1
|
Ramadaini T, Sumiwi SA, Febrina E. The Anti-Diabetic Effects of Medicinal Plants Belonging to the Liliaceae Family: Potential Alpha Glucosidase Inhibitors. Drug Des Devel Ther 2024; 18:3595-3616. [PMID: 39156483 PMCID: PMC11330250 DOI: 10.2147/dddt.s464100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Background Diabetes mellitus is a complex metabolic disorder that has an enormous impact on people's quality of life and health. Although there is no doubt about the effectiveness of oral hypoglycemic agents combined with lifestyle management in controlling diabetes, no individual has ever been reported to have been completely cured of the disease. Globally, many medicinal plants have been used for the management of diabetes in various traditional systems of medicine. A deep look in the literature has revealed that the Liliaceae family have been poorly investigated for their antidiabetic activity and phytochemical studies. In this review, we summarize medicinal plants of Liliaceae utilized in the management of type II diabetes mellitus (T2DM) by inhibition of α-glucosidase enzyme and phytochemical content. Methods The literature search was conducted using databases including PubMed, ScienceDirect, and Google Scholar to find the significant published articles about Liliaceae plants utilized in the prevention and treatment of antidiabetics. Data were filtered to the publication period from 2013 to 2023, free full text and only English articles were included. The keywords were Liliaceae OR Alliaceae OR Amaryllidaceae AND Antidiabetic OR α-glucosidase. Results Six medicinal plants such as Allium ascalonicum, Allium cepa, Allium sativum, Aloe ferox, Anemarrhena asphodeloides, and Eremurus himalaicus are summarized. Phytochemical and α-glucosidase enzymes inhibition by in vitro, in vivo, and human studies are reported. Conclusion Plants of Liliaceae are potential as medicine herbs to regulating PPHG and prevent the progression of T2DM and its complication. In silico study, clinical application, and toxicity evaluation are needed to be investigated in the future.
Collapse
Affiliation(s)
- Tiara Ramadaini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| | - Ellin Febrina
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
2
|
El-Mouty Raslan MA, Kassem IAA, Ghaly NS, El-Manawaty MA, Melek FR, Nabil M. Aloe juvenna Brandham & S.Carter as α-Amylase Inhibitor and Hypoglycaemic Agent with Anti-inflammatory Properties for Diabetes Management. Chem Biodivers 2024; 21:e202400245. [PMID: 38436134 DOI: 10.1002/cbdv.202400245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Despite Aloe's traditional use, Aloe juvenna Brandham & S.Carter is poorly characterized. Other Aloes are known for their antidiabetic activity. This study describes the antidiabetic potentials and phytoconstituents of the A. juvenna leaves methanolic extract (AJME). Twenty-six phytoconstituents of AJME were described using HPLC/MS-MS. Lupeol and vitexin were isolated using column chromatography. The antidiabetic activity of AJME was investigated using an in vivo high-fat diet/streptozotocin-induced diabetic rat model and in vitro α-glucosidase and α-amylase inhibitory activity assays. AJME demonstrated its α-amylase inhibitory activity (IC50=313±39.9 ppm) with no effect on α-glucosidase. In vivo, AJME dose-dependently improved hyperglycaemia in a high-fat diet/streptozotocin-induced diabetic rat model. Notably, the higher dose (1600 mg/kg) of AJME significantly downregulated serum interleukin-6, tumor necrosis factor-α, and matrix metalloproteinase-1 genes, suggesting its anti-inflammatory effect. These findings indicate AJME's potential as a significant antidiabetic agent through its α-amylase inhibition, hypoglycaemic, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Mona Abd El-Mouty Raslan
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Iman AbdelKhalek AbdelKhalek Kassem
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Neveen Sabