1
|
Ni C, Ji Y, Hu K, Xing K, Xu Y, Gao Y. Effect of exercise and antioxidant supplementation on cellular lipid peroxidation in elderly individuals: Systematic review and network meta-analysis. Front Physiol 2023; 14:1113270. [PMID: 36866175 PMCID: PMC9971974 DOI: 10.3389/fphys.2023.1113270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Background: The viewpoints of previous studies on the correlation between exercise and cellular lipid peroxidation are contradictory from many perspectives and lack evidence for elder individuals. A new systematic review with network meta-analysis is necessary and will have significant practical value to provide high-quality evidence in the development of exercise protocols and an evidence-based guide for antioxidant supplementation for the elderly. Aims: To identify the cellular lipid peroxidation induced by different types of exercise, with or without antioxidant supplementation, in elderly individuals. Methods: Randomized controlled trials that recruited elderly participants and reported cellular lipid peroxidation indicators and were published in peer-reviewed journals in English were searched by a Boolean logic search strategy and screened in the databases PubMed, Medline, Embase, and Web of Science. The outcome measures were the biomarkers of oxidative stress in cell lipids in urine and blood, namely F2-isoprostanes, hydrogen peroxide (LOOH, PEROX, or LIPOX), malondialdehyde (MDA), and thiobarbituric acid reactive substances (TBARS). Result: 7 trials were included. A combination program of aerobic exercise (AE), low-intensity resistance training (LIRT), and a placebo intake (Placebo) and a combination program of aerobic exercise, low-intensity resistance training, and antioxidant supplementation (S) had the most and sub-most potential to dampen cellular lipid peroxidation (AE + LIRT + Placebo: 0.31 in Rank 1 and 0.2 in Rank 2; AE + LIRT + S: 0.19 in Rank 1 and 0.20 in Rank 2); A placebo intake (Placebo) and a blank intervention without exercise (NE) had the most and sub-most potential to induce an enhancement of cellular lipid peroxidation (Placebo: 0.51 in Rank 9 and 0.16 in Rank 8; NE: 0.16 in Rank 9 and 0.28 in Rank 8). All included studies had an unclear risk of selecting reporting. There were no high confidence ratings in all the direct and indirect comparisons, 4 comparisons in the direct evidence structure and 7 comparisons in the indirect evidence structure had moderate confidence. Conclusion: A combined protocol consisting of aerobic exercise and low-intensity resistance training is recommended to dampen cellular lipid peroxidation. Extra antioxidant supplementation might be unnecessary if an elderly individual has enough aerobic and resistance exercise. Systematic Review Registration: CRD42022367430.
Collapse
Affiliation(s)
- Chunxia Ni
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yiyi Ji
- College of Music, Ningbo University, Ningbo, China
| | - Keke Hu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Kai Xing
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yining Xu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yanan Gao
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Ataei L, Giannaki CD, Petrou C, Aphamis G. Effect of Tribulus terrestris L. supplementation on Exercise-Induced Oxidative Stress and Delayed Onset Muscle Soreness Markers: A Pilot Study. J Diet Suppl 2022; 20:811-831. [PMID: 36073362 DOI: 10.1080/19390211.2022.2120147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Tribulus terrestris L. contains compounds with antioxidant and anti-inflammatory properties, but its effects on exercise-induced oxidative stress and inflammatory responses are unclear. The aim of this study was to examine whether Tribulus terrestris L. supplementation can attenuate oxidative stress and inflammatory responses to acute aerobic exercise and improve DOMS. In a randomized, double-blind, crossover design study, thirteen healthy men received either a daily supplement of Tribulus terrestris L. or a placebo for 4 weeks (2-week wash-out period between trials). Before and after the supplementation periods, participants performed an exercise test to exhaustion (75% VO2max). DOMS, thigh girth, and knee joint range of motion (KJRM) were assessed before and after the exercise (2, 24, and 48 h). Blood samples were analyzed for reduced (GSH) and oxidized (GSSG) glutathione, GSH/GSSG ratio, protein carbonyls, total antioxidant capacity, creatine kinase activity, white blood cell count, and TBARS. Acute exercise to exhaustion induced inflammatory responses and changed the blood redox status in both Tribulus and Placebo groups (p < 0.050). Tribulus terrestris L. improved GSH fall (p = 0.005), GSSG rise (p = 0.001) and maintained a higher level of GSH/GSSG ratio at the 2 h point (p = 0.034). TBARS were lowered, protein carbonyls, creatine kinase activity, and white blood cell count elevation diminished significantly (p < 0.050). Tribulus terrestris L. administration did not affect DOMS, thigh girth, or KJRM (p > 0.050). 4-weeks of Tribulus terrestris L. supplementation effectively attenuates oxidative stress responses but cannot improve DOMS.
