1
|
Molenda S, Sikorska A, Florczak A, Lorenc P, Dams-Kozlowska H. Oligonucleotide-Based Therapeutics for STAT3 Targeting in Cancer-Drug Carriers Matter. Cancers (Basel) 2023; 15:5647. [PMID: 38067351 PMCID: PMC10705165 DOI: 10.3390/cancers15235647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 09/08/2024] Open
Abstract
High expression and phosphorylation of signal transducer and transcription activator 3 (STAT3) are correlated with progression and poor prognosis in various types of cancer. The constitutive activation of STAT3 in cancer affects processes such as cell proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. The importance of STAT3 in cancer makes it a potential therapeutic target. Various methods of directly and indirectly blocking STAT3 activity at different steps of the STAT3 pathway have been investigated. However, the outcome has been limited, mainly by the number of upstream proteins that can reactivate STAT3 or the relatively low specificity of the inhibitors. A new branch of molecules with significant therapeutic potential has emerged thanks to recent developments in the regulatory function of non-coding nucleic acids. Oligonucleotide-based therapeutics can silence target transcripts or edit genes, leading to the modification of gene expression profiles, causing cell death or restoring cell function. Moreover, they can reach untreatable targets, such as transcription factors. This review briefly describes oligonucleotide-based therapeutics that found application to target STAT3 activity in cancer. Additionally, this review comprehensively summarizes how the inhibition of STAT3 activity by nucleic acid-based therapeutics such as siRNA, shRNA, ASO, and ODN-decoy affected the therapy of different types of cancer in preclinical and clinical studies. Moreover, due to some limitations of oligonucleotide-based therapeutics, the importance of carriers that can deliver nucleic acid molecules to affect the STAT3 in cancer cells and cells of the tumor microenvironment (TME) was pointed out. Combining a high specificity of oligonucleotide-based therapeutics toward their targets and functionalized nanoparticles toward cell type can generate very efficient formulations.
Collapse
Affiliation(s)
- Sara Molenda
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Agata Sikorska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Anna Florczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Patryk Lorenc
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
2
|
Li H, Guo S, Zhang M, Li L, Wang F, Song B. Long non-coding RNA AGAP2-AS1 accelerates cell proliferation, migration, invasion and the EMT process in colorectal cancer via regulating the miR-4,668-3p/SRSF1 axis. J Gene Med 2020; 22:e3250. [PMID: 32639657 DOI: 10.1002/jgm.3250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a frequently occurring tumor. Although a number of long noncoding RNAs have been researched in CRC, the expression, function and mechanism of AGAP2-AS1 remains poorly investigated. METHODS Gene expression was analyzed by a quantitative reverse transcriptase-polymerase chain rreaction and western blot analyses. Cell counting kit-8, colony formation and Transwell assays were utilized to explore the functional role of AGAP2-AS1 in CRC. Luciferase reporter, RNA pull down and RNA immunoprecipitation assays were implemented to verify relationships between RNA molecules. RESULTS In the present study, AGAP2-AS1 was unveiled as highly expressed in CRC cell lines compared to normal cells. AGAP2-AS1 knockdown suppressed cell proliferation, migration, invasion and the epithelial-to-mesenchymal transition process. Interestingly, AGAP2-AS1 sponges miR-4,668-3p to release SRSF1 in CRC. Furthermore, in the rescue functional assay, miR-4,668-3p down-regulation exacerbated the malignant behaviors of AGAP2-AS1-depleted CRC cells, whereas such effects were further offset by SRSF1 knockdown. CONCLUSIONS AGAP2-AS1 facilitates cell proliferation, motility and EMT in CRC via targeting the miR-4,668-3p/SRSF1 axis. AGAP2-AS1 or SRSF1 may have potential as underlying therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Hesheng Li
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Song Guo
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Mingkai Zhang
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lin Li
- Operating Room, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Feng Wang
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Bingtan Song
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
3
|
