPxs) that were predicted to play an important role in reducing organic peroxides. One of the GPxs, Gpx3 is also known to activate the Cap1 transcription factor that plays the major role in inducing antioxidant genes in response to ROS. Surprisingly, we found that the only measurable role of the GPxs is activation of Cap1 and did not find a significant role for GPxs in the direct detoxification of peroxides. Furthermore, a CAP1 deletion mutant strain was highly sensitive to organic peroxides and oxidized lipids, indicating an important role for antioxidant genes upregulated by Cap1 in protecting cells from organic peroxides. We identified GLR1 (Glutathione reductase), a gene upregulated by Cap1, as important for protecting cells from oxidized lipids, implicating glutathione utilizing enzymes in the protection against lipid peroxidation. Furthermore, an RNA-sequencing study in C. albicans showed upregulation of a diverse set of antioxidant genes and protein damage pathways in response to organic peroxides. Overall, our results identify novel mechanisms by which C. albicans responds to oxidative stress resistance which open new avenues for understanding how fungal pathogens resist ROS in the host.
Collapse
Affiliation(s)
- Kara A. Swenson
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kyunghun Min
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - James B. Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
3
|
Angiolella L, Rojas F, Giammarino A, Bellucci N, Giusiano G. Identification of Virulence Factors in Isolates of Candida haemulonii, Candida albicans and Clavispora lusitaniae with Low Susceptibility and Resistance to Fluconazole and Amphotericin B. Microorganisms 2024; 12:212. [PMID: 38276197 PMCID: PMC10819056 DOI: 10.3390/microorganisms12010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Emerging life-threatening multidrug-resistant (MDR) species such as the C. haemulonii species complex, Clavispora lusitaniae (sin. C. lusitaniae), and other Candida species are considered as an increasing risk for human health in the near future. (1) Background: Many studies have emphasized that the increase in drug resistance can be associated with several virulence factors in Candida and its knowledge is also essential in developing new antifungal strategies. (2) Methods: Hydrophobicity, adherence, biofilm formation, lipase activity, resistance to osmotic stress, and virulence 'in vivo' on G. mellonella larvae were studied in isolates of C. haemulonii, C. albicans, and C. lusitaniae with low susceptibility and resistance to fluconazole and amphotericin B. (3) Results: Intra- and interspecies variability were observed. C. haemulonii showed high hydrophobicity and the ability to adhere to and form biofilm. C. lusitaniae was less hydrophobic, was biofilm-formation-strain-dependent, and did not show lipase activity. Larvae inoculated with C. albicans isolates displayed significantly higher mortality rates than those infected with C. haemulonii and C. lusitaniae. (4) Conclusions: The ability to adhere to and form biofilms associated with their hydrophobic capacity, to adapt to stress, and to infect within an in vivo model, observed in these non-wild-type Candida and Clavispora isolates, shows their marked virulence features. Since factors that define virulence are related to the development of the resistance of these fungi to the few antifungals available for clinical use, differences in the physiology of these cells must be considered to develop new antifungal therapies.
Collapse
Affiliation(s)
- Letizia Angiolella
- Department of Public Health and Infectious Diseases “Sapienza”, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.G.); (N.B.)
| | - Florencia Rojas
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia 3500, Argentina; (F.R.); (G.G.)
| | - Andrea Giammarino
- Department of Public Health and Infectious Diseases “Sapienza”, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.G.); (N.B.)
| | - Nicolò Bellucci
- Department of Public Health and Infectious Diseases “Sapienza”, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.G.); (N.B.)
| | - Gustavo Giusiano
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia 3500, Argentina; (F.R.); (G.G.)