Collapse
Affiliation(s)
- Leila Ataei
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | | | - Christos Petrou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - George Aphamis
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
3
|
Jîtcă G, Ősz BE, Tero-Vescan A, Miklos AP, Rusz CM, Bătrînu MG, Vari CE. Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants (Basel) 2022; 11:antiox11030572. [PMID: 35326222 PMCID: PMC8944834 DOI: 10.3390/antiox11030572] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress is the subject of numerous studies, most of them focusing on the negative effects exerted at both molecular and cellular levels, ignoring the possible benefits of free radicals. More and more people admit to having heard of the term "oxidative stress", but few of them understand the meaning of it. We summarized and analyzed the published literature data in order to emphasize the importance and adaptation mechanisms of basal oxidative stress. This review aims to provide an overview of the mechanisms underlying the positive effects of oxidative stress, highlighting these effects, as well as the risks for the population consuming higher doses than the recommended daily intake of antioxidants. The biological dose-response curve in oxidative stress is unpredictable as reactive species are clearly responsible for cellular degradation, whereas antioxidant therapies can alleviate senescence by maintaining redox balance; nevertheless, excessive doses of the latter can modify the redox balance of the cell, leading to a negative outcome. It can be stated that the presence of oxidative status or oxidative stress is a physiological condition with well-defined roles, yet these have been insufficiently researched and explored. The involvement of reactive oxygen species in the pathophysiology of some associated diseases is well-known and the involvement of antioxidant therapies in the processes of senescence, apoptosis, autophagy, and the maintenance of cellular homeostasis cannot be denied. All data in this review support the idea that oxidative stress is an undesirable phenomenon in high and long-term concentrations, but regular exposure is consistent with the hormetic theory.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
- Correspondence:
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Amalia Pușcaș Miklos
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Mădălina-Georgiana Bătrînu
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| |
Collapse
|
4
|
Tofas T, Draganidis D, Deli CK, Georgakouli K, Fatouros IG, Jamurtas AZ. Exercise-Induced Regulation of Redox Status in Cardiovascular Diseases: The Role of Exercise Training and Detraining. Antioxidants (Basel) 2019; 9:antiox9010013. [PMID: 31877965 PMCID: PMC7023632 DOI: 10.3390/antiox9010013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Although low levels of reactive oxygen species (ROS) are beneficial for the organism ensuring normal cell and vascular function, the overproduction of ROS and increased oxidative stress levels play a significant role in the onset and progression of cardiovascular diseases (CVDs). This paper aims at providing a thorough review of the available literature investigating the effects of acute and chronic exercise training and detraining on redox regulation, in the context of CVDs. An acute bout of either cardiovascular or resistance exercise training induces a transient oxidative stress and inflammatory response accompanied by reduced antioxidant capacity and enhanced oxidative damage. There is evidence showing that these responses to exercise are proportional to exercise intensity and inversely related to an individual’s physical conditioning status. However, when chronically performed, both types of exercise amplify the antioxidant defense mechanism, reduce oxidative stress and preserve redox status. On the other hand, detraining results in maladaptations within a time-frame that depends on the exercise training intensity and mode, as high-intensity training is superior to low-intensity and resistance training is superior to cardiovascular training in preserving exercise-induced adaptations during detraining periods. Collectively, these findings suggest that exercise training, either cardiovascular or resistance or even a combination of them, is a promising, safe and efficient tool in the prevention and treatment of CVDs.