Li D, Zhao L, Li Y, Kang X, Zhang S. Gastro-Protective Effects of Calycosin Against Precancerous Lesions of Gastric Carcinoma in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2207-2219. [PMID: 32606591 PMCID: PMC7294567 DOI: 10.2147/dddt.s247958] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023]
Abstract
Aim Gastric cancer is a leading cause of cancer death worldwide. In-depth research of precancerous lesions of gastric carcinoma (PLGC) with malignant transformation potential is a key measure to prevent the development of gastric carcinoma. Recently, calycosin has been shown to have anticancer effects in vitro and in vivo. The molecular mechanism by which calycosin affects PLGC, however, has not yet been elucidated. The purpose of this study was to evaluate the effect and mechanism of calycosin in N‐methyl‐Nʹ‐nitro‐N‐nitrosoguanidine (MNNG)-induced PLGC rats. Methods The effects of calycosin in the gastric mucosa of rats with PLGC were evaluated using histopathology and transmission electron microscopy (TEM). For further characterization, the expression levels of integrin β1, nuclear factor kappa B (NF-κB), p-NF-κB, DARPP-32 and signal transducer and activator of transcription 3 (STAT3) were determined by Western blot assay and immunohistochemistry. Results Hematoxylin–eosin and high iron diamine–Alcian blue–periodic acid-Schiff (HID-AB-PAS) staining showed that intestinal metaplasia and dysplasia were significantly ameliorated in the calycosin intervention groups compared with the model group. Further, TEM results showed that calycosin intervention tempered microvascular abnormalities and cell morphology of primary and parietal cells in PLGC tissues. The results suggested that calycosin had gastro-protective effects in MNNG-induced PLGC rats. Western blot and immunohistochemistry analysis showed that the increased protein expression levels of NF-κB, p-NF-κB, DARPP-32 and STAT3 in the model group were downregulated by calycosin. The upregulation of integrin β1 expression induced by MNNG was decreased in the calycosin groups. Conclusion Collectively, calycosin protected against gastric mucosal injury in part via regulation of the integrin β1/NF-κB/DARPP-32 pathway and suppressed the expression of STAT3 in PLGC. The elucidation of this effect and mechanism of calycosin in PLGC provides a potential therapeutic strategy for treatment of gastric precancerous lesions.
Collapse
Affiliation(s)
- Danyan Li
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Luqing Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Yuxin Li
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xiuhong Kang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Qi X, Li M, Zhang XM, Dai XF, Cui J, Li DH, Gu QQ, Lv ZH, Li J. Trichothecin Inhibits Cancer-Related Features in Colorectal Cancer Development by Targeting STAT3. Molecules 2020; 25:molecules25102306. [PMID: 32422984 PMCID: PMC7287781 DOI: 10.3390/molecules25102306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that contributes to cancer progression through multiple processes of cancer development, which makes it an attractive target for cancer therapy. The IL-6/STAT3 pathway is associated with an advanced stage in colorectal cancer patients. In this study, we identified trichothecin (TCN) as a novel STAT3 inhibitor. TCN was found to bind to the SH2 domain of STAT3 and inhibit STAT3 activation and dimerization, thereby blocking STAT3 nuclear translocation and transcriptional activity. TCN did not affect phosphorylation levels of STAT1. TCN significantly inhibited cell growth, arrested cell cycle at the G0/G1 phase, and induced apoptosis in HCT 116 cells. In addition, the capacities of colony formation, migration, and invasion of HCT 116 cells were impaired upon exposure to TCN with or without IL-6 stimulation. In addition, TCN treatment abolished the tube formation of HUVEC cells in vitro. Taken together, these results highlight that TCN inhibits various cancer-related features in colorectal cancer development in vitro by targeting STAT3, indicating that TCN is a promising STAT3 inhibitor that deserves further exploration in the future.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - Meng Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - Xiao-min Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - Xiu-fen Dai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - Jian Cui
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - De-hai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qian-qun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhi-hua Lv
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (Z.-h.L.); (J.L.); Tel.: +86-532-82032096 (Z.-h.L.); +86-532-82032066 (J.L.)
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (Z.-h.L.); (J.L.); Tel.: +86-532-82032096 (Z.-h.L.); +86-532-82032066 (J.L.)
