1
|
Lin X, Liu H, Zhao H, Xia S, Li Y, Wang C, Huang Q, Wanggou S, Li X. Immune Infiltration Associated MAN2B1 Is a Novel Prognostic Biomarker for Glioma. Front Oncol 2022; 12:842973. [PMID: 35186771 PMCID: PMC8847305 DOI: 10.3389/fonc.2022.842973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mannosidase Alpha Class 2B Member 1 (MAN2B1) gene encodes lysosomal alpha-d-mannosidase involved in the ordered degradation of N-linked glycoproteins. Alteration in MAN2B1 has been proved to be accountable for several diseases. However, the relationship between MAN2B1 and glioma malignancy remains unclear. In this study, RNA-seq data from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas datasets were analyzed to explore the correlation between MAN2B1 and clinicopathological features, prognosis, and somatic mutations in gliomas. We found that MAN2B1 was elevated in glioma and was correlated with malignant clinical and molecular features. Upregulated expression of MAN2B1 is prognostic for poor outcomes in glioma patients. Different frequencies of somatic mutations were found in gliomas between high and low MAN2B1 expression. Real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry staining from glioma patient samples and cell lines were used to validate bioinformatic findings. Functional enrichment analysis showed that MAN2B1 was involved in immune and inflammation processes. Moreover, MAN2B1 expression was strongly correlated with M2 macrophages and weakly correlated with M1 macrophages. Further analysis confirmed that MAN2B1 was closely associated with the markers of M2 macrophages and tumor-associated macrophages. Taken together, MAN2B1 is a potential prognostic biomarker in glioma and associates with immune infiltration.
Collapse
Affiliation(s)
- Xuelei Lin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Shunjin Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yueshuo Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoqian Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of BrainTumor Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Zhang J, Liang H, Zhu L, Gan W, Tang C, Li J, Xu R. Expression and Distribution of Arylsulfatase B are Closely Associated with Neuron Death in SOD1 G93A Transgenic Mice. Mol Neurobiol 2017; 55:1323-1337. [PMID: 28124772 DOI: 10.1007/s12035-017-0406-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022]
Abstract
The known proteins only explained the partial pathogenesis of amyotrophic lateral sclerosis (ALS). Therefore, this study aimed to search the novel proteins possibly involved in ALS. In this study, we analyzed the expression and distribution of the candidate protein arylsulfatase B (ARSB) in the different segments, anatomic regions, and neural cells of spinal cord at the different stages of the wild-type and [Cu/Zn] superoxide dismutase 1 (SOD1) G93A transgenic mice using the fluorescent immunohistochemistry and the western blot. The results revealed that the ARSB was extensively expressed and distributed in the entire spinal cord; the expression and distribution of ARSB was significantly different in the different regions of spinal cord, the anterior horn of gray matter (AHGM) was significantly more than that in the posterior horn of gray matter (PHGM) and significantly more than that in the central canal, and ARSB was mainly distributed in the microglia and neuron cells in the wild-type mice. The expression of ARSB significantly increased in other anatomic regions besides the thoracic PHGM, significantly decreased at the progression stage, occurred in the redistribution from the AHGM and the PHGM to the central canal at the onset and progression stages, and no any alteration of ARSB expression and distribution occurred between the different neural cells in the SOD1 G93A mice compared with the wild-type mice. The increase of ARSB expression and distribution followed with the increased of neuron death. Our data suggested that the abnormal expression and distribution of ARSB were closely associated with the neuron death in the SOD1 G93A transgenic mice.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Huiting Liang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lei Zhu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Weiming Gan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chunyan Tang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jiao Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Renshi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
3
|
Yoo M, Khaled M, Gibbs KM, Kim J, Kowalewski B, Dierks T, Schachner M. Arylsulfatase B improves locomotor function after mouse spinal cord injury. PLoS One 2013; 8:e57415. [PMID: 23520469 PMCID: PMC3592852 DOI: 10.1371/journal.pone.0057415] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 01/24/2013] [Indexed: 12/03/2022] Open
Abstract
Bacterial chondroitinase ABC (ChaseABC) has been used to remove the inhibitory chondroitin sulfate chains from chondroitin sulfate proteoglycans to improve regeneration after rodent spinal cord injury. We hypothesized that the mammalian enzyme arylsulfatase B (ARSB) would also enhance recovery after mouse spinal cord injury. Application of the mammalian enzyme would be an attractive alternative to ChaseABC because of its more robust chemical stability and reduced immunogenicity. A one-time injection of human ARSB into injured mouse spinal cord eliminated immunoreactivity for chondroitin sulfates within five days, and up to 9 weeks after injury. After a moderate spinal cord injury, we observed improvements of locomotor recovery assessed by the Basso Mouse Scale (BMS) in ARSB treated mice, compared to the buffer-treated control group, at 6 weeks after injection. After a severe spinal cord injury, mice injected with equivalent units of ARSB or ChaseABC improved similarly and both groups achieved significantly more locomotor recovery than the buffer-treated control mice. Serotonin and tyrosine hydroxylase immunoreactive axons were more extensively present in mouse spinal cords treated with ARSB and ChaseABC, and the immunoreactive axons penetrated further beyond the injury site in ARSB or ChaseABC treated mice than in control mice. These results indicate that mammalian ARSB improves functional recovery after CNS injury. The structural/molecular mechanisms underlying the observed functional improvement remain to be elucidated.