Collapse
|
5
|
Bellafiore M, Bianco A, Battaglia G, Naccari MS, Caramazza G, Padulo J, Chamari K, Paoli A, Palma A. Training session intensity affects plasma redox status in amateur rhythmic gymnasts. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:561-566. [PMID: 31720068 PMCID: PMC6834982 DOI: 10.1016/j.jshs.2016.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/01/2016] [Accepted: 02/13/2016] [Indexed: 06/10/2023]
Abstract
PURPOSE The aim of this study was to examine systemic responses of oxidant/antioxidant status following 2 training sessions of different intensity in amateur rhythmic gymnasts. METHODS Before the experimental training, 10 female gymnasts performed a gradually increased exercise test to assess maximal heart rate, maximal oxygen consumption, and anaerobic threshold. They executed 2 intermittent training sessions separated by 48 h of recovery (48 h-post R): the first was performed at low-moderate intensity (LMI) and the second at high intensity (HI). Blood samples were collected immediately pre- and post-training and 48 h-post R. Hydroperoxide level (OxL) and total antioxidant capacity (TAC) were photometrically measured. RESULTS OxL was significantly higher in post-training and 48 h-post R following HI than the same conditions after an LMI session (HI vs. LMI post-training: 381.10 ± 46.17 (mean ± SD) vs. 344.18 ± 27.94 Units Carratelli (U.CARR); 48 h-post R: 412.21 ± 26.61 vs. 373.80 ± 36.08 U.CARR). There was no change in TAC between the 2 training sessions investigated. In LMI training, OxL significantly decreased in post-training and increased to reach the baseline at 48 h-post R, whereas TAC increased only at 48 h-post R. In HI training, OxL significantly increased to reach a high oxidative stress 48 h-post R, whereas TAC was lower in post-training than pre-training. CONCLUSION The pattern of OxL and TAC levels implies different regulation mechanisms by HI and LMI training sessions. High oxidative stress induced by an HI protocol might be associated with both insufficient TAC and recovery time at 48 h necessary to restore redox balance.
Collapse
Affiliation(s)
- Marianna Bellafiore
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo 90144, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo 90144, Italy
| | - Giuseppe Battaglia
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo 90144, Italy
| | - Maria Silvia Naccari
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo 90144, Italy
| | - Giovanni Caramazza
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo 90144, Italy
| | - Johnny Padulo
- University “eCampus”, Novedrate 22060, Italy
- Faculty of Kinesiology, University of Split, Split 21000, Croatia
| | - Karim Chamari
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha 29222, Qatar
| | - Antonio Paoli
- Department of Biomedical Sciences (DSB), University of Padova, Padova 35131, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo 90144, Italy
| |
Collapse
|
6
|
Monitoring Exercise-Induced Muscle Fatigue and Adaptations: Making Sense of Popular or Emerging Indices and Biomarkers. Sports (Basel) 2018; 6:sports6040153. [PMID: 30486243 PMCID: PMC6315493 DOI: 10.3390/sports6040153] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/17/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022] Open
Abstract
Regular exercise with the appropriate intensity and duration may improve an athlete’s physical capacities by targeting different performance determinants across the endurance–strength spectrum aiming to delay fatigue. The mechanisms of muscle fatigue depend on exercise intensity and duration and may range from substrate depletion to acidosis and product inhibition of adenosinetriphosphatase (ATPase) and glycolysis. Fatigue mechanisms have been studied in isolated muscles; single muscle fibers (intact or skinned) or at the level of filamentous or isolated motor proteins; with each approach contributing to our understanding of the fatigue phenomenon. In vivo methods for monitoring fatigue include the assessment of various functional indices supported by the use of biochemical markers including blood lactate levels and more recently redox markers. Blood lactate measurements; as an accompaniment of functional assessment; are extensively used for estimating the contribution of the anaerobic metabolism to energy expenditure and to help interpret an athlete’s resistance to fatigue during high intensity exercise. Monitoring of redox indices is gaining popularity in the applied sports performance setting; as oxidative stress is not only a fatigue agent which may play a role in the pathophysiology of overtraining syndrome; but also constitutes an important signaling pathway for training adaptations; thus reflecting training status. Careful planning of sampling and interpretation of blood biomarkers should be applied; especially given that their levels can fluctuate according to an athlete’s lifestyle and training histories.