| |
Collapse
|
5
|
Bai T, Zhao Y, Liu Y, Cai B, Dong N, Li B. Effect of KNL1 on the proliferation and apoptosis of colorectal cancer cells. Technol Cancer Res Treat 2020; 18:1533033819858668. [PMID: 31315522 PMCID: PMC6637841 DOI: 10.1177/1533033819858668] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: To identify the expression of kinetochore scaffold 1 (KNL1) in colorectal tumor tissues and to clarify the role of this gene in the proliferation capability of colorectal cancer cells. Methods: A total of 108 paired colorectal tumor and normal tissue samples were collected from patients with colorectal cancer and subjected to quantitative polymerase chain reaction and immunohistochemistry analyses. Expression levels of KNL1 mRNA and protein were compared between tumor and normal tissues, and KNL1 levels were evaluated in relation to the patients’ tumor differentiation, sex, lymph node metastasis, TNM stage, infiltration depth, age, and tumor location. Survival curves were also constructed and compared between patients with tumor samples with and without KLN1 protein expression. KNL1 was under-expressed in colorectal cancer cells in vitro using lentiviral transfection with short hairpin RNA, and its function was evaluated by proliferation, colony-formation, and apoptosis assays. Expression levels of BUB1 protein were also compared between tumor and normal tissues, and the correlation between KNL1 expression and BUB1 expression in colorectal cancer tissues was examined. Results: KNL1 mRNA and protein were both highly expressed in colorectal tumor tissues compared with paired normal tissues. KNL1 downregulation significantly inhibited colorectal cancer cell proliferation and colony formation, and promoted apoptosis. KNL1 protein expression was significantly associated with tumor differentiation, but not with sex, lymph node metastasis, TNM stage, infiltration depth, age, or tumor location. KNL1 protein expression was also significantly associated with poorer survival. Moreover, there was a significant correlation between KNL1 and BUB1 in colorectal cancer tissues. Conclusions: KNL1 plays an effective role in decreasing apoptosis and promoting the proliferation of colorectal cancer cells, suggesting that its inhibition may represent a promising therapeutic approach in patients with colorectal cancer.
Collapse
Affiliation(s)
- Tianliang Bai
- 1 Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital (Hebei Provincial Tumor Hospital), Shijiazhuang, Hebei, P.R. China.,2 Department of Gastrointestinal Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, P.R. China
| | - Yalei Zhao
- 1 Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital (Hebei Provincial Tumor Hospital), Shijiazhuang, Hebei, P.R. China
| | - Yabin Liu
- 1 Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital (Hebei Provincial Tumor Hospital), Shijiazhuang, Hebei, P.R. China
| | - Bindan Cai
- 3 Department of Neurology, Zhuozhou City Hospital, Zhuozhou, Hebei, P.R. China
| | - Ning Dong
- 4 Department of Radiology, Zhuozhou City Hospital, Zhuozhou, Hebei, P.R. China
| | - Binghui Li
- 1 Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital (Hebei Provincial Tumor Hospital), Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
6
|
Yang L, Zhang R, Yang J, Bi T, Zhou S. FKBP14 Promotes The Proliferation And Migration Of Colon Carcinoma Cells Through Targeting IL-6/STAT3 Signaling Pathway. Onco Targets Ther 2019; 12:9069-9076. [PMID: 31802914 PMCID: PMC6830384 DOI: 10.2147/ott.s222555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023] Open
Abstract
PURPOSE FK506-binding proteins 14 (FKBP14), a highly conserved protein, is identified as an oncogene in certain human tumors. However, the detailed biological function of FKBP14 in colon carcinoma remains unclear. The purpose of the present research is to examine the role of FKBP14 in human colon carcinoma cells. METHODS In the present study, FKBP14 induced silencing and overexpression in colon carcinoma cells by using RNA interference (RNAi) and lentiviral vector, respectively. A specific JAK/STAT inhibitor AG490 was used to explore the relationship between FKBP14 and STAT3 in colon carcinoma cells. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to examine the level of FKBP14 in colon carcinoma cells. Cell counting kit-8 (CCK-8) assay was used to determine the proliferation rate of colon carcinoma cells. Further, the migration rate of colon carcinoma cells was analyzed by performing a migration assay. RESULTS Our results demonstrated that FKBP14 was upregulated in human colon carcinoma tissues. Moreover, high level of FKBP14 was associated with poor prognosis of colon carcinoma patients. Further, our findings firstly elucidated that FKBP14 was a pro-proliferation and migration factor in colon carcinoma cells. More importantly, FKBP14 might be a novel component in IL-6/JAK/STAT3 pathway and targeted STAT3 in colon carcinoma cells. CONCLUSION Our research not only indicated the potential signaling pathway of FKBP14 in colon carcinoma cells but also provided novel insight into the treatment for colon carcinoma.