| |
Collapse
|
4
|
Kulig K, Bednaruk K, Rudolphi-Szydło E, Barbasz A, Wronowska E, Barczyk-Woznicka O, Karnas E, Pyza E, Zuba-Surma E, Rapala-Kozik M, Karkowska-Kuleta J. Stress Conditions Affect the Immunomodulatory Potential of Candida albicans Extracellular Vesicles and Their Impact on Cytokine Release by THP-1 Human Macrophages. Int J Mol Sci 2023; 24:17179. [PMID: 38139005 PMCID: PMC10742962 DOI: 10.3390/ijms242417179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Human immune cells possess the ability to react complexly and effectively after contact with microbial virulence factors, including those transported in cell-derived structures of nanometer sizes termed extracellular vesicles (EVs). EVs are produced by organisms of all kingdoms, including fungi pathogenic to humans. In this work, the immunomodulatory properties of EVs produced under oxidative stress conditions or at host concentrations of CO2 by the fungal pathogen Candida albicans were investigated. The interaction of EVs with human pro-monocytes of the U-937 cell line was established, and the most notable effect was attributed to oxidative stress-related EVs. The immunomodulatory potential of tested EVs against human THP-1 macrophages was verified using cytotoxicity assay, ROS-production assay, and the measurement of cytokine production. All fungal EVs tested did not show a significant cytotoxic effect on THP-1 cells, although a slight pro-oxidative impact was indicated for EVs released by C. albicans cells grown under oxidative stress. Furthermore, for all tested types of EVs, the pro-inflammatory properties related to increased IL-8 and TNF-α production and decreased IL-10 secretion were demonstrated, with the most significant effect observed for EVs released under oxidative stress conditions.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Bednaruk
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
5
|
Bravo-Chaucanés CP, Chitiva LC, Vargas-Casanova Y, Diaz-Santoyo V, Hernández AX, Costa GM, Parra-Giraldo CM. Exploring the Potential Mechanism of Action of Piperine against Candida albicans and Targeting Its Virulence Factors. Biomolecules 2023; 13:1729. [PMID: 38136600 PMCID: PMC10742119 DOI: 10.3390/biom13121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Plant-derived compounds have proven to be a source of inspiration for new drugs. In this study, piperine isolated from the fruits of Piper nigrum showed anti-Candida activity. Furthermore, the mechanisms of action of piperine and its impact on virulence factors in Candida albicans, which have not been comprehensively understood, were also assessed. Initially, piperine suppressed the hyphal transition in both liquid and solid media, hindered biofilm formation, and resulted in observable cell distortions in scanning electron microscope (SEM) samples, for both fluconazole-sensitive and fluconazole-resistant C. albicans strains. Additionally, the morphogenetic switches triggered by piperine were found to rely on the activity of mutant C. albicans strains. Secondly, piperine treatment increased cell membrane permeability and disrupted mitochondrial membrane potential, as evidenced by propidium iodine and Rhodamine 123 staining, respectively. Moreover, it induced the accumulation of intracellular reactive oxygen species in C. albicans. Synergy was obtained between the piperine and the fluconazole against the fluconazole-sensitive strain. Interestingly, there were no hemolytic effects of piperine, and it resulted in reduced cytotoxicity on fibroblast cells at low concentrations. The results suggest that piperine could have a dual mode of action inhibiting virulence factors and modulating cellular processes, leading to cell death in C. albicans.
Collapse
Affiliation(s)
- Claudia Patricia Bravo-Chaucanés
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Luis Carlos Chitiva
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Yerly Vargas-Casanova
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Valentina Diaz-Santoyo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Andrea Ximena Hernández
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Geison M. Costa
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Claudia Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Chib S, Jamwal VL, Kumar V, Gandhi SG, Saran S. Fungal production of kojic acid and its industrial applications. Appl Microbiol Biotechnol 2023; 107:2111-2130. [PMID: 36912905 DOI: 10.1007/s00253-023-12451-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Kojic acid has gained its importance after it was known worldwide that the substance functions primarily as skin-lightening agent. Kojic acid plays a vital role in skin care products, as it enhances the ability to prevent exposure to UV radiation. It inhibits the tyrosinase formation which suppresses hyperpigmentation in human skin. Besides cosmetics, kojic acid is also greatly used in food, agriculture, and pharmaceuticals industries. Conversely, according to Global Industry Analysts, the Middle East, Asia, and in Africa especially, the demand of whitening cream is very high, and probably the market will reach to $31.2 billion by 2024 from $17.9 billion of 2017. The important kojic acid-producing strains were mainly belongs to the genus Aspergillus and Penicillium. Due to its commercial potential, it continues to attract the attention for its green synthesis, and the studies are still widely conducted to improve kojic acid production. Thus, the present review is focused on the current production processes, gene regulation, and limitation of its commercial production, probable reasons, and possible solutions. For the first time, detailed information on the metabolic pathway and the genes involved in kojic acid production, along with illustrations of genes, are highlighted in the present review. Demand and market applications of kojic acid and its regulatory approvals for its safer use are also discussed. KEY POINTS: • Kojic acid is an organic acid that is primarily produced by Aspergillus species. • It is mainly used in the field of health care and cosmetic industries. • Kojic acid and its derivatives seem to be safe molecules for human use.