Collapse
|
7
|
Li Y, Ma Y, Song L, Yu L, Zhang L, Zhang Y, Xing Y, Yin Y, Ma H. SIRT3 deficiency exacerbates p53/Parkin‑mediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts. Int J Mol Med 2018. [PMID: 29532856 DOI: 10.3892/ijmm.2018.3555] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial dynamics have critical roles in aging, and their impairment represents a prominent risk factor for myocardial dysfunction. Mitochondrial deacetylase sirtuin (SIRT)3 contributes greatly to the prevention of redox stress and cell aging. The present study explored the role of SIRT3 on myocardium aging. Western blot analysis demonstrated that SIRT3 expression levels were significantly lower in the myocardia of aged mice compared with young mice. Immunoprecipitation and western blot assays indicated that the activity of mitochondrial manganese superoxide dismutase (MnSOD) and peroxisome proliferator‑activated receptor γ coactivator (PGC)‑1α was reduced in the aged heart. To further explore the association between SIRT3 and myocardial senescence, SIRT3 heart‑specific knockout (SIRT3-/-) mice were used in the present study. The results revealed that obvious features of aging were present in the myocardium of SIRT3-/- mice, including mitochondrial protein dysfunction, enhanced oxidative stress, and energy metabolism dysfunction. SIRT3 deficiency impaired Parkin‑mediated mitophagy by increasing p53‑Parkin binding and blocking the mitochondrial translocation of Parkin in cardiomyocytes. Injection of autophagy agonist CCCP significantly increased the mitochondrial Parkin level in young wild‑type hearts but not in aged hearts; the effect was less pronounced in SIRT3-/- hearts. These data suggest that CCCP‑induced Parkin translocation was reduced in aged and SIRT3-/- hearts. CCCP‑induced mitochondrial clearance, which could be rescued by autophagy antagonist bafilomycin‑A1, was markedly weakened in aged and SIRT3-/- hearts vs. young hearts. SIRT3 deficiency exacerbated p53/Parkin‑mediated mitophagy inhibition and disrupted mitochondrial homeostasis, suggesting that loss of SIRT3 may increase the susceptibility of aged hearts to cardiac dysfunction. Therapeutic activation of SIRT3 and improved mitochondrial function may ameliorate the symptoms of cardiac aging.
Collapse
Affiliation(s)
- Yan Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ying Ma
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liqiang Song
- Department of Respirology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lu Yu
- Department of Pathology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Le Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yingmei Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuan Xing
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yue Yin
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Heng Ma
- Department of Physiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
8
|
Photobiomodulation Leads to Reduced Oxidative Stress in Rats Submitted to High-Intensity Resistive Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5763256. [PMID: 29636849 PMCID: PMC5832038 DOI: 10.1155/2018/5763256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/11/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
The aim of this study was to determine whether oxidative stress markers are influenced by low-intensity laser therapy (LLLT) in rats subjected to a high-intensity resistive exercise session (RE). Female Wistar rats divided into three experimental groups (Ctr: control, 4J: LLLT, and RE) and subdivided based on the sampling times (instantly or 24 h postexercise) underwent irradiation with LLLT using three-point transcutaneous method on the hind legs, which was applied to the gastrocnemius muscle at the distal, medial, and proximal points. Laser (4J) or placebo (device off) were carried out 60 sec prior to RE that consisted of four climbs bearing the maximum load with a 2 min time interval between each climb. Lipoperoxidation levels and antioxidant capacity were obtained in muscle. Lipoperoxidation levels were increased (4-HNE and CL markers) instantly post-RE. LLLT prior to RE avoided the increase of the lipid peroxidation levels. Similar results were also notified for oxidation protein assays. The GPx and FRAP activities did not reduce instantly or 24 h after RE. SOD increased 24 h after RE, while CAT activity did not change with RE or LLLT. In conclusion, LLLT prior to RE reduced the oxidative stress markers, as well as, avoided reduction, and still increased the antioxidant capacity.
