1
|
Pei W, Yu Y, Wang P, Zheng L, Lan K, Jin Y, Yong Q, Huang C. Research trends of bio-application of major components in lignocellulosic biomass (cellulose, hemicellulose and lignin) in orthopedics fields based on the bibliometric analysis: A review. Int J Biol Macromol 2024; 267:131505. [PMID: 38631574 DOI: 10.1016/j.ijbiomac.2024.131505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Cellulose, hemicellulose, and lignin are the major bio-components in lignocellulosic biomass (BC-LB), which possess excellent biomechanical properties and biocompatibility to satisfy the demands of orthopedic applications. To understand the basis and trends in the development of major bio-components in BC-LB in orthopedics, the bibliometric technology was applied to get unique insights based on the published papers (741) in the Web of Science (WOS) database from January 1st, 2001, to February 14th, 2023. The analysis includes the annual distributions of publications, keywords co-linearity, research hotspots exploration, author collaboration networks, published journals, and clustering of co-cited literature. The results reveal a steady growth in publications focusing on the application of BC-LB in orthopedics, with China and the United States leading in research output. The "International Journal of Biological Macromolecules" was identified as the most cited journal for BC-LB research in orthopedics. The research hotspots encompassed bone tissue engineering, cartilage tissue engineering, and drug delivery systems, indicating the fundamental research and potential development in these areas. This study also highlights the challenges associated with the clinical application of BC-LB in orthopedics and provides valuable insights for future advancements in the field.
Collapse
Affiliation(s)
- Wenhui Pei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310000, PR China
| | - Kai Lan
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Yongcan Jin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Costa Salles TH, Volpe-Zanutto F, de Oliveira Sousa IM, Machado D, Zanatta AC, Vilegas W, Lancellotti M, Foglio MA, d'Ávila MA. Electrospun PCL-based nanofibers Arrabidaea chica Verlot - Pterodon pubescens Benth loaded: synergic effect in fibroblast formation. Biomed Mater 2020; 15:065001. [PMID: 32955022 DOI: 10.1088/1748-605x/ab9bb1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The guided tissue regeneration (GTR) technique can be applied in dentistry and other medical specializations, such as orthopedics. In modern dentistry, GTR has been used in periodontics and implantology to treat periodontal defects, to reconstruct lost, damaged and atrophied bone tissue in dental implant procedures, and to preserve alveolar bases after tooth extraction. In order to create and improve new therapies and to develop new biomaterials that restore, improve and prevent aggravation of compromised tissue function, poly (ϵ-caprolactone) (PCL) polymer membranes were obtained by the electrospinning process and were associated with two plant extracts: Pterodon pubescens Benth (P. pubescens) and Arrabidaea chica Verlot (A. chica) which are characterized by their pharmacological activities of anti-inflammatory and healing actions, respectively. Fiber morphology was analyzed using scanning electron microscopy (SEM), where fiber average diameter was measured from SEM images. Contact angle measurements were performed in order to evaluate the hydrophilicity of electrospun membranes containing vegetal extract. High-performance liquid chromatography was used to evaluate the ability to release active ingredients. Cytotoxicity and cell proliferation assays were performed in vitro on NIH-3T3 cells for 1, 3 and 7 d. Electrospun PCL membranes associated with plant extracts P. pubescens and/or A. chica presented a controlled release profile of the active compounds induced fibroblast formation, suggesting that they are promising and suitable for applications in GTR.
Collapse
Affiliation(s)
- Tais Helena Costa Salles
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
- Graduate School of Bioscience and Technology of Bioactive Products, Biology Institute, University at Campinas, Brazil
| | | | - Daisy Machado
- Faculty of Pharmaceutical Science, University at Campinas, Brazil
| | - Ana Caroline Zanatta
- Instituto de Biociências, Univ Estadual Paulista, UNESP-, São Vicente, SP, Brazil
| | - Wagner Vilegas
- Instituto de Biociências, Univ Estadual Paulista, UNESP-, São Vicente, SP, Brazil
| | | | - Mary Ann Foglio
- Faculty of Pharmaceutical Science, University at Campinas, Brazil
| | - Marcos Akira d'Ávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
3
|
Abstract
Tissue engineering promotes tissue regeneration through biomaterials that have excellent properties and have the potential to replace tissues. Many studies show that bacterial cellulose (BC) might ensure tissue regeneration and substitution, being used for the bioengineering of hard, cartilaginous and soft tissues. Bacterial cellulose is extensively used as wound dressing material and results show that BC is a promising tissue scaffold (bone, cardiovascular, urinary tissue). It can be combined with polymeric and non-polymeric compounds to acquire antimicrobial, cell-adhesion and proliferation properties. To ensure proper tissue regeneration, the material has to be: biocompatible, with minimum tissue reaction and biodegradability; bio-absorbable, to promote tissue development, cellular interaction and grow; resistant to support the weight of the newly formed tissue. Its versatile structure, physical and biochemical properties can be adjusted by adapting the bacteria culturing conditions. The main biomedical applications seem to be as hard (bone, dental), fibrocartilaginous (meniscal) and soft tissue (skin, cardiovascular, urinary) substituents. This paper reviews the current state of knowledge, challenges and future applications of BC and its biomedical potential in veterinary medicine. It was focused on the main uses in regeneration and scaffold tissue replacement and, although BC showed promising results, there is a lack of successful results of BC use in clinical practice. Most studies were performed only at experimental level and further research is needed for BC to enter clinical veterinary practice.