Collapse
Affiliation(s)
- Leilei Yang
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang317000, People’s Republic of China
| | - Ruili Zhang
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang317000, People’s Republic of China
| | - Jie Yang
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang317000, People’s Republic of China
| | - Tienan Bi
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang317000, People’s Republic of China
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang317000, People’s Republic of China
| |
Collapse
|
7
|
Li J, Liu YY, Yang XF, Shen DF, Sun HZ, Huang KQ, Zheng HC. Effects and mechanism of STAT3 silencing on the growth and apoptosis of colorectal cancer cells. Oncol Lett 2018; 16:5575-5582. [PMID: 30344711 PMCID: PMC6176248 DOI: 10.3892/ol.2018.9368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) have roles in various cellular processes, including angiogenesis, apoptosis, cell cycle progression, cell migration and drug resistance. To clarify the effects of STAT3 in colorectal cancer (CRC) cells and the underlying molecular mechanisms, STAT3 was directly silenced, and the effects of STAT3 silencing on cell proliferation, apoptosis and growth with phenotype-associated molecules were examined.pSH1-Si-STAT3 was successfully transfected into the CRC HCT-116 and SW480 cell lines, which was verified by GFP tagging under a fluorescence microscope. An MTT assay revealed that the proliferation of both cell lines that were transfected with pSH1-Si-STAT3 was significantly suppressed in comparison with the control and mock (P<0.05). Acridine orange/ethidium bromide staining and flow cytometry indicated that the transfected cell lines had a significantly higher rate of apoptosis than the control- and mock-treated cells (P<0.05). STAT3-silienced cells were also significantly arrested at the G2/M stage compared with the cells that were transfected with control and mock plasmids (P<0.05). At the mRNA level, the expression of STAT3 and survivin was significantly downregulated (P<0.05), but p53 and caspase-3 were significantly upregulated (P<0.05). The significantly different patterns of expression were observed in western blot analysis (P<0.05). The findings of the present study indicate that STAT3 silencing may suppress the proliferation and growth of CRC cells, and induce their apoptosis by upregulating the expression of survivin, p53 and caspase-3. Therefore, STAT3 may be a good candidate for CRC gene therapy.
Collapse
Affiliation(s)
- Jing Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - You-Yu Liu
- Department of Orthopedics, The Central Hospital of Liaoyang, Liaoyang, Liaoning 111000, P.R. China
| | - Xue-Feng Yang
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dao-Fu Shen
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hong-Zhi Sun
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ke-Qiang Huang
- Department of Orthodontics, School of Stomatology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hua-Chuan Zheng
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
8
|
Guo F, Chen JJ, Tang WJ. CIRH1A augments the proliferation of RKO colorectal cancer cells. Oncol Rep 2017; 37:2375-2381. [PMID: 28350096 DOI: 10.3892/or.2017.5497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/18/2017] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that ribosomal proteins may have extraribosomal functions in various physiological and pathological processes, including cancer. We analyzed the expression of the CIRH1A ribosomal protein in colorectal carcinoma and para-carcinoma samples by bioinformatics analyses of data extracted from The Cancer Genome Atlas and in colorectal cancer cell lines in vitro by qPCR. CIRH1A was highly expressed in carcinoma samples and colorectal cancer cells. We also transduced the RKO colorectal cancer (CRC) cell line with lentivirus-mediated small interfering RNAs (siRNAs) and studied the impact that this knockdown of CIRH1A expression had on cell growth. RNA interference (RNAi)-mediated inhibition of CIRH1A expression significantly suppressed proliferation and increased apoptosis of transduced cells, and tended to arrest them in G1 phase. Our data suggest that CIRH1A plays a critical role in the proliferation, cell cycle distribution, and apoptosis of human malignant colorectal cells, and might therefore be a potential target for therapeutic strategies.