Collapse
Affiliation(s)
- Myungsik Yoo
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Muntasir Khaled
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Kurt M. Gibbs
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jonghun Kim
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Björn Kowalewski
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstr Bielefeld, Germany
| | - Thomas Dierks
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstr Bielefeld, Germany
| | - Melitta Schachner
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Neuroscience, Shantou University Medical College, Shantou, Guandong Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
4
|
Wielgat P, Walczuk U, Szajda S, Bień M, Zimnoch L, Mariak Z, Zwierz K. Activity of lysosomal exoglycosidases in human gliomas. J Neurooncol 2006; 80:243-9. [PMID: 16710745 DOI: 10.1007/s11060-006-9188-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 04/25/2006] [Indexed: 11/30/2022]
Abstract
There is a lot of data suggesting that modifications of cell glycoconjugates may be important in progression of cancer. In the present work we studied activities of lysosomal exoglycosidases: beta-hexosaminidase and its isoenzymes A and B, beta-galactosidase and alpha-mannosidase, in human gliomas. Enzyme activity was determined spectrophotometrically based on the release of p-nitrophenol from p-nitrophenyl-derivative of appropriate sugars. The activities of the exoglycosidases tested were significantly higher in malignant glial tumors than in control tissue (normal brain tissue) and non-glial tumors. The highest activities of exoglycosidases were observed in high-grade gliomas, and a positive correlation of enzyme activities and degree of malignancy was noted. Our results suggest that lysosomal exoglycosidases may participate in the progression and dynamical development of glial tumors.
Collapse
Affiliation(s)
- P Wielgat
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, ul. Mickiewicza 2A , 15-089, Bialystok, Poland.
| | | | | | | | | | | | | |
Collapse
|
5
|
Rapp A, Brandl N, Volpi N, Huettinger M. Evaluation of chondroitin sulfate bioactivity in hippocampal neurones and the astrocyte cell line U373: influence of position of sulfate groups and charge density. Basic Clin Pharmacol Toxicol 2005; 96:37-43. [PMID: 15667594 DOI: 10.1111/j.1742-7843.2005.pto960106.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Chondroitin sulfates are linear polysaccharides of alternating glucuronic acid and N-acetylgalactosamine, sulfated in varying positions. They form the extracellular framework providing the information for the structural establishment of tissues in multicellular organisms. Growth cones of neurones modulate their outgrowth according to signals received from proteoglycans. The exact molecular structures behind these functions are not fully understood, but structural details of the carbohydrate backbone are crucial. In this report we have employed quantitative cytometry on hippocampal neurite outgrowth in the presence of chondroitin sulfate added in solution to determine the influence of the position and density of the sulfate groups of the N-acetyl-D-galactosamine-residues of chondroitin sulfates. It is of profound interest whether externally added chondroitin sulfates can compete with core protein bound chondroitin sulfate to modulate the effects of tissue-synthesized matrix. In series of microscopic images 3 parameters of neuritic outgrowth activity, neurite length, number of neurites and fasciculation (thickness of neurites) are analyzed at concentrations occurring in intact tissues. Fasciculation increased and number of neurites decreased with high di-sulfation. No significant differences on process length reduction were found between the isotypes. Specificity of effects found is emphasized, as no influence on cell proliferation with U373 human astrocyte cell line is detectable, while neurones clearly are inhibited. The IC30 and IC50 values of chondroitin sulfates isoforms are presented for neurones. The data indicate that the soluble fragments from chondroitin sulfate are actively modulating cell development. Besides dosage, sulfation density and position are relevant for effects of chondroitin sulfate in neuronal regenerative activity.
Collapse
Affiliation(s)
- Alfred Rapp
- MedUniWien, Center of Physiology and Pathophysiology, Währingerstrasse 10, 1090 Vienna, Austria
| | | | | | | |
Collapse
|