Collapse
Affiliation(s)
- Shifali Chib
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijay Lakshmi Jamwal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Infectious Disease Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Vinod Kumar
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit G Gandhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Infectious Disease Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Kim C, Kim JG, Kim KY. Anti- Candida Potential of Sclareol in Inhibiting Growth, Biofilm Formation, and Yeast-Hyphal Transition. J Fungi (Basel) 2023; 9:jof9010098. [PMID: 36675919 PMCID: PMC9862543 DOI: 10.3390/jof9010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Even though Candida albicans commonly colonizes on most mucosal surfaces including the vaginal and gastrointestinal tract, it can cause candidiasis as an opportunistic infectious fungus. The emergence of resistant Candida strains and the toxicity of anti-fungal agents have encouraged the development of new classes of potential anti-fungal agents. Sclareol, a labdane-type diterpene, showed anti-Candida activity with a minimum inhibitory concentration of 50 μg/mL in 24 h based on a microdilution anti-fungal susceptibility test. Cell membrane permeability with propidium iodide staining and mitochondrial membrane potential with JC-1 staining were increased in C. albicans by treatment of sclareol. Sclareol also suppressed the hyphal formation of C. albicans in both liquid and solid media, and reduced biofilm formation. Taken together, sclareol induces an apoptosis-like cell death against Candida spp. and suppressed biofilm and hyphal formation in C. albicans. Sclareol is of high interest as a novel anti-fungal agent and anti-virulence factor.
Collapse
Affiliation(s)
- Chaerim Kim
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Jae-Goo Kim
- Graduate School of Biotechnology, Kyung Hee University, Yingin 17104, Gyeonggi-do, Republic of Korea
| | - Ki-Young Kim
- Graduate School of Biotechnology, Kyung Hee University, Yingin 17104, Gyeonggi-do, Republic of Korea
- College of Life Science, Kyung Hee University, Yongin 17104, Gyeonggi-do, Republic of Korea
- Correspondence: ; Tel.: +82-312012633
| |
Collapse
|
8
|
Fiołka MJ, Czaplewska P, Wójcik-Mieszawska S, Lewandowska A, Lewtak K, Sofińska-Chmiel W, Buchwald T. Metabolic, structural, and proteomic changes in Candida albicans cells induced by the protein-carbohydrate fraction of Dendrobaena veneta coelomic fluid. Sci Rep 2021; 11:16711. [PMID: 34408181 PMCID: PMC8373886 DOI: 10.1038/s41598-021-96093-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
The isolated protein-polysaccharide fraction (AAF) from the coelomic fluid of Dendrobaena veneta earthworm shows effective activity against Candida albicans yeast. Fungal cells of the clinical strain after incubation with the active fraction were characterized by disturbed cell division and different morphological forms due to the inability to separate the cells from each other. Staining of the cells with acridine orange revealed a change in the pH of the AAF-treated cells. It was observed that, after the AAF treatment, the mitochondrial DNA migrated towards the nuclear DNA, whereupon both merged into a single nuclear structure, which preceded the apoptotic process. Cells with a large nucleus were imaged with the scanning electron cryomicroscopy (Cryo-SEM) technique, while enlarged mitochondria and the degeneration of cell structures were shown by transmission electron microscopy (TEM). The loss of the correct cell shape and cell wall integrity was visualized by both the TEM and SEM techniques. Mass spectrometry and relative quantitative SWATH MS analysis were used to determine the reaction of the C. albicans proteome to the components of the AAF fraction. AAF was observed to influence the expression of mitochondrial and oxidative stress proteins. The oxidative stress in C. albicans cells caused by the action of AAF was demonstrated by fluorescence microscopy, proteomic methods, and XPS spectroscopy. The secondary structure of AAF proteins was characterized by Raman spectroscopy. Analysis of the elemental composition of AAF confirmed the homogeneity of the preparation. The observed action of AAF, which targets not only the cell wall but also the mitochondria, makes the preparation a potential antifungal drug killing the cells of the C. albicans pathogen through apoptosis.