Collapse
Affiliation(s)
- Feng Guo
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Jian-Jun Chen
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Wei-Jun Tang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
9
|
Xu L, Zhang Z, Xie T, Zhang X, Dai T. Inhibition of BDNF-AS Provides Neuroprotection for Retinal Ganglion Cells against Ischemic Injury. PLoS One 2016; 11:e0164941. [PMID: 27935942 PMCID: PMC5147780 DOI: 10.1371/journal.pone.0164941] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
Abstract
Background: Brain-derived neurotrophic factor (BDNF) protects retinal ganglion cells against ischemia in ocular degenerative diseases. We aimed to determine the effect of BDNF-AS on the ischemic injury of retinal ganglion cells. Methods: The levels of BDNF and BDNF-AS were measured in retinal ganglion cells subjected to oxygen and glucose deprivation. The lentiviral vectors were constructed to either overexpress or knock out BDNF-AS. The luciferase reporter gene assay was used to determine whether BDNF-AS could target its seed sequence on BDNF mRNA. The methyl thiazolyl tetrazolium assay was used to determine cell viability, and TUNEL staining was used for cell apoptosis. Results: The levels of BDNF-AS were negatively correlated with BDNF in ischemic retinal ganglion cells. BDNF-AS directly targeted its complementary sequences on BDNF mRNA. BDNF-AS regulated the expression of BDNF and its related genes in retinal ganglion cells. Down-regulation of BDNF-AS increased cell viability and decreased the number of TUNEL-positive retinal ganglion cells under oxygen and glucose deprivation conditions. Conclusion: Inhibition of BDNF-AS protected retinal ganglion cells against ischemia by increasing the levels of BDNF.
Collapse
Affiliation(s)
- Lifang Xu
- Department of Ophthalmology, Wuxi People’s Hospital, Wuxi, Jiangsu, China
| | - Ziyin Zhang
- Department of Ophthalmology, Wuxi People’s Hospital, Wuxi, Jiangsu, China
| | - Tianhua Xie
- Department of Ophthalmology, Wuxi People’s Hospital, Wuxi, Jiangsu, China
| | - Xiaoyang Zhang
- Department of Ophthalmology, Wuxi People’s Hospital, Wuxi, Jiangsu, China
| | - Tu Dai
- Department of Hepatobiliary, Wuxi No.2 People’s Hospital, Wuxi, Jiangsu, China
- * E-mail:
| |
Collapse
|
10
|
Chen F, Sun G, Peng J. RNAi-mediated HOXD3 knockdown inhibits growth in human RKO cells. Oncol Rep 2016; 36:1793-8. [PMID: 27499213 PMCID: PMC5022871 DOI: 10.3892/or.2016.4993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have shown that the multifunctional Homeobox-containing (HOX) D3 gene is involved in various physiological and pathological processes. To elucidate the role and mechanism of HOXD3 in colorectal cancer (CRC), we measured its expression in five CRC cell lines. After determining that HOXD3 was highly expressed in the human RKO cancer cell line, we used lentiviral-mediated small interfering RNAs (siRNAs) to knock down HOXD3 expression and assessed proliferation, cell cycle distribution, apoptosis and colony formation using cell proliferation, flow cytometric, and colony formation assays. The expression of HOXD3 was strongly suppressed in the RKO cells infected with the lentiviruse expressing an HOXD3 short hairpin RNA (shRNA). The downregulation of HOXD3 expression in RKO cells significantly decreased proliferation and colony formation, and increased apoptosis in vitro, compared to the cells infected with the mock control (p<0.01). Moreover, specific downregulation of HOXD3 led to the accumulation of cells at the G2 phase of the cell cycle. Our findings revealed that the HOXD3 gene promotes CRC cell growth and plays a pivotal role in the development and survival of malignant human colorectal cancer cells.
