1
|
Aydin O, Yilmaz A, Turan N, Richt JA, Yilmaz H. Molecular Characterisation and Antibody Response to Bovine Respiratory Syncytial Virus in Vaccinated and Infected Cattle in Turkey. Pathogens 2024; 13:304. [PMID: 38668259 PMCID: PMC11053851 DOI: 10.3390/pathogens13040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is one of the most important respiratory pathogens of cattle. In this study, frequency of infection, analysis of variants, and the immune status of vaccinated and non-vaccinated cattle were studied. Blood (n = 162) and nasal/oropharyngeal (n = 277) swabs were collected from 62 cattle herds in Turkey. Lung samples (n = 37) were also taken from dead animals and abattoirs. Antibodies to BRSV were detected in 76 (46%) out of 162 sera. The antibody levels in the vaccinated and non-vaccinated groups were statistically significant. Among 277 nasal/oropharyngeal swabs and 37 lungs, ten nasal/oropharyngeal and four lung samples were positive for BRSV-RNA. BRSV-G gene sequences of 5 out of 14 RT-PCR positive samples showed that all viruses clustered as Group-III in phylogenetic analysis with 88-100% homology. Similarity with previous Turkish BRSVs was 89-98%, and that with BRSVs detected in the USA and Czechia was 89.47-93.12%. BRSV continues to circulate in Turkish cattle, and vaccination seems beneficial in preventing BRSV. The diversity of the BRSVs found in this study needs be considered in vaccination strategies.
Collapse
Affiliation(s)
- Ozge Aydin
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| | - Aysun Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| | - Juergen A. Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, NY 66506, USA;
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Hadimkoy, 34500, Buyukcekmece, Istanbul 66506, Turkey; (O.A.); (A.Y.); (N.T.)
| |
Collapse
|
2
|
Oliveira TES, Pelaquim IF, Flores EF, Massi RP, Valdiviezo MJJ, Pretto-Giordano LG, Alfieri AA, Saut JPE, Headley SA. Mycoplasma bovis and viral agents associated with the development of bovine respiratory disease in adult dairy cows. Transbound Emerg Dis 2019; 67 Suppl 2:82-93. [PMID: 31232526 PMCID: PMC7228412 DOI: 10.1111/tbed.13223] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/15/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022]
Abstract
The etiology and pathologic findings of bovine respiratory disease (BRD) in adult dairy cows (n = 35) from a commercial dairy herd in Southern Brazil were investigated. Pulmonary samples were examined for histopathologic patterns and specific features within these patterns, while immunohistochemical (IHC) assays were designed to detect the intralesional antigens of viral infectious disease agents and Mycoplasma bovis. Pneumonia was diagnosed in 91.4% (32/35) of these cases; neither pneumonia nor any of the infectious disease pathogens evaluated occurred in three cows. The presence of multiple respiratory pathogens in 75% (24/32) of these cases indicated the complex origin of pneumonia in cattle. Interstitial pneumonia, necrosuppurative bronchopneumonia and suppurative bronchopneumonia were the principal patterns of pulmonary disease identified by histopathology. The most frequent pathogens identified by IHC were bovine viral diarrhea virus (BVDV; n = 18), M. bovis (n = 16) and bovine alphaherpesvirus type 1 (BoHV-1; n = 14), followed by bovine respiratory syncytial virus (BRSV; n = 11) and bovine parainfluenza virus type 3 (BPIV-3; n = 5). Obliterative bronchiolitis and peribronchial lymphocytic cuffings were the characteristic histopathologic features associated with M. bovis. Necrohemorrhagic bronchitis with bronchial angiogenesis was associated with BoHV-1. Necrotizing bronchitis and bronchiolitis were associated with BVDV, BoHV-1 and BRSV. Ballooning degeneration of the bronchial and bronchiolar epithelia was associated with BRSV and BoHV-1. This is the first report from Brazil that correlated the histopathologic findings of BRD with the associated infectious disease agents by immunohistochemistry. M. bovis was frequently detected in the tissues of cows with fatal pulmonary disease during this study and may be a possible primary disease pathogen associated with the development of BRD in dairy cows. Additionally, the histopathologic features identified within patterns of pulmonary disease during this investigation may be an efficient diagnostic tool to associate histopathologic findings with specific agents of BRD in dairy cows.