Collapse
Affiliation(s)
- Marta J Fiołka
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Wójcik-Mieszawska
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Aleksandra Lewandowska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Kinga Lewtak
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Weronika Sofińska-Chmiel
- Analytical Laboratory, Institute of Chemical Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Tomasz Buchwald
- Faculty of Materials Science and Technical Physics, Institute of Materials Research and Quantum Engineering, Poznan University of Technology, Poznań, Poland
| |
Collapse
|
9
|
Identification of Genomewide Alternative Splicing Events in Sequential, Isogenic Clinical Isolates of Candida albicans Reveals a Novel Mechanism of Drug Resistance and Tolerance to Cellular Stresses. mSphere 2020; 5:5/4/e00608-20. [PMID: 32817456 PMCID: PMC7426172 DOI: 10.1128/msphere.00608-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of resistance in Candida albicans, an opportunistic pathogen, against the commonly used antifungals is becoming a major obstacle in its treatment. The necessity to identify new drug targets demands fundamental insights into the mechanisms used by this organism to develop drug resistance. C. albicans has introns in 4 to 6% of its genes, the functions of which remain largely unknown. Using the RNA-sequencing data from isogenic pairs of azole-sensitive and -resistant isolates of C. albicans, here, we show how C. albicans uses modulations in mRNA splicing to overcome antifungal drug stress. Alternative splicing (AS)—a process by which a single gene gives rise to different protein isoforms in eukaryotes—has been implicated in many basic cellular processes, but little is known about its role in drug resistance and fungal pathogenesis. The most common human fungal pathogen, Candida albicans, has introns in 4 to 6% of its genes, the functions of which remain largely unknown. Here, we report AS regulating drug resistance in C. albicans. Comparative RNA-sequencing of two different sets of sequential, isogenic azole-sensitive and -resistant isolates of C. albicans revealed differential expression of splice isoforms of 14 genes. One of these was the superoxide dismutase gene SOD3, which contains a single intron. The sod3Δ/Δ mutant was susceptible to the antifungals amphotericin B (AMB) and menadione (MND). While AMB susceptibility was rescued by overexpression of both the spliced and unspliced SOD3 isoforms, only the spliced isoform could overcome MND susceptibility, demonstrating the functional relevance of this splicing in developing drug resistance. Furthermore, unlike AMB, MND inhibits SOD3 splicing and acts as a splicing inhibitor. Consistent with these observations, MND exposure resulted in increased levels of unspliced SOD3 isoform that are unable to scavenge reactive oxygen species (ROS), resulting in increased drug susceptibility. Collectively, these observations suggest that AS is a novel mechanism for stress adaptation and overcoming drug susceptibility in C. albicans. IMPORTANCE The emergence of resistance in Candida albicans, an opportunistic pathogen, against the commonly used antifungals is becoming a major obstacle in its treatment. The necessity to identify new drug targets demands fundamental insights into the mechanisms used by this organism to develop drug resistance. C. albicans has introns in 4 to 6% of its genes, the functions of which remain largely unknown. Using the RNA-sequencing data from isogenic pairs of azole-sensitive and -resistant isolates of C. albicans, here, we show how C. albicans uses modulations in mRNA splicing to overcome antifungal drug stress.
Collapse
|
10
|
Carreño A, Páez-Hernández D, Zúñiga C, Ramírez-Osorio A, Nevermann J, Rivera-Zaldívar MM, Otero C, Fuentes JA. Prototypical cis-ruthenium(II) complexes present differential fluorescent staining in walled-cell models (yeasts). CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00714-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Abstract
The acquisition of iron and the maintenance of iron homeostasis are important aspects of virulence for the pathogenic fungus Cryptococcus neoformans In this study, we characterized the role of the monothiol glutaredoxin Grx4 in iron homeostasis and virulence in C. neoformans Monothiol glutaredoxins are important regulators of iron homeostasis because of their conserved roles in [2Fe-2S] cluster sensing and trafficking. We initially identified Grx4 as a binding partner of Cir1, a master regulator of iron-responsive genes and virulence factor elaboration in C. neoformans We confirmed that Grx4 binds Cir1 and demonstrated that iron repletion promotes the relocalization of Grx4 from the nucleus to the cytoplasm. We also found that a grx4 mutant lacking the GRX domain displayed iron-related phenotypes similar to those of a cir1Δ mutant, including poor growth upon iron deprivation. Importantly, the grx4 mutant was avirulent in mice, a phenotype consistent with observed defects in the key virulence determinants, capsule and melanin, and poor growth at 37°C. A comparative transcriptome analysis of the grx4 mutant and the WT strain under low-iron and iron-replete conditions confirmed a central role for Grx4 in iron homeostasis. Dysregulation of iron-related metabolism was consistent with grx4 mutant phenotypes related to oxidative stress, mitochondrial function, and DNA repair. Overall, the phenotypes of the grx4 mutant lacking the GRX domain and the transcriptome sequencing (RNA-Seq) analysis of the mutant support the hypothesis that Grx4 functions as an iron sensor, in part through an interaction with Cir1, to extensively regulate iron homeostasis.IMPORTANCE Fungal pathogens cause life-threatening diseases in humans, particularly in immunocompromised people, and there is a tremendous need for a greater understanding of pathogenesis to support new therapies. One prominent fungal pathogen, Cryptococcus neoformans, causes meningitis in people suffering from HIV/AIDS. In the present study, we focused on characterizing mechanisms by which C. neoformans senses iron availability because iron is both a signal and a key nutrient for proliferation of the pathogen in vertebrate hosts. Specifically, we characterized a monothiol glutaredoxin protein, Grx4, that functions as a sensor of iron availability and interacts with regulatory factors to control the ability of C. neoformans to cause disease. Grx4 regulates key virulence factors, and a mutant is unable to cause disease in a mouse model of cryptococcosis. Overall, our study provides new insights into nutrient sensing and the role of iron in the pathogenesis of fungal diseases.