Collapse
|
9
|
Aloui K, Abedelmalek S, Chtourou H, Wong DP, Boussetta N, Souissi N. Effects of time-of-day on oxidative stress, cardiovascular parameters, biochemical markers, and hormonal response following level-1 Yo-Yo intermittent recovery test. Physiol Int 2017; 104:77-90. [DOI: 10.1556/2060.104.2017.1.6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the effect of time-of-day on oxidative stress, cardiovascular parameters, muscle damage parameters, and hormonal responses following the level-1 Yo-Yo intermittent recovery test (YYIRT). A total of 11 healthy subjects performed an intermittent test (YYIRT) at two times-of-day (i.e., 07:00 h and 17:00 h), with a recovery period of ≥36 h in-between, in a randomized order. Blood samples were taken at the rest (baseline) and immediately (post-YYIRT) after the YYIRT for measuring oxidative stress, biochemical markers, and hormonal response. Data were statistically analyzed using one-way and two-way repeated measures ANOVA and Bonferroni test at p < 0.05. Observed power (α = 0.05) and partial eta-squared were used. Our results showed that oxygen uptake (VO2max), maximal aerobic speed, and the total distance covered tended to be higher in the evening (17:00 h). There was also a main effect of time-of-day for cortisol and testosterone concentration, which were higher after the YYIRT in the morning (p < 0.05). The heart rate peak and the rating of perceived exertion scales were lower in the morning (p < 0.05). However, the plasma glucose (p < 0.01), malondialdehyde, creatine kinase (p < 0.01), lactate dehydrogenase (p < 0.05), high-density lipoprotein (p < 0.01), total cholesterol (p < 0.01), and triglycerides (p < 0.05) were higher after the YYIRT in the evening. Low-density lipoprotein, systolic blood pressure, diastolic blood pressure, and lactate levels (p > 0.05) were similar for the morning and evening test. In conclusion, our findings suggest that aerobic performance presents diurnal variation with great result observed in the evening accompanied by an improvement of hormonal, metabolic, and oxidative responses. These data may help to guide athletes and coaches and contribute to public health recommendations on exercise and muscle damage particularly in the competitive periods.
Collapse
Affiliation(s)
- K Aloui
- 1 Research Laboratory “Sports Performance Optimization”, National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
- 2 Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| | - S Abedelmalek
- 3 Department of Physiology and Functional Explorations, Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| | - H Chtourou
- 1 Research Laboratory “Sports Performance Optimization”, National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - DP Wong
- 4 Human Performance Laboratory, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| | - N Boussetta
- 1 Research Laboratory “Sports Performance Optimization”, National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - N Souissi
- 1 Research Laboratory “Sports Performance Optimization”, National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| |
Collapse
|
10
|
Chilelli NC, Ragazzi E, Valentini R, Cosma C, Ferraresso S, Lapolla A, Sartore G. Curcumin and Boswellia serrata Modulate the Glyco-Oxidative Status and Lipo-Oxidation in Master Athletes. Nutrients 2016; 8:nu8110745. [PMID: 27879642 PMCID: PMC5133128 DOI: 10.3390/nu8110745] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 01/11/2023] Open
Abstract
Background: Chronic intensive exercise is associated with a greater induction of oxidative stress and with an excess of endogenous advanced glycation end-products (AGEs). Curcumin can reduce the accumulation of AGEs in vitro and in animal models. We examined whether supplementation with curcumin and Boswellia serrata (BSE) gum resin for 3 months could affect plasma levels of markers of oxidative stress, inflammation, and glycation in healthy master cyclists. Methods. Forty-seven healthy male athletes were randomly assigned to Group 1, consisting of 22 subjects given a Mediterranean diet (MD) alone (MD group), and Group 2 consisted of 25 subjects given a MD plus curcumin and BSE (curcumin/BSE group). Interleukin-6 (IL-6), tumor necrosis factor-α (TNFα), high-sensitivity c-reactive protein (hs-CRP), total AGE, soluble receptor for AGE (sRAGE), malondialdehyde (MDA), plasma phospholipid fatty acid (PPFA) composition, and non-esterified fatty acids (NEFA) were tested at baseline and after 12 weeks. Results: sRAGE, NEFA, and MDA decreased significantly in both groups, while only the curcumin/BSE group showed a significant decline in total AGE. Only the changes in total AGE and MDA differed significantly between the curcumin/BSE and MD groups. Conclusions. Our data suggest a positive effect of supplementation with curcumin and BSE on glycoxidation and lipid peroxidation in chronically exercising master athletes.
Collapse
Affiliation(s)
- Nino Cristiano Chilelli
- Department of Medicine-DIMED, University of Padova, Diabetology and Dietetics, ULSS 16, via dei Colli, 4, 35100 Padova, Italy.