Collapse
Affiliation(s)
- Fangjun Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jun Peng
- Department of Pathology, The Affiliated Anqing Municipal Hospital of Anhui Medical University, Anqing, Anhui 246003, P.R. China
| |
Collapse
|
11
|
Chen Z, Zhu S, Hong J, Soutto M, Peng D, Belkhiri A, Xu Z, El-Rifai W. Gastric tumour-derived ANGPT2 regulation by DARPP-32 promotes angiogenesis. Gut 2016; 65:925-34. [PMID: 25779598 PMCID: PMC4573388 DOI: 10.1136/gutjnl-2014-308416] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/27/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Overexpression of dopamine and cAMP-regulated phosphoprotein, Mr 32000 (DARPP-32), and its truncated isoform (t-DARPP) are associated with gastric tumorigenesis. Herein, we investigated the role of DARPP-32 proteins in regulating angiopoietin 2 (ANGPT2) and promoting tumour angiogenesis. DESIGN Quantitative real-time RT-PCR, immunoblotting, luciferase reporter, immunofluorescence, immunohistochemistry and angiogenesis assays were applied to investigate the regulation of angiogenesis by DARPP-32 proteins. RESULTS Overexpression of DARPP-32 significantly increased the mRNA and protein levels of ANGPT2 in gastric cancer cells. The overexpression of DARPP-32 T34A mutant or the N-terminal truncated isoform, t-DARPP, led to similar effects ruling out the T34-dependent regulation of protein phosphatase 1 activity in regulating ANGPT2. DARPP-32 proteins induced a secreted form of ANGPT2, which was detectable in the media, functionally active, and able to induce angiogenesis, measured by the human umbilical vein endothelial cells tube formation assay. Antibody blocking of the secreted ANGPT2 abrogated its function. To identify the mechanism by which DARPP-32 regulates ANGPT2, we examined the activities of NF-κB and signal transducer and activator of transcription 3 (STAT3), known regulators of angiogenesis. The results ruled out NF-κB and showed induction of STAT3 phosphorylation, activation and nuclear localisation. Inhibition or knockdown of STAT3 significantly attenuated the induction of ANGPT2 by DARPP-32 proteins. In vivo xenograft models demonstrated that overexpression of DARPP-32 promotes angiogenesis and tumour growth. Analyses of human gastric cancer tissues showed a strong correlation between DARPP-32 and ANGPT2. CONCLUSIONS Our novel findings establish the role of DARPP-32-STAT3 axis in regulating ANGPT2 in cancer cells to promote angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shoumin Zhu
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jun Hong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mohammed Soutto
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - DunFa Peng
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wael El-Rifai
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
12
|
Modulation of NF-κB/miR-21/PTEN pathway sensitizes non-small cell lung cancer to cisplatin. PLoS One 2015; 10:e0121547. [PMID: 25799148 PMCID: PMC4370674 DOI: 10.1371/journal.pone.0121547] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/02/2015] [Indexed: 12/15/2022] Open
Abstract
Background Platinum-based chemotherapy is a standard strategy for non-small cell lung cancer (NSCLC), while chemoresistance remains a major therapeutic challenge in current clinical practice. Our present study was aimed to determine whether inhibition of the NF-κB/miR-21/PTEN pathway could increase the sensitivity of NSCLC to cisplatin. Methods The expression of miR-21 in NSCLC tissues was determined using in situ hybridization. Next, the effect of miR-21 on the sensitivity of A549 cells to cisplatin was determined in vitro. Whether miR-21 regulated PTEN expression was assessed by luciferase assay. Furthermore, whether NF-κB targeted its binding elements in the miR-21 gene promoter was determined by luciferase and ChIP assay. Finally, we measured the cell viability and apoptosis under cisplatin treatment when NF-κB was inhibited. Results An elevated level of miR-21 was observed in NSCLC lung tissues and was related to a short survival time. Exogenous miR-21 promoted cell survival when exposed to cisplatin, while miR-21 inhibition could reverse this process. The RNA and protein levels of PTEN were significantly decreased by exogenous miR-21, and the 3′-untranslated region of PTEN was shown to be a target of miR-21. The expression of miR-21 was regulated by NF-κB binding to its element in the promoter, a finding that was verified by luciferase and ChIP assay. Hence, inhibition of NF-κB by RNA silencing protects cells against cisplatin via decreasing miR-21 expression. Conclusion Modulation of the NF-κB/miR-21/PTEN pathway in NSCLC showed that inhibition of this pathway may increase cisplatin sensitivity.
Collapse
|
13
|
Qin A, Yu Q, Gao Y, Tan J, Huang H, Qiao Z, Qian W. Inhibition of STAT3/cyclinD1 pathway promotes chemotherapeutic sensitivity of colorectal caner. Biochem Biophys Res Commun 2015; 457:681-7. [PMID: 25617735 DOI: 10.1016/j.bbrc.2015.01.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Chemotherapeutic resistance indicated the poor prognosis of colorectal cancer. OBJECTIVE Our study aimed to investigate the role of STAT3/cyclinD1 pathway in the chemotherapeutic resistance of colorectal cancer. METHODS We firstly measured the expression of cyclinD1 in the colorectal cancer tissues using immunohistochemistry in tissue microarray. Then cell viability and apoptosis were investigated in the HT-29 cell lines dealing with recombinant lentivirus and shRNA to increase or decrease cyclinD1 expression. Furthermore, luciferase and ChIP assays were applied to investigate whether STAT3 regulated cyclinD1 expression by binding to its promoter. Finally, we determined whether inhibition of STAT3 could decrease cyclinD1 and increase the chemotherapy sensitivity. RESULTS CyclinD1 expression was significantly increased in the cancer cells and high level of cyclinD1 indicated the poor prognosis. Inhibition of cyclinD1 decreased the cell viability assessed by MTT and increased rate of apoptosis when exposed to 5-FU treatment while overexpression of cyclinD1 showed the reverse effect. ChIP assay showed that STAT3 directly bind to cyclinD1 promoter. Subclone of full promoter of cyclinD1 into pGL4 increased the luciferase activity while delete or mutation of any of STAT3 binding sites resulted in reductions of luciferase activity. Inhibition of STAT3 decreased cyclinD1 expression to decrease the cell viability and increase rate of apoptosis when exposed to 5-FU treatment. CONCLUSIONS Inhibition of STAT3/cyclinD1 pathway increased the sensitivity of colorectal cancer cell to chemotherapy.