Collapse
|
12
|
Zhang D, Dong Y, Yu Q, Kai Z, Zhang M, Jia C, Xiao C, Zhang B, Zhang B, Li M. Function of glutaredoxin 3 (Grx3) in oxidative stress response caused by iron homeostasis disorder in Candida albicans. Future Microbiol 2017; 12:1397-1412. [DOI: 10.2217/fmb-2017-0098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: Glutaredoxin is a conserved oxidoreductase in eukaryotes and prokaryotes. This study aimed to determine the role of Grx3 in cell survival, iron homeostasis and the oxidative stress response in Candida albicans. Materials & methods: A grx3Δ/Δ mutant was obtained using PCR-mediated homologs recombination. The function of Grx3 was investigated by a series of biochemical methods. Results: Deletion of GRX3 impaired growth and cell cycle, disturbance of iron homeostasis and activated the oxidative stress response. Furthermore, disruption of GRX3 caused oxidative damage and growth defects of C. albicans. Conclusion: Our findings provide new insights into the role of GRX3 in C. albicans.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yijie Dong
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- The State Key Laboratory for Biology of Plant Disease & Insect Pests, Institute of Plant protection, Chinese Academy of Agricultural sciences, Beijing 100871, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhang Kai
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chang Jia
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chenpeng Xiao
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Biao Zhang
- College of language and culture, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Silva-Rocha WP, de Azevedo MF, Ferreira MRA, da Silva JDF, Svidzinski TIE, Milan EP, Soares LAL, Rocha KBF, Uchôa AF, Mendes-Giannini MJS, Fusco Almeida AM, Chaves GM. Effect of the Ethyl Acetate Fraction of Eugenia uniflora on Proteins Global Expression during Morphogenesis in Candida albicans. Front Microbiol 2017; 8:1788. [PMID: 29018413 PMCID: PMC5622941 DOI: 10.3389/fmicb.2017.01788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is able to switch from yeast to hyphal growth and this is an essential step for tissue invasion and establishment of infection. Due to the limited drug arsenal used to treat fungal infections and the constant emergence of resistant strains, it is important to search for new therapeutic candidates. Therefore, this study aimed to investigate by proteomic analysis the role of a natural product (Eugenia uniflora) in impairing hypha formation in C. albicans. We also tested the potential action of E. uniflora to prevent and treat oral candidiasis induced in a murine model of oral infection and the ability of polymorphonuclear neutrophils to phagocytize C. albicans cells treated with the ethyl acetate fraction of the extract. We found that this fraction greatly reduced hypha formation after morphogenesis induction in the presence of serum. Besides, several proteins were differentially expressed in cells treated with the fraction. Surprisingly, the ethyl acetate fraction significantly reduced phagocytosis in C. albicans (Mean 120.36 ± 36.71 yeasts/100 PMNs vs. 44.68 ± 19.84 yeasts/100 PMNs). Oral candidiasis was attenuated when C. albicans cells were either pre-incubated in the presence of E. uniflora or when the fraction was applied to the surface of the oral cavity after infection. These results were consistent with the reduction in CFU counts (2.36 vs. 1.85 Log10 CFU/ml) and attenuation of tissue damage observed with histopathological analysis of animals belonging to treated group. We also observed shorter true hyphae by direct examination and histopathological analysis, when cells were treated with the referred natural product. The E. uniflora ethyl acetate fraction was non-toxic to human cells. E. uniflora may act on essential proteins mainly related to cellular structure, reducing the capacity of filamentation and attenuating infection in a murine model, without causing any toxic effect on human cells, suggesting that it may be a future therapeutic alternative for the treatment of Candida infections.
