1
|
Alansary AM, Elbeialy MAK. Impact of Preoperative Aripiprazole on Postoperative Analgesia in Laparoscopic Hysterectomy: A Randomized Double-blind Placebo-controlled Trial. Clin J Pain 2024; 40:341-348. [PMID: 38450551 DOI: 10.1097/ajp.0000000000001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVES Aripiprazole is a second-generation atypical antipsychotic with worldwide clinical approval. Nevertheless, its perioperative antinociceptive application has not been studied. As a result, the purpose of this study was to investigate the analgesic effects of perioperative aripiprazole on reducing postoperative pain, as well as the possible adverse effects. PATIENTS AND METHODS This randomized controlled study enrolled 80 female patients scheduled for laparoscopic hysterectomy who were assigned randomly into 2 equal groups in 1:1; aripiprazole group (n = 40), patients received an aripiprazole 30 mg tablet orally 3 hours before surgery and placebo group (n = 40), patients received a placebo tablet 3 hours before surgery. The 24-hour morphine consumption postoperatively was the primary outcome, and the time to the first analgesic request, sedation scores, and the incidence of perioperative adverse events were the secondary outcomes. RESULTS The mean 24-hour morphine consumption was significantly lower with aripiprazole (2.5 ± 0.5 mg) than with placebo (23.7 ± 1.6 mg; mean ± SE -21.2 ± 0.3, 95% CI: -21.7 to -20.6, P < 0.001). In addition, the mean time to the first analgesic request was significantly longer with aripiprazole (212.2 ± 14.7 min) than with placebo (27.0 ± 2.0 min; mean ± SE 185.2 ± 2.3, 95% CI: 180.5 to 189.8, P < 0.001). Furthermore, the aripiprazole group reported higher sedation scores ( P < 0.001). Bradycardia and hypotension were reported more frequently among patients in the aripiprazole group ( P < 0.05). CONCLUSION Aripiprazole was effective in reducing pain after laparoscopic hysterectomy. Although self-limited, side effects should be taken into consideration when using the medication perioperatively.
Collapse
Affiliation(s)
- Amin Mohamed Alansary
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | | |
Collapse
|
2
|
Martínez-Martínez MDC, Parra-Flores LI, Baeza-Flores GDC, Torres-López JE. Isobolographic analysis of antinociceptive effect of ketorolac, indomethacin, and paracetamol after simultaneous peripheral local and systemic administration. Behav Pharmacol 2022; 33:15-22. [PMID: 35007232 DOI: 10.1097/fbp.0000000000000661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study was designed to characterize the type of interaction (subadditive, additive, or synergistic) after simultaneous administration by two different routes (intraperitoneal plus peripheral local) of the same nonsteroidal anti-inflammatory drugs (NSAID) ketorolac and indomethacin or paracetamol. The antinociceptive effects of locally or intraperitoneally delivery of NSAIDs or paracetamol, and the simultaneous administration by the two routes at fixed-dose ratio combination were evaluated using the formalin test. Pain-related behavior was quantified as the number of flinches of the injected paw. Isobolographic analysis was used to characterize the interaction between the two routes. ED30 values were estimated for individual drugs, and isobolograms were constructed. Ketorolac, indomethacin, or paracetamol and fixed-dose ratio combinations produced a dose-dependent antinociceptive effect in the second but not in the first phase of the formalin test. The analysis of interaction type after simultaneous administration by the two routes the same NSAID or paracetamol (on basis of their ED30), revealed that the simultaneous administration of ketorolac or paracetamol was additive and for indomethacin was synergistic. Since the mechanisms underlying the additive effect of ketorolac or paracetamol and the synergistic effect of indomethacin were not explored; it is possible that the peripheral and central mechanism is occurring at several anatomical sites. The significance of these findings for theory and pain pharmacotherapy practice indicates that the combination of one analgesic drug given simultaneously by two different administration routes could be an additive or it could lead to a synergistic interaction.