Collapse
Affiliation(s)
- Ancheng Qin
- Department of General Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, 26 Dao-qian Road, Suzhou 215002, Jiangsu, China
| | - Qiang Yu
- Department of Gastroenterology, Suzhou Hospital Affiliated to Nanjing Medical University, 26 Dao-qian Road, Suzhou 215002, Jiangsu, China
| | - Yuan Gao
- Department of General Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, 26 Dao-qian Road, Suzhou 215002, Jiangsu, China
| | - Jifu Tan
- Department of General Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, 26 Dao-qian Road, Suzhou 215002, Jiangsu, China
| | - Hai Huang
- Department of General Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, 26 Dao-qian Road, Suzhou 215002, Jiangsu, China
| | - Zhiming Qiao
- Department of General Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, 26 Dao-qian Road, Suzhou 215002, Jiangsu, China
| | - Weifeng Qian
- Department of General Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, 26 Dao-qian Road, Suzhou 215002, Jiangsu, China.
| |
Collapse
|
14
|
Xuan X, Li S, Lou X, Zheng X, Li Y, Wang F, Gao Y, Zhang H, He H, Zeng Q. Stat3 promotes invasion of esophageal squamous cell carcinoma through up-regulation of MMP2. Mol Biol Rep 2014; 42:907-15. [DOI: 10.1007/s11033-014-3828-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/10/2014] [Indexed: 01/06/2023]
|
15
|
Prados J, Melguizo C, Roldan H, Alvarez PJ, Ortiz R, Arias JL, Aranega A. RNA interference in the treatment of colon cancer. BioDrugs 2014; 27:317-27. [PMID: 23553339 DOI: 10.1007/s40259-013-0019-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Colorectal cancer is the third most common cancer in both men and women and has shown a progressive increase over the past 20 years. Current chemotherapy has major limitations, and a novel therapeutic approach is required. Given that neoplastic transformation of colon epithelial cells is a consequence of genetic and epigenetic alterations, RNA interference (RNAi) has been proposed as a new therapeutic strategy that offers important advantages over conventional treatments, with high specificity and potency and low toxicity. RNAi has been employed as an effective tool to study the function of genes, preventing their expression and leading to the development of new approaches to cancer treatment. In malignancies, including colon cancer, RNAi is being used for "silencing" genes that are deregulated by different processes such as gene amplification, mutation, or overexpression and may be the cause of oncogenesis. This strategy not only provides information on the involvement of certain genes in colon cancer, but also opens up a new perspective for its treatment. However, most studies have used adenovirus or lentivirus vectors to transport RNAi into tumor cells or tumors in animal models, because several technical obstacles must be overcome before RNAi can be used in the clinical setting. The aim of this study was to review current knowledge on the use of RNAi techniques in the treatment of colon cancer.
Collapse
Affiliation(s)
- Jose Prados
- Institute of Biopathology and Regenerative Medicine, University of Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
SHEN ALING, LIN JIUMAO, CHEN YOUQIN, LIN WEI, LIU LIYA, HONG ZHENFENG, SFERRA THOMASJ, PENG JUN. Pien Tze Huang inhibits tumor angiogenesis in a mouse model of colorectal cancer via suppression of multiple cellular pathways. Oncol Rep 2013; 30:1701-6. [PMID: 23843018 DOI: 10.3892/or.2013.2609] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/24/2013] [Indexed: 11/05/2022] Open
|