Collapse
Affiliation(s)
- Walicyranison P Silva-Rocha
- Laboratório de Micologia Médica e Molecular, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Matheus F de Azevedo
- Laboratório de Micologia Médica e Molecular, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Magda R A Ferreira
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Terezinha I E Svidzinski
- Departamento de Análise Clínicas, Centro de Ciências Biológicas, Universidade Estadual de Maringá, Maringá, Brazil
| | - Eveline P Milan
- Departamento de Infectologia, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Luiz A L Soares
- Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Brazil
| | - Keyla B F Rocha
- Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Adriana F Uchôa
- Departamento de Biologia Celular e Genética, Centro de Biociências, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Ana M Fusco Almeida
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, São Paulo, Brazil
| | - Guilherme M Chaves
- Laboratório de Micologia Médica e Molecular, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
14
|
Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G, Gillmann L, Papon N, Bouchara JP, Fleury MJ. Microbial antioxidant defense enzymes. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Enzymatic Mechanisms Involved in Evasion of Fungi to the Oxidative Stress: Focus on Scedosporium apiospermum. Mycopathologia 2017. [DOI: 10.1007/s11046-017-0160-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
León-García MC, Ríos-Castro E, López-Romero E, Cuéllar-Cruz M. Evaluation of cell wall damage by dimethyl sulfoxide in Candida species. Res Microbiol 2017. [PMID: 28629869 DOI: 10.1016/j.resmic.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studies dealing with the response of microorganisms to oxidative stress require the dissolution of oxidant agents in an appropriate solvent. A commonly used medium is dimethyl sulfoxide, which has been considered as an innocuous polar solvent. However, we have observed significant differences between control, untreated cells and those receiving increasing amounts of the oxidant and hence increasing amounts of DMSO, to the maximum allowed of 1%. Here we show that, while this solvent does not influence yeast cell viability, it does affect expression of cell wall proteins as well as catalase activity. Therefore, its use in future studies of oxidative stress as an innocuous solvent should be reconsidered.
Collapse
Affiliation(s)
- María Cristina León-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico
| | - Emmanuel Ríos-Castro
- Unidad de Genómica, Proteómica y Metabolómica, LaNSE, Centro de Investigación y de Estudios Avanzados del I.P.N., Apdo. Postal 14-740, 07000, México, D.F., Mexico
| | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
17
|
Chakravarti A, Camp K, McNabb DS, Pinto I. The Iron-Dependent Regulation of the Candida albicans Oxidative Stress Response by the CCAAT-Binding Factor. PLoS One 2017; 12:e0170649. [PMID: 28122000 PMCID: PMC5266298 DOI: 10.1371/journal.pone.0170649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/09/2017] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is the most frequently encountered fungal pathogen in humans, capable of causing mucocutaneous and systemic infections in immunocompromised individuals. C. albicans virulence is influenced by multiple factors. Importantly, iron acquisition and avoidance of the immune oxidative burst are two critical barriers for survival in the host. Prior studies using whole genome microarray expression data indicated that the CCAAT-binding factor is involved in the regulation of iron uptake/utilization and the oxidative stress response. This study examines directly the role of the CCAAT-binding factor in regulating the expression of oxidative stress genes in response to iron availability. The CCAAT-binding factor is a heterooligomeric transcription factor previously shown to regulate genes involved in respiration and iron uptake/utilization in C. albicans. Since these pathways directly influence the level of free radicals, it seemed plausible the CCAAT-binding factor regulates genes necessary for the oxidative stress response. In this study, we show the CCAAT-binding factor is involved in regulating some oxidative stress genes in response to iron availability, including CAT1, SOD4, GRX5, and TRX1. We also show that CAT1 expression and catalase activity correlate with the survival of C. albicans to oxidative stress, providing a connection between iron obtainability and the oxidative stress response. We further explore the role of the various CCAAT-binding factor subunits in the formation of distinct protein complexes that modulate the transcription of CAT1 in response to iron. We find that Hap31 and Hap32 can compensate for each other in the formation of an active transcriptional complex; however, they play distinct roles in the oxidative stress response during iron limitation. Moreover, Hap43 was found to be solely responsible for the repression observed under iron deprivation.