Collapse
Affiliation(s)
- Thalita Evani Silva Oliveira
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Paraná, Brazil.,National Institutes of Science and Technology, Dairy Production Chain (INCT-Leite; Brazil), Universidade Estadual de Londrina, Paraná, Brazil
| | - Isadora Fernanda Pelaquim
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Paraná, Brazil
| | - Eduardo Furtado Flores
- Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Rodrigo Pelisson Massi
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Paraná, Brazil
| | - Milton James Jiménez Valdiviezo
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Paraná, Brazil
| | - Lucienne Garcia Pretto-Giordano
- Laboratory of Veterinary Microbiology and Infectious Diseases, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Paraná, Brazil
| | - Amauri Alcindo Alfieri
- National Institutes of Science and Technology, Dairy Production Chain (INCT-Leite; Brazil), Universidade Estadual de Londrina, Paraná, Brazil.,Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Paraná, Brazil
| | - João Paulo Elsen Saut
- Large Animal Health Laboratory, Faculty of Veterinary Medicine, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Selwyn Arlington Headley
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Paraná, Brazil.,National Institutes of Science and Technology, Dairy Production Chain (INCT-Leite; Brazil), Universidade Estadual de Londrina, Paraná, Brazil
| |
Collapse
|
3
|
Gaeta NC, Ribeiro BL, Alemán MA, Yoshihara E, Marques EC, Hellmeister AN, Pituco EM, Gregory L. Serological investigation of antibodies against respiratory viruses in calves from Brazilian family farming and their relation to clinical signs of bovine respiratory disease. PESQUISA VETERINARIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Bovine respiratory disease (BRD) is responsible for economic losses in cattle production. Viruses are categorized as primary etiological agents. The aims of this study were to evaluate the presence of antibodies against bovine viral diarrhea virus (BVDV), bovine herpes virus type 1 (BoHV-1), and bovine respiratory syncytial virus (BRSV) in healthy and BRD calves from family farming in relation to clinical signs of BRD. Hundred and forty-five calves were randomly selected and physical examination was performed. Only 123 animals were classified as healthy and BRD calves. Antibodies were evaluated by virus neutralization test. Person’s Chi-square test and Fisher’s exact test were performed as univariate analysis. Binary Logistic Regression was applied as multivariate analysis. Variables with P<0.10 were considered statistically significant. Variables with 0.15<P<0.10 were considered as statistical tendencies. Antibodies against BoHV-1, BVDV, and BRSV were detected in 32%, 23% and 37% animals. Antibodies against both three viruses were detected in 26.8% of calves. The presence of antibodies against BRSV were associated to normal heart rates (P=0.018) and unilateral airflow (P=0.035). Tendency was observed to unilateral airflow (P=0.06) Statistical tendencies were observed to Ab-BoHV-1 and body temperature (P=0.119) and breathing pattern (P=0.123). The profile of antibodies against respiratory viruses in calves from Brazilian family farming was firstly described. The results confirmed the importance of some clinical signs to viral infection.
Collapse
|
4
|
Ferella A, Pérez Aguirreburualde MS, Margineda C, Aznar N, Sammarruco A, Dus Santos MJ, Mozgovoj M. Bovine respiratory syncytial virus seroprevalence and risk factors in feedlot cattle from Córdoba and Santa Fe, Argentina. Rev Argent Microbiol 2017; 50:275-279. [PMID: 29198455 DOI: 10.1016/j.ram.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/17/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is one of the causative agents of respiratory disease in cattle all over the world, leading to important economic losses. The aim of this work was to determine the seroprevalence of BRSV in feedlot cattle of Argentina and the risk factors associated with the disease. Results showed a high individual seroprevalence of 78.64% (95% confidence interval adjusted [CI]=66.55-90.75%) against the virus. Positive association was found between the presence of high BRSV neutralizing antibody titers, and the following risk factors: cattle age, source of animals, presence of clinical respiratory signs and herd size. This work contributes to updating the understanding of its epidemiology in Argentinean feedlots and poses the need for reevaluating vaccination strategies against this virus in order to control infection and its impact on productivity.