Collapse
Affiliation(s)
- Mayra Del Carmen Martínez-Martínez
- Laboratorio Mecanismos del Dolor, Centro de Investigación, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa Tabasco, México
| | | | | | | |
Collapse
|
3
|
Mendes Ferreira RC, de Almeida DL, Duarte IDG, Aguiar DC, Moreira FA, Romero TRL. The antipsychotic aripiprazole induces peripheral antinociceptive effects through PI3Kγ/NO/cGMP/K
ATP
pathway activation. Eur J Pain 2022; 26:825-834. [DOI: 10.1002/ejp.1910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Igor Dimitri Gama Duarte
- Department of Pharmacology Institute of Biological Sciences Federal University of Minas Gerais Brazil
| | - Daniele Cristina Aguiar
- Department of Pharmacology Institute of Biological Sciences Federal University of Minas Gerais Brazil
| | - Fabrício Araújo Moreira
- Department of Pharmacology Institute of Biological Sciences Federal University of Minas Gerais Brazil
| | | |
Collapse
|
4
|
Craft RM, Hewitt KA, Britch SC. Antinociception produced by nonsteroidal anti-inflammatory drugs in female vs male rats. Behav Pharmacol 2021; 32:153-169. [PMID: 33290343 PMCID: PMC8033571 DOI: 10.1097/fbp.0000000000000584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The primary aim of this study was to examine sex differences in acute antinociceptive and anti-inflammatory effects of nonsteroidal anti-inflammatory drugs (NSAIDs) in rats. Complete Freund's adjuvant (CFA) was administered to adult Sprague-Dawley rats to induce pain and inflammation in one hindpaw; 2.5 h later, vehicle or a single dose of the NSAIDs ibuprofen (1.0-32 mg/kg) or ketoprofen (0.1-10 mg/kg), or the COX-2-preferring inhibitor celecoxib (1.0-10 mg/kg) was injected i.p. Mechanical allodynia, heat hyperalgesia, biased weight-bearing, and hindpaw thickness were assessed 0.5-24 h after drug injection. Ibuprofen and ketoprofen were more potent or efficacious in females than males in reducing mechanical allodynia and increasing weight-bearing on the CFA-injected paw, and celecoxib was longer-acting in females than males on these endpoints. In contrast, ketoprofen and celecoxib were more potent or efficacious in males than females in reducing hindpaw edema. When administered 3 days rather than 2.5 h after CFA, ketoprofen (3.2-32 mg/kg) was minimally effective in attenuating mechanical allodynia and heat hyperalgesia, and did not restore weight-bearing or significantly decrease hindpaw edema, with no sex differences in any effect. Neither celecoxib nor ketoprofen effects were significantly attenuated by cannabinoid receptor 1 or 2 (CB1 or CB2) antagonists in either sex. These results suggest that common NSAIDs administered shortly after induction of inflammation are more effective in females than males in regard to their antinociceptive effects, whereas their anti-inflammatory effects tend to favor males; effect sizes indicate that sex differences in NSAID effect may be functionally important in some cases.
Collapse
Affiliation(s)
- Rebecca M. Craft
- Department of Psychology, Washington State University, Pullman, Washington
| | - Kelly A. Hewitt
- Department of Psychology, Washington State University, Pullman, Washington
| | - Stevie C. Britch
- Center on Drug and Alcohol Research, Department of Behavioral Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Abstract
Non-steroidal anti-inflammatory drugs produce antinociceptive effects mainly through peripheral cyclooxygenase inhibition. In opposition to the classical non-steroidal anti-inflammatory drugs, paracetamol and dipyrone exert weak anti-inflammatory activity, their antinociceptive effects appearing to be mostly due to mechanisms other than peripheral cyclooxygenase inhibition. In this review, we classify classical non-steroidal anti-inflammatory drugs, paracetamol and dipyrone as “non-opioid analgesics” and discuss the mechanisms mediating participation of the endocannabinoid system in their antinociceptive effects. Non-opioid analgesics and their metabolites may activate cannabinoid receptors, as well as elevate endocannabinoid levels through different mechanisms: reduction of endocannabinoid degradation via fatty acid amide hydrolase and/or cyclooxygenase-2 inhibition, mobilization of arachidonic acid for the biosynthesis of endocannabinoids due to cyclooxygenase inhibition, inhibition of endocannabinoid cellular uptake directly or through the inhibition of nitric oxide synthase production, and induction of endocannabinoid release.