Collapse
Affiliation(s)
- Ananya Chakravarti
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Kyle Camp
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - David S. McNabb
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Inés Pinto
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Zuza-Alves DL, de Medeiros SSTQ, de Souza LBFC, Silva-Rocha WP, Francisco EC, de Araújo MCB, Lima-Neto RG, Neves RP, Melo ASDA, Chaves GM. Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil. Front Microbiol 2016; 7:1783. [PMID: 27895625 PMCID: PMC5108815 DOI: 10.3389/fmicb.2016.01783] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/24/2016] [Indexed: 12/01/2022] Open
Abstract
Several studies have been developed regarding human health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various micro-organisms, including Candida tropicalis. In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates and observed a great variation among them for the various virulence factors evaluated. In general, environmental isolates were more adherent to human buccal epithelial cells (HBEC) than C. tropicalis ATCC13803 reference strain, and they also showed increased biofilm production. Most of the isolates presented wrinkled phenotypes on Spider medium (34 isolates, 54.8%). The majority of the isolates also showed higher proteinase production than control strains, but low phospholipase activity. In addition, 35 isolates (56.4%) had high hemolytic activity (hemolysis index > 0.55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride. The strains were highly resistant to the azoles tested (fluconazole, voriconazole and itraconazole). Fifteen strains were resistant to the three azoles tested (24.2%). Some strains were also resistant to amphotericin B (14 isolates; 22.6%), while all of them were susceptible for the echinocandins tested, except for a single strain of intermediate susceptibility to micafungin. Our results demonstrate that C. tropicalis isolated from the sand can fully express virulence attributes and showed a high persistence capacity on the coastal environment; in addition of showing high minimal inhibitory concentrations to several antifungal drugs used in current clinical practice, demonstrating that environmental isolates may have pathogenic potential.
Collapse
Affiliation(s)
- Diana L Zuza-Alves
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| | - Sayama S T Q de Medeiros
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| | - Luanda B F C de Souza
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| | - Walicyranison P Silva-Rocha
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| | - Elaine C Francisco
- Department of Mycology, Federal University of Pernambuco São Paulo, Brazil
| | - Maria C B de Araújo
- Department of Oceanography and Limnology, Federal University of Rio Grande do Norte Natal, Brazil
| | | | - Rejane P Neves
- Department of Mycology, Federal University of Pernambuco, Recife Pernambuco, Brazil
| | | | - Guilherme M Chaves
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| |
Collapse
|
19
|
Ku M, Baek YU, Kwak MK, Kang SO. Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes. Biochim Biophys Acta Gen Subj 2016; 1861:772-788. [PMID: 27751952 DOI: 10.1016/j.bbagen.2016.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/23/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Glutathione reductase maintains the glutathione level in a reduced state. As previously demonstrated, glutathione is required for cell growth/division and its biosynthesizing-enzyme deficiency causes methylglyoxal accumulation. However, experimental evidences for reciprocal relationships between Cph1-/Efg1-mediated signaling pathway regulation and methylglyoxal production exerted by glutathione reductase on yeast morphology remain unclear. METHODS Glutathione reductase (GLR1) disruption/overexpression were performed to investigate aspects of pathological/morphological alterations in Candida albicans. These assumptions were proved by observations of cellular susceptibility to oxidants and thiols, and measurements of methylglyoxal and glutathione content in hyphal-inducing conditions mainly through the activity of GLR1-overexpressing cells. Additionally, the transcriptional/translational levels of bioenergetic enzymes and dimorphism-regulating protein kinases were examined in the strain. RESULTS The GLR1-deficient strain was non-viable when GLR1 expression under the control of a CaMAL2 promoter was conditionally repressed, despite partial rescue of growth by exogenous thiols. During filamentation, non-growing hyphal GLR1-overexpressing cells exhibited resistance against oxidants and cellular methylglyoxal was significantly decreased, which concomitantly increased expressions of genes encoding energy-generating enzymes, including fructose-1,6-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and alcohol dehydrogenase (ADH1), with remarkable repression of Efg1-signaling cascades. CONCLUSIONS This is the first report that GLR1-triggered Efg1-mediated signal transduction repression strictly reduces dimorphic switching and virulence by maintaining the basal level of methylglyoxal following the enhanced gene expressions of glycolytic enzymes and ADH1. GENERAL SIGNIFICANCE The Efg1 downregulatory mechanism by GLR1 expression has possibilities to involve in other complex network of signal pathways. Understanding how GLR1 overexpression affects multiple signaling pathways can help identify attractive targets for antifungal drugs.