Collapse
Affiliation(s)
- Alejandra Ferella
- Instituto de Virología, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - María Sol Pérez Aguirreburualde
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - Carlos Margineda
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Marcos Juárez, Córdoba, Argentina
| | - Natalia Aznar
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - Ayelen Sammarruco
- Instituto de Virología, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - María Jose Dus Santos
- Instituto de Virología, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - Marina Mozgovoj
- Instituto de Virología, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Abstract
The bovine respiratory syncytial virus (BRSV) is an enveloped, negative sense, single-stranded RNA virus belonging to the pneumovirus genus within the family Paramyxoviridae. BRSV has been recognized as a major cause of respiratory disease in young calves since the early 1970s. The analysis of BRSV infection was originally hampered by its characteristic lability and poor growth in vitro. However, the advent of numerous immunological and molecular methods has facilitated the study of BRSV enormously. The knowledge gained from these studies has also provided the opportunity to develop safe, stable, attenuated virus vaccine candidates. Nonetheless, many aspects of the epidemiology, molecular epidemiology and evolution of the virus are still not fully understood. The natural course of infection is rather complex and further complicates diagnosis, treatment and the implementation of preventive measures aimed to control the disease. Therefore, understanding the mechanisms by which BRSV is able to establish infection is needed to prevent viral and disease spread. This review discusses important information regarding the epidemiology and molecular epidemiology of BRSV worldwide, and it highlights the importance of viral evolution in virus transmission.
Collapse
|
6
|
Kohn LK, Queiroga CL, Martini MC, Barata LE, Porto PSS, Souza L, Arns CW. In vitro antiviral activity of Brazilian plants (Maytenus ilicifolia and Aniba rosaeodora) against bovine herpesvirus type 5 and avian metapneumovirus. PHARMACEUTICAL BIOLOGY 2012; 50:1269-1275. [PMID: 22873798 DOI: 10.3109/13880209.2012.673627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Medicinal plants are well known for their use in traditional folk medicine as treatments for many diseases including infectious diseases. OBJECTIVE Six Brazilian medicinal plant species were subjected to an antiviral screening bioassay to investigate and evaluate their biological activities against five viruses: bovine herpesvirus type 5 (BHV-5), avian metapneumovirus (aMPV), murine hepatitis virus type 3, porcine parvovirus and bovine respiratory syncytial virus. MATERIALS AND METHODS The antiviral activity was determined by a titration technique that depends on the ability of plant extract dilutions (25 or 2.5 µg/mL) to inhibit the viral induced cytopathic effect and the extracts' inhibition percentage (IP). RESULTS Two medicinal plant species showed potential antiviral activity. The Aniba rosaeodora Ducke (Lauraceae) extract had the best results, with 90% inhibition of viral growth at 2.5 µg/mL when the extract was added during the replication period of the aMPV infection cycle. The Maytenus ilicifolia (Schrad.) Planch. (Celastraceae) extracts at a concentration of 2.5 µg/mL exhibited antiviral activity during the attachment phase of BHV-5 (IP = 100%). DISCUSSION AND CONCLUSION The biomonitored fractionation of the active extracts from M. ilicifolia and A. rosaeodora could be a potential tool for identifying their active compounds and determining the exact mechanism of action.
Collapse
Affiliation(s)
- L K Kohn
- Laboratory of Virology, Institute of Biology, University of Campinas – Unicamp, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Silva L, Cardoso K, Silva M, Spilki F, Arns C. Cloning of the transmembrane glycoproteins G and F from a Brazilian isolate of bovine respiratory syncytial virus in a prokaryotic system. ARQ BRAS MED VET ZOO 2011. [DOI: 10.1590/s0102-09352011000300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this work was the cloning of those transmembrane glycoproteins G and F from an isolate bovine respiratory syncytial viruses (BRSV) - a Brazilian isolate of BRSV, named BRSV-25-BR in previous studies, in a prokaryotic system to proceed the sequencing of larger genomic fragments. The nucleotide substitutions were confirmed and these clones may also be used in further studies regarding the biological effects of those proteins in vitro and in vivo.