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy.
| | - Romina Valentini
- Department of Medicine-DIMED, University of Padova, Diabetology and Dietetics, ULSS 16, via dei Colli, 4, 35100 Padova, Italy.
| | - Chiara Cosma
- Department of Laboratory Medicine, University of Padova, 35100 Padova, Italy.
| | - Stefania Ferraresso
- Department of Medicine-DIMED, University of Padova, Diabetology and Dietetics, ULSS 16, via dei Colli, 4, 35100 Padova, Italy.
| | - Annunziata Lapolla
- Department of Medicine-DIMED, University of Padova, Diabetology and Dietetics, ULSS 16, via dei Colli, 4, 35100 Padova, Italy.
| | - Giovanni Sartore
- Department of Medicine-DIMED, University of Padova, Diabetology and Dietetics, ULSS 16, via dei Colli, 4, 35100 Padova, Italy.
| |
Collapse
|
11
|
Friedenreich CM, Pialoux V, Wang Q, Shaw E, Brenner DR, Waltz X, Conroy SM, Johnson R, Woolcott CG, Poulin MJ, Courneya KS. Effects of exercise on markers of oxidative stress: an Ancillary analysis of the Alberta Physical Activity and Breast Cancer Prevention Trial. BMJ Open Sport Exerc Med 2016; 2:e000171. [PMID: 27900199 PMCID: PMC5125419 DOI: 10.1136/bmjsem-2016-000171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Oxidative stress may contribute to cancer aetiology through several mechanisms involving damage to DNA, proteins and lipids leading to genetic mutations and genomic instability. The objective of this study was to determine the effects of aerobic exercise on markers of oxidative damage and antioxidant enzymes in postmenopausal women. METHODS The Alberta Physical Activity and Breast Cancer Prevention Trial (ALPHA) was a two-centre, two-armed randomised trial of 320 inactive, healthy, postmenopausal women aged 50-74 years. Participants were randomly assigned to a year-long exercise intervention (225 min/week) or a control group while being asked to maintain a normal diet. Fasting blood samples were obtained and plasma concentrations of two oxidative damage markers (8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostaglandin F2α (8-Iso-PGF2α)) and two antioxidant enzymes (superoxide dismutase and catalase) were measured at baseline, 6 months and 12 months. Intention-to-treat (ITT) and per-protocol analyses were performed using linear mixed models adjusted for baseline biomarker concentrations. A further exercise adherence analysis, based on mean minutes of exercise per week, was also performed. RESULTS In the ITT and per-protocol analyses, the exercise intervention did not have any statistically significant effect on either oxidative damage biomarkers or antioxidant enzyme activity. CONCLUSIONS A year-long aerobic exercise intervention did not have a significant impact on oxidative stress in healthy, postmenopausal women. TRIAL REGISTRATION NUMBER NCT00522262.
Collapse
Affiliation(s)
- Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada; Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology , Université Claude Bernard Lyon 1, University of Lyon , Villeurbanne , France
| | - Qinggang Wang
- Department of Cancer Epidemiology and Prevention Research , CancerControl Alberta, Alberta Health Services , Calgary, Alberta , Canada
| | - Eileen Shaw
- Department of Cancer Epidemiology and Prevention Research , CancerControl Alberta, Alberta Health Services , Calgary, Alberta , Canada
| | - Darren R Brenner
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada; Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xavier Waltz
- Departments of Physiology and Pharmacology and Clinical Neurosciences , Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Shannon M Conroy
- Cancer Prevention Institute of California , Fremont, California , USA
| | - Rhys Johnson
- Department of Cancer Epidemiology and Prevention Research , CancerControl Alberta, Alberta Health Services , Calgary, Alberta , Canada
| | - Christy G Woolcott
- Departments of Pediatrics and Obstetrics and Gynecology, Faculty of Medicine , Dalhousie University , Halifax, Nova Scotia , Canada
| | - Marc J Poulin
- Departments of Physiology and Pharmacology and Clinical Neurosciences , Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Kerry S Courneya
- Faculty of Physical Education and Recreation , University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
12
|
Lindsay A, Healy J, Mills W, Lewis J, Gill N, Draper N, Gieseg SP. Impact-induced muscle damage and urinary pterins in professional rugby: 7,8-dihydroneopterin oxidation by myoglobin. Scand J Med Sci Sports 2016; 26:329-37. [PMID: 25772829 DOI: 10.1111/sms.12436] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2015] [Indexed: 12/30/2022]
Abstract
Muscle damage caused through impacts in rugby union is known to increase oxidative stress and inflammation. Pterins have been used clinically as markers of oxidative stress, inflammation, and neurotransmitter synthesis. This study investigates the release of myoglobin from muscle tissue due to force-related impacts and how it is related to the subsequent oxidation of 7,8-dihydroneopterin to specific pterins. Effects of iron and myoglobin on 7,8-dihydroneopterin oxidation were examined in vitro via strong cation-exchange high-performance liquid chromatography (SCX-HPLC) analysis of neopterin, xanthopterin, and 7,8-dihydroxanthopterin. Urine samples were collected from 25 professional rugby players pre and post four games and analyzed for myoglobin by enzyme-linked immunosorbent assay, and 7,8-dihydroneopterin oxidation products by HPLC. Iron and myoglobin oxidized 7,8-dihydroneopterin to neopterin, xanthopterin, and 7,8-dihydroxanthopterin at concentrations at or above 10 μM and 50 μg/mL, respectively. All four games showed significant increases in myoglobin, neopterin, total neopterin, biopterin, and total biopterin, which correlated between each variable (P < 0.05). Myoglobin and iron facilitate 7,8-dihydroneopterin oxidation to neopterin and xanthopterin. In vivo delocalization of myoglobin due to muscle damage may contribute to oxidative stress and inflammation after rugby. Increased concentrations of biopterin and total biopterin may indicate production of nitric oxide and monoamine neurotransmitters in response to the physical stress.