Collapse
Affiliation(s)
- MyungHee Ku
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yong-Un Baek
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
20
|
|
21
|
Silva-Rocha WP, de Brito Lemos VL, Ferreira MRA, Soares LAL, Svidzisnki TIE, Milan EP, Chaves GM. Effect of the crude extract of Eugenia uniflora in morphogenesis and secretion of hydrolytic enzymes in Candida albicans from the oral cavity of kidney transplant recipients. Altern Ther Health Med 2015; 15:6. [PMID: 25651849 PMCID: PMC4324049 DOI: 10.1186/s12906-015-0522-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/14/2015] [Indexed: 12/31/2022]
Abstract
Background Candida albicans is a diploid yeast that in some circumstances may cause oral or oropharyngeal infections. Yeasts virulence factors contribute for both the maintenance of colonizing strains in addition to damage and cause tissue invasion, thus the establishment of infection occurs. The limited arsenal of antifungal drugs for the treatment of candidiasis turn the investigation of natural products mandatory for the discovery of new targets for antifungal drug development. Therefore, tropical countries emerge as important providers of natural products with potential antimicrobial activity. This study aimed to investigate morphogenesis and secretion of hydrolytic enzymes (phospholipase and proteinase) in the presence of the CE of Eugenia uniflora. Methods The isolates were tested for their ability to form hyphae in both solid and liquid media under three different conditions: YPD + 20% FBS, Spider medium and GlcNac and the ability to secrete phospholipase and proteinase in the presence of 2000 μg/mL of E. uniflora. Results The CE of E. uniflora inhibited hypha formation in both liquid and solid media tested. It also impaired hydrolytic enzymes production. Conclusions This was the first study to describe the interaction of a natural product with the full expression of three different factors in C. albicans. E. uniflora may be an alternative therapeutic for oral candidiasis in the future.
Collapse
|
22
|
Cuéllar-Cruz M, López-Romero E, Ruiz-Baca E, Zazueta-Sandoval R. Differential response of Candida albicans and Candida glabrata to oxidative and nitrosative stresses. Curr Microbiol 2014; 69:733-9. [PMID: 25002360 DOI: 10.1007/s00284-014-0651-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022]
Abstract
Invasive candidiasis is associated with high mortality in immunocompromised and hospitalized patients. Candida albicans is the main pathological agent followed by Candida glabrata, Candida krusei, Candida parapsilosis, and Candida tropicalis. These pathogens colonize different host tissues in humans as they are able to neutralize the reactive species generated from nitrogen and oxygen during the respiratory burst. Among the enzymatic mechanisms that Candida species have developed to protect against free radicals are enzymes with antioxidant and immunodominant functions such as flavohemoglobins, catalases, superoxide dismutases, glutathione reductases, thioredoxins, peroxidases, heat-shock proteins, and enolases. These mechanisms are under transcriptional regulation by factors such as Cta4p, Cwt1p, Yap1p, Skn7p, Msn2p, and Msn4p. However, even though it has been proposed that all Candida species have similar enzymatic systems, it has been observed that they respond differentially to various types of stress. These differential responses may explain the colonization of different organs by each species. Here, we review the enzymatic mechanisms developed by C. albicans and C. glabrata species in response to oxidative and nitrosative stresses. Lack of experimental information for other pathogenic species limits a comparative approach among different organisms.
Collapse
Affiliation(s)
- Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, C.P. 36050, Guanajuato, Mexico,
| | | | | | | |
Collapse
|
23
|
da Silva-Rocha WP, Lemos VLDB, Svidizisnki TIE, Milan EP, Chaves GM. Candida species distribution, genotyping and virulence factors of Candida albicans isolated from the oral cavity of kidney transplant recipients of two geographic regions of Brazil. BMC Oral Health 2014; 14:20. [PMID: 24628850 PMCID: PMC3995545 DOI: 10.1186/1472-6831-14-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 03/05/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Candida albicans is a diploid yeast that in some circumstances may cause oral or oropharyngeal infections. This investigation aimed to study the prevalence of Candida spp. and to analyze the ABC genotypes of 76 clinical isolates of C. albicans obtained from the oral cavity of kidney transplant patients from two distinct geographic regions of Brazil. METHODS We typed 48 strains with ABC genotyping and Microsatelitte using primer M13 and tested three virulence factors in vitro: phospholipase activity, morphogenesis and the ability to evade from polymorphonuclear neutrophils phagocytosis. RESULTS C. albicans was the most prevalent species (86.4%), followed by C. tropicalis (4.5%). C. albicans genotype A was the most prevalent (58 isolates; 76.4%), followed by genotype C (15 isolates; 19.7%) and genotype B (3 isolates; 3.9%). When Microsatellite technique with primer M13 was applied, 80% of the isolates from the South were placed within the same cluster. The majority of Genotype C strains were grouped together within two different clusters. Genotype C was considered more resistant to PMNs attack than genotypes A and B. Strains isolated from the South of Brazil showed also better ability to combat PMNs phagocytosis. CONCLUSIONS We found a high rate of C. albicans genotype C strains isolated from the oral cavity of this group of patients. This study characterized oral C. albicans strains isolated from kidney transplant recipients and will contribute to a better understanding of the pathogenesis of oral candidiasis.
Collapse
Affiliation(s)
| | | | | | | | - Guilherme Maranhão Chaves
- Laboratório de Micologia Médica e Molecular, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|