Collapse
|
4
|
Ortega Z, Alemán ME, Donate R. Nanofibers and Microfibers for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:97-123. [PMID: 29691819 DOI: 10.1007/978-3-319-76711-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of fibers into scaffolds is a way to mimic natural tissues, in which fibrils are embedded in a matrix. The use of fibers can improve the mechanical properties of the scaffolds and may act as structural support for cell growth. Also, as the morphology of fibrous scaffolds is similar to the natural extracellular matrix, cells cultured on these scaffolds tend to maintain their phenotypic shape. Different materials and techniques can be used to produce micrfibers- and nanofibers for scaffolds manufacturing; cells, in general, adhere and proliferate very well on PCL, chitosan, silk fibroin, and other nanofibers. One of the most important techniques to produce microfibers/nanofibers is electrospinning. Nanofibrous scaffolds are receiving increasing attention in bone tissue engineering, because they are able to offer a favorable microenvironment for cell attachment and growth. Different polymers can be electrospun, i.e., polyester, polyurethane, PLA, PCL, collagen, and silk. Other materials such as bioglass fibers, nanocellulose, and even carbon fiber and fabrics have been used to help increase bioactivity, mechanical properties of the scaffold, and cell proliferation. A compilation of mechanical properties and most common biological tests performed on fibrous scaffolds is included in this chapter. HIGHLIGHTS The use of microfibers and nanofibers allows for tailoring the scaffold properties. Electrospinning is one of the most important techniques nowadays to produce fibrous scaffolds. Microfibers and nanofibers use in scaffolds is a promising field to improve the behavior of scaffolds in osteochondral applications.
Collapse
Affiliation(s)
- Zaida Ortega
- Grupo de investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| | - María Elena Alemán
- Grupo de investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Ricardo Donate
- Grupo de investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
5
|
Iamaguti L, Brandão C, Mota L, Ranzani J, Ribeiro L, Rossetto V, Padovani C, Felisbino S. Implante de condrócitos homólogos em defeitos osteocondrais de cães: padronização da técnica e avaliação histopatológica. ARQ BRAS MED VET ZOO 2013. [DOI: 10.1590/s0102-09352013000100013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Padronizou-se a metodologia para cultura de condrócitos em cães e avaliou-se seu implante em lesões osteocondrais, utilizando-se a membrana biossintética de celulose (MBC) como revestimento. Dez cães, adultos e clinicamente sadios, foram submetidos à artrotomia das articulações fêmoro-tíbio-patelares. Defeitos de 4mm de diâmetro e profundidade foram induzidos no sulco troclear de ambos os membros. MBC foi aplicada na base e na superfície das lesões. Os defeitos do membro direito foram preenchidos com condrócitos homólogos cultivados formando o grupo-tratado (GT); os do membro esquerdo, sem implante celular, foram designados grupo-controle (GC). A evolução pós-operatória foi analisada com especial interesse nos processos de reparação da lesão, por meio de histomorfometria e imuno-histoquímica para colágeno tipo II e sulfato de condroitina. A cultura de condrócitos homólogos apresentou alta densidade e taxa de viabilidade. Observou-se integridade do tecido neoformado com a cartilagem adjacente na avaliação histológica, em ambos os grupos. Na imuno-histoquímica, verificou-se predomínio de colágeno tipo II no GT. Morfometricamente, não houve diferença significativa entre o tecido fibroso e o fibrocartilaginoso entre os grupos. A cultura de condrócitos homólogos de cães foi exequível. O tecido neoformado apresentou qualidade discretamente superior associado ao implante homólogo de condrócitos, contudo não promoveu reparação por cartilagem hialina.
Collapse
|
6
|
Cherian BM, Leão AL, de Souza SF, de Olyveira GM, Costa LMM, Brandão CVS, Narine SS. Bacterial Nanocellulose for Medical Implants. ADVANCES IN NATURAL POLYMERS 2013. [DOI: 10.1007/978-3-642-20940-6_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Iamaguti L, Brandão C, Mota L, Sereno M, Almeida M, Padovani C. Reparação de defeitos osteocondrais de cães com implante de cultura de condrócitos homólogos e membrana biossintética de celulose: avaliação clínica, ultrassonográfica e macroscópica. ARQ BRAS MED VET ZOO 2012. [DOI: 10.1590/s0102-09352012000600012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Avaliou-se o implante de condrócitos homólogos em lesões osteocondrais, utilizando a membrana biossintética à base de celulose (MBC) como revestimento. Dez cães adultos e clinicamente sadios foram submetidos à artrotomia das articulações fêmoro-tíbio-patelares. Defeitos de quatro milímetros de diâmetro por quatro milímetros de profundidade foram induzidos na tróclea femoral de ambos os membros. A MBC foi aplicada na base e superfície das lesões. Os defeitos do membro direito foram preenchidos com condrócitos homólogos cultivados e formaram o grupo tratado (GT); e os defeitos do membro esquerdo, sem implante celular, formaram o grupo controle (GC). Os animais foram avaliados clínica e ultrassonograficamente aos 30 e 60 dias. A evolução pós-operatória dos cães foi analisada com especial interesse nos processos de reparação da lesão, por meio de macroscopia. Não houve diferença clínica e ultrassonográfica entre os grupos. Entretanto, à macroscopia, ocorreu maior prevalência de formação de tecido cicatricial esbranquiçado no GT. O tecido neoformado apresentou melhor qualidade associado ao implante homólogo de condrócitos, mas não promoveu reparação por cartilagem hialina.
Collapse
|