Collapse
Affiliation(s)
- A Lindsay
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - J Healy
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - W Mills
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - J Lewis
- Steroid and Immunobiochemistry Laboratory, Canterbury Health Laboratories, Christchurch, New Zealand
| | - N Gill
- New Zealand Rugby Union, Wellington, New Zealand
- Sports Performance Research Institute New Zealand, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand
| | - N Draper
- College of Life and Natural Sciences, University of Derby, Derby, UK
| | - S P Gieseg
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Radiology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
13
|
Çakır-Atabek H, Özdemir F, Çolak R. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males. Biol Sport 2015; 32:321-8. [PMID: 26681835 PMCID: PMC4672164 DOI: 10.5604/20831862.1176302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/11/2014] [Accepted: 07/02/2015] [Indexed: 11/25/2022] Open
Abstract
The relationship between oxidative stress and some exercise components of resistance exercise (e.g. intensity, exercise volume) has not been clearly defined. Additionally, the oxidative stress markers may respond differently in various conditions. This study aims to determine the effects of progressive intensity of resistance exercise (RE) on oxidative stress and antioxidants in trained and untrained men, and also to investigate the possible threshold intensity required to evoke oxidative stress. RE trained (N=8) and untrained (N=8) men performed the leg extension RE at progressive intensities standardized for total volume: 1x17 reps at 50% of one-repetition maximum (1RM); 1x14 reps at 60% of 1RM; 1x12 reps at 70% of 1RM; 2x5 reps at 80% of 1RM; and 3x3 reps at 90% of 1RM. Blood samples were drawn before (PRE) and immediately after each intensity, and after 30 minutes, 60 minutes and 24 hours following the RE. Lipid-hydroperoxide (LHP) significantly increased during the test and then decreased during the recovery in both groups (p<0.05); the POST-24 h LHP level was lower than PRE-LHP. Protein carbonyl (PCO) and superoxide dismutase (SOD) significantly increased (p<0.05); however, 8-hydroxy-2’-deoxyguanosine (8-OHdG) and glutathione (GSH) were not affected by the RE (p > 0.05). The results indicated that there was no significant training status x intensity interaction for examined variables (p > 0.05). Standardized volume of RE increased oxidative stress responses. Our study suggests that lower intensity (50%) is enough to increase LHP, whereas higher intensity (more than 80%) is required to evoke protein oxidation.