Collapse
|
8
|
Raviolo J, Bagnis G, Aguilar J, Giraudo J, Zielinski G, Raviolo J, Arns C, Spilki F. Immunocytochemical characterization of the cytopathic effect induced by bovine respiratory syncytial virus strain RC 98 on Hep-2 cells. ARQ BRAS MED VET ZOO 2009. [DOI: 10.1590/s0102-09352009000400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - G. Bagnis
- Universidad Nacional de Río Cuarto, Argentina
| | - J. Aguilar
- Universidad Nacional de Río Cuarto, Argentina
| | | | - G.C. Zielinski
- Sanidad Animal Estación Experimental Marcos Juárez, Argentina
| | | | | | | |
Collapse
|
9
|
Kota S, Sabbah A, Chang TH, Harnack R, Xiang Y, Meng X, Bose S. Role of human beta-defensin-2 during tumor necrosis factor-alpha/NF-kappaB-mediated innate antiviral response against human respiratory syncytial virus. J Biol Chem 2008; 283:22417-29. [PMID: 18567888 DOI: 10.1074/jbc.m710415200] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human respiratory syncytial virus (RSV) constitutes a highly pathogenic virus that infects lung epithelial cells to cause a wide spectrum of respiratory diseases. Our recent studies have revealed the existence of an interferon-alpha/beta-independent, innate antiviral response against RSV that was dependent on activation of NF-kappaB. We demonstrated that NF-kappaB inducing pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF) confers potent antiviral function against RSV in an NF-kappaB-dependent fashion, independent of interferon-alpha/beta. During our efforts to study this pathway, we identified HBD2 (human beta-defensin-2), a soluble secreted cationic protein as an antiviral factor induced during NF-kappaB-dependent innate antiviral activity in human lung epithelial cells. Our results demonstrated that HBD2 is induced by TNF and RSV in an NF-kappaB-dependent manner. Induction of HBD2 in infected cells was mediated by the paracrine/autocrine action of TNF produced upon RSV infection. HBD2 plays a critical role during host defense, because purified HBD2 drastically inhibited RSV infection. We also show that the antiviral mechanism of HBD2 involves blocking of viral cellular entry possibly because of destabilization/disintegration of the viral envelope. The important role of HBD2 in the innate response was also evident from loss of antiviral activity of TNF upon HBD2 silencing by short interfering RNA. The in vivo physiological relevance of HBD2 in host defense was apparent from induction of murine beta-defensin-4 (murine counterpart of HBD2) in lung tissues of RSV-infected mice. Thus, HBD2 functions as an antiviral molecule during NF-kappaB-dependent innate antiviral immunity mediated by the autocrine/paracrine action of TNF.
Collapse
Affiliation(s)
- Srikanth Kota
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Spilki FR, Almeida RS, Ferreira HL, Gameiro J, Verinaud L, Arns CW. Effects of experimental inoculation of bovine respiratory syncytial virus in different inbred mice lineages: Establishment of a murine model for BRSV infection. Vet Microbiol 2006; 118:161-8. [PMID: 16959444 DOI: 10.1016/j.vetmic.2006.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/29/2006] [Accepted: 07/13/2006] [Indexed: 11/30/2022]
Abstract
Bovine respiratory syncytial virus (BRSV), a member of the subfamily Pneumovirinae, family Paramyxoviridae, is a major cause of respiratory disorders in young cattle. A number of studies were conducted to validate a reliable animal model for the infection, since BRSV inoculation on the natural host is costly and often unsuccessful. Unfortunately, after inoculation of BRSV in Balb/C mice, viral replication may be detected; however, evident pathological alterations are absent on the experimentally infected animals. In order to establish a mice model that could be used further for preliminary studies of pathological and immunological aspects of BRSV infection, three mice inbred lineages (Balb/C, A/J and C57BL6), possessing different genetic backgrounds, were tested about its susceptibility to the inoculation with BRSV. Animals were inoculated through the nasal and ocular routes and were observed after inoculation. At 7 days post-inoculation (dpi) animals were necropsied and virological (virus isolation and viral nucleic acid amplification) as well as histopathological examinations were performed. A/J and C57BL6 showed interstitial pneumonia, when compared to the Balb/C group. These findings shows that mice may constitute a suitable model for the study of BRSV infections, depending on the mice strain used for experimental inoculations.
Collapse
Affiliation(s)
- Fernando Rosado Spilki
- Depto de Microbiologia e Imunologia, Instituto de Biologia, Campus UNICAMP, Campinas, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
11
|
Almeida R, Spilki F, Roehe P, Verinaud L, Arns C. Bovine respiratory syncytial virus: immunohistochemichal detection in mouse and bovine tissues using a Mab against human respiratory syncytial virus. ARQ BRAS MED VET ZOO 2006. [DOI: 10.1590/s0102-09352006000600001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An immunoistochemical (IHC) test was developed to detect bovine respiratory syncytial virus (BRSV) in cell cultures and tissues of experimentally infected mice and calves, using a commercial monoclonal antibody (Mab) against human respiratory syncytial virus (HRSV), as a less expensive alternative, instead of producing specific monoclonal antibodies to BRSV. Clinical samples from calves suffering respiratory disease were also submitted to this test. IHC detected BRSV antigens in mouse tracheas (3, 5 and 7 days post-infection) and lungs (5 and 7 days post-infection), and in one of three lungs from experimentally infected calves. Lungs samples from two naturally infected calves were tested and resulted positive for BRSV by the IHC test. These results suggest that this test may be used in the future for diagnosis as well as a useful tool to assess the distribution of BRSV infections in Brazilian herds.