Collapse
Affiliation(s)
- Ruhan Deniz Topuz
- Department of Medical Pharmacology, Trakya University School of Medicine, Edirne, Turkey
| | - Özgur Gündüz
- Department of Medical Pharmacology, Trakya University School of Medicine, Edirne, Turkey
| | - Çetin Hakan Karadağ
- Department of Medical Pharmacology, Trakya University School of Medicine, Edirne, Turkey
| | - Ahmet Ulugöl
- Department of Medical Pharmacology, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
6
|
Gonçalves dos Santos G, Vieira WF, Vendramini PH, Bassani da Silva B, Fernandes Magalhães S, Tambeli CH, Parada CA. Dipyrone is locally hydrolyzed to 4-methylaminoantipyrine and its antihyperalgesic effect depends on CB2 and kappa-opioid receptors activation. Eur J Pharmacol 2020; 874:173005. [DOI: 10.1016/j.ejphar.2020.173005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 01/28/2023]
|
7
|
Topuz RD, Gündüz Ö, Dökmeci D, Karadağ ÇH, Ulugöl A. Dipiron farelerde anksiyolitik-benzeri etkiler oluşturuyor mu? CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.488406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
8
|
Role of Endocannabinoid System in the Peripheral Antinociceptive Action of Aripiprazole. Anesth Analg 2019; 129:263-268. [DOI: 10.1213/ane.0000000000003723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Collares EF, Troncon LEA. Effects of dipyrone on the digestive tract. ACTA ACUST UNITED AC 2019; 52:e8103. [PMID: 30652827 PMCID: PMC6328969 DOI: 10.1590/1414-431x20188103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
Abstract
Dipyrone (metamizole), acting through its main metabolites 4-methyl-amino-antipyrine and 4-amino-antipyrine, has established analgesic, antipyretic, and spasmolytic pharmacological effects, which are mediated by poorly known mechanisms. In rats, intravenously administered dipyrone delays gastric emptying (GE) of liquids with the participation of capsaicin-sensitive afferent fibers. This effect seems to be mediated by norepinephrine originating from the sympathetic nervous system but not from the superior celiac-mesenteric ganglion complex, which activates β2-adrenoceptors. In rats, in contrast to nonselective non-hormonal anti-inflammatory drugs, dipyrone protects the gastric mucosa attenuating the development of gastric ulcers induced by a number of agents. Clinically, it has been demonstrated that dipyrone is effective in the control of colic-like abdominal pain originating from the biliary and intestinal tracts. Since studies in humans and animals have demonstrated the presence of β2-adrenoceptors in biliary tract smooth muscle and β2-adrenoceptor activation has been shown to occur in dipyrone-induced delayed GE, it is likely that this kind of receptors may participate in the reduction of smooth muscle spasm of the sphincter of Oddi induced by dipyrone. There is no evidence that dipyrone may interfere with small bowel and colon motility, and the clinical results of its therapeutic use in intestinal colic appear to be due to its analgesic effect.