Collapse
Affiliation(s)
- H Çakır-Atabek
- Department of Coach Training, Faculty of Sports Science, Anadolu University, Eskişehir, Turkey
| | - F Özdemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - R Çolak
- School of Physical Education and Sports, Ardahan University, Ardahan, Turkey
| |
Collapse
|
14
|
Lima A, Ritti-Dias R, Forjaz CL, Correia M, Miranda A, Brasileiro-Santos M, Santos A, Sobral Filho D, Silva A. A session of resistance exercise increases vasodilation in intermittent claudication patients. Appl Physiol Nutr Metab 2015; 40:59-64. [DOI: 10.1139/apnm-2014-0342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
No study has shown the effects of acute resistance exercise on vasodilatory capacity of patients with peripheral artery disease. The aim of this study was to analyse the effects of a single session of resistance exercise on blood flow, reactive hyperemia, plasma nitrite, and plasma malondialdehyde in patients with peripheral artery disease. Fourteen peripheral artery disease patients underwent, in a random order, 2 experimental sessions: control (rest for 30 min) and resistance exercise (8 exercises, 2 sets of 10 repetitions at an intensity of 5–7 in the OMNI Resistance Exercise Scale). Blood flow, reactive hyperemia, plasma nitrite, and malondialdehyde were measured before and 40 min after the interventions in both sessions. Data were compared between sessions by analysis of covariance, using pre-intervention values as covariates. The increases in blood flow, reactive hyperemia, and log plasma nitrite were greater (p ≤ 0.05) after resistance exercise than the control session (3.2 ± 0.1 vs. 2.7 ± 0.1 mL·100 mL−1tissue·min−1, 8.0 ± 0.1 vs. 5.7 ± 0.1 AU, and 1.36 ± 0.01 vs. 1.26 ± 0.01 μmol∙L−1, respectively). On the other hand, malondialdehyde was similar between sessions (p > 0.05). In peripheral arterial disease patients, a single session of resistance exercise increases blood flow and reactive hyperemia, which seems to be mediated, in part, by increases in nitric oxide release.
Collapse
Affiliation(s)
- Aluísio Lima
- School of Physical Education, University of Pernambuco, Rua Arnóbio Marques, 310, Recife, Pernambuco 50.100-130, Brazil
| | - Raphael Ritti-Dias
- School of Physical Education, University of Pernambuco, Rua Arnóbio Marques, 310, Recife, Pernambuco 50.100-130, Brazil
| | - Cláudia L.M. Forjaz
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Marilia Correia
- School of Physical Education, University of Pernambuco, Rua Arnóbio Marques, 310, Recife, Pernambuco 50.100-130, Brazil
| | - Alessandra Miranda
- School of Physical Education, University of Pernambuco, Rua Arnóbio Marques, 310, Recife, Pernambuco 50.100-130, Brazil
| | | | - Amilton Santos
- Department of Physical Education, University Federal of Paraíba, Paraíba, Brazil
| | - Dario Sobral Filho
- Procape University Hospital, University of Pernambuco, Pernambuco, Brazil
| | - Alexandre Silva
- Department of Physical Education, University Federal of Paraíba, Paraíba, Brazil
| |
Collapse
|
15
|
Silva CTD, Jasiulionis MG. Relação entre estresse oxidativo, alterações epigenéticas e câncer. ACTA ACUST UNITED AC 2014. [DOI: 10.21800/s0009-67252014000100015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Dato S, Crocco P, D'Aquila P, de Rango F, Bellizzi D, Rose G, Passarino G. Exploring the role of genetic variability and lifestyle in oxidative stress response for healthy aging and longevity. Int J Mol Sci 2013; 14:16443-72. [PMID: 23965963 PMCID: PMC3759920 DOI: 10.3390/ijms140816443] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is both the cause and consequence of impaired functional homeostasis characterizing human aging. The worsening efficiency of stress response with age represents a health risk and leads to the onset and accrual of major age-related diseases. In contrast, centenarians seem to have evolved conservative stress response mechanisms, probably derived from a combination of a diet rich in natural antioxidants, an active lifestyle and a favorable genetic background, particularly rich in genetic variants able to counteract the stress overload at the level of both nuclear and mitochondrial DNA. The integration of these factors could allow centenarians to maintain moderate levels of free radicals that exert beneficial signaling and modulator effects on cellular metabolism. Considering the hot debate on the efficacy of antioxidant supplementation in promoting healthy aging, in this review we gathered the existing information regarding genetic variability and lifestyle factors which potentially modulate the stress response at old age. Evidence reported here suggests that the integration of lifestyle factors (moderate physical activity and healthy nutrition) and genetic background could shift the balance in favor of the antioxidant cellular machinery by activating appropriate defense mechanisms in response to exceeding external and internal stress levels, and thus possibly achieving the prospect of living a longer life.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Heart Science, University of Calabria, Ponte Pietro Bucci cubo 4c, Rende 87036, CS, Italy.
| | | | | | | | | | | | | |
Collapse
|