Collapse
Affiliation(s)
| | | | - P.M. Roehe
- UFRGS; Centro de Pesquisas Veterinárias Desidério Finamor
| | | | | |
Collapse
|
12
|
Spilki FR, de Almeida RS, Campalans J, Arns CW. Susceptibility of different cell lines to infection with bovine respiratory syncytial virus. J Virol Methods 2006; 131:130-3. [PMID: 16183139 DOI: 10.1016/j.jviromet.2005.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 08/09/2005] [Accepted: 08/18/2005] [Indexed: 11/23/2022]
Abstract
The growth of bovine respiratory syncytial virus (BRSV) was evaluated in six different cell lines. Chicken embryo related cells (CER), a chicken embryo fibroblast/baby hamster kidney hybrid and bovine CRIB cells (a bovine viral diarrhea virus-resistant clone of MDBK cells) showed to be the most appropriate for virus multiplication. Both cells provided infectious virus titres of up to 10(5.5) 50% tissue culture infective doses per 100 microl (TCID(50)/100 microl). One-step growth curves revealed no significant differences in the growth of BRSV in these two cell lines. Furthermore, they proved to be susceptible to infection with three different BRSV strains. It was concluded that both CER and CRIB cells may be used for laboratory multiplication of BRSV with optimal results.
Collapse
Affiliation(s)
- Fernando Rosado Spilki
- Laboratório de Virologia Animal, Depto. de Microbiologia e Imunologia, Instituto de Biologia, UNICAMP, Brazil
| | | | | | | |
Collapse
|
13
|
Spilki FR, Almeida RS, Domingues HG, D'Arce RCF, Ferreira HL, Campalans J, Costa SCB, Arns CW. Phylogenetic relationships of Brazilian bovine respiratory syncytial virus isolates and molecular homology modeling of attachment glycoprotein. Virus Res 2006; 116:30-7. [PMID: 16387381 DOI: 10.1016/j.virusres.2005.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 08/12/2005] [Accepted: 08/14/2005] [Indexed: 11/20/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) causes lower respiratory tract disease in young cattle. Recently, it was possible to determine the sequence of the G protein gene, which plays a role in the attachment of BRSV particles to the cells, from three distinct Brazilian isolates. The phylogenetic analysis conducted here using those sequences compared to other worldwide distributed isolates of BRSV allow us to allocate Brazilian strains within the subgroup B, which was no longer found in the world since the 1970s. One of the Brazilian strains has a major mutation between amino acid residues 173 and 178, within the central hydrophobic conserved region, exactly on the site of two of the four cysteine-noose forming cysteine residues. Homology modeling with the previously determined NMR structure of this protein domain was made to check whether these mutations altered the three-dimensional conformation of this immunodominant region. Possible consequences on the biological effects induced by such mutation on the G protein are discussed.
Collapse
Affiliation(s)
- Fernando Rosado Spilki
- Laboratório de Virologia Animal, Instituto de Biologia, UNICAMP, P.O. Box 6109, 13084-970 Campinas, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Almeida RS, Spilki FR, Roehe PM, Arns CW. Detection of Brazilian bovine respiratory syncytial virus strain by a reverse transcriptase-nested-polymerase chain reaction in experimentally infected calves. Vet Microbiol 2004; 105:131-5. [PMID: 15627524 DOI: 10.1016/j.vetmic.2004.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 10/19/2004] [Accepted: 11/01/2004] [Indexed: 11/20/2022]
Abstract
A reverse transcriptase (RT)-nested-polymerase chain reaction (PCR) was standardised to detect bovine respiratory syncytial virus (BRSV), using a Brazilian isolate, in three experimentally infected calves. This followed initial tests in infected chicken embryo related (CER) cells. One animal had lesions, characterized by interstitial multifocal pneumonia, severe interstitial and subpleural emphysema, and lung consolidated areas. Lung and tracheal tissues collected 6 days after infection were analysed by RT-nested-PCR. Primers, specific for the BRSV G and F glycoproteins genes, yielded amplification fragments of 371 and 481 bp, respectively, from the RNA of the cell-propagated virus. Using RNA extracted from organs of infected calves, RT-nested-PCR amplified the fragment of the G gene in all tracheal samples, but in only two of three lung samples analysed. These results suggest that RT-nested-PCR could be a promising assay for diagnosis and epidemiological analysis of BRSV in Brazil.
Collapse
Affiliation(s)
- Renata S Almeida
- Laboratório de Virologia Animal, Departamento de Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6109, CEP 13081-970 Campinas - SP, Brazil
| | | | | | | |
Collapse
|