Collapse
Affiliation(s)
- E F Collares
- Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - L E A Troncon
- Departamento de Clinica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
10
|
Veloso CC, Ferreira RCM, Rodrigues VG, Duarte LP, Klein A, Duarte ID, Romero TRL, Perez AC. Tingenone, a pentacyclic triterpene, induces peripheral antinociception due to cannabinoid receptors activation in mice. Inflammopharmacology 2017; 26:227-233. [DOI: 10.1007/s10787-017-0391-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/23/2017] [Indexed: 01/24/2023]
|
11
|
da Fonseca Pacheco D, Freitas ACN, Pimenta AMC, Duarte IDG, de Lima ME. A spider derived peptide, PnPP-19, induces central antinociception mediated by opioid and cannabinoid systems. J Venom Anim Toxins Incl Trop Dis 2016; 22:34. [PMID: 28031732 PMCID: PMC5175391 DOI: 10.1186/s40409-016-0091-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Some peptides purified from the venom of the spider Phoneutria nigriventer have been identified as potential sources of drugs for pain treatment. In this study, we characterized the antinociceptive effect of the peptide PnPP-19 on the central nervous system and investigated the possible involvement of opioid and cannabinoid systems in its action mechanism. Methods Nociceptive threshold to thermal stimulation was measured according to the tail-flick test in Swiss mice. All drugs were administered by the intracerebroventricular route. Results PnPP-19 induced central antinociception in mice in the doses of 0.5 and 1 μg. The non-selective opioid receptor antagonist naloxone (2.5 and 5 μg), μ-opioid receptor antagonist clocinnamox (2 and 4 μg), δ-opioid receptor antagonist naltrindole (6 and 12 μg) and CB1 receptor antagonist AM251 (2 and 4 μg) partially inhibited the antinociceptive effect of PnPP-19 (1 μg). Additionally, the anandamide amidase inhibitor MAFP (0.2 μg), the anandamide uptake inhibitor VDM11 (4 μg) and the aminopeptidase inhibitor bestatin (20 μg) significantly enhanced the antinociception induced by a low dose of PnPP-19 (0.5 μg). In contrast, the κ-opioid receptor antagonist nor-binaltorphimine (10 μg and 20 μg) and the CB2 receptor antagonist AM630 (2 and 4 μg) do not appear to be involved in this effect. Conclusions PnPP-19-induced central antinociception involves the activation of CB1 cannabinoid, μ- and δ-opioid receptors. Mobilization of endogenous opioids and cannabinoids might be required for the activation of those receptors, since inhibitors of endogenous substances potentiate the effect of PnPP-19. Our results contribute to elucidating the action of the peptide PnPP-19 in the antinociceptive pathway.
Collapse
Affiliation(s)
- Daniela da Fonseca Pacheco
- Departmento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Ana Cristina Nogueira Freitas
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG CEP 31.270.901 Brazil
| | - Adriano Monteiro C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG CEP 31.270.901 Brazil
| | - Igor Dimitri Gama Duarte
- Departmento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG CEP 31.270.901 Brazil
| |
Collapse
|
12
|
Crunfli F, Vilela FC, Giusti-Paiva A. Cannabinoid CB1 receptors mediate the effects of dipyrone. Clin Exp Pharmacol Physiol 2015; 42:246-55. [PMID: 25430877 DOI: 10.1111/1440-1681.12347] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 12/19/2022]
Abstract
Dipyrone is a non-steroidal anti-inflammatory drug used primarily as an analgesic and antipyretic. Some hypothesize that dipyrone activity can modulate other pathways, including endocannabinoid signalling. Thus, the aim of the present study was to evaluate the possible role of endocannabinoids in mediating dipyrone activity. This study is based on the tetrad effects of cannabinoids, namely an antinociceptive and cataleptic state, hypolocomotion and hypothermia. Dipyrone (500 mg/kg, i.p.) treatment decreased locomotor activity, increased the latency to a thermal analgesic response and induced a cataleptic and hypothermic state. These reactions are similar to the tetrad effects caused by the cannabinoid agonist WIN 55,212-2 (3 mg/kg, i.p.). The cannabinoid CB1 receptor antagonist AM251 (10 mg/kg, i.p.) reversed the effects of dipyrone on locomotor activity, the cataleptic response and thermal analgesia. Both AM251 (10 mg/kg, i.p.) and the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine (10 mg/kg, i.p.) accentuated the reduction in body temperature caused by dipyrone. However, the CB2 receptor antagonist AM630 did not alter the hypothermic response to dipyrone. These results indicate involvement of the endocannabinoid system, especially CB1 receptors, in the analgesic and cataleptic effects of dipyrone, as well as hypolocomotion. However, cannabinoid receptors and TRPV1 were not involved in the hypothermic effects of dipyrone. We hypothesize that the mechanism of action of dipyrone may involve inhibition of cyclo-oxygenase and fatty acid amide hydrolase, which together provide additional arachidonic acid as substrate for endocannabinoid synthesis or other related molecules. This increase in endocannabinoid availability enhances CB1 receptor stimulation, contributing to the observed effects.
Collapse
Affiliation(s)
- Fernanda Crunfli
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG; Graduate Program in Health Biosciences, Federal University of Alfenas, Alfenas, MG
| | | | | |
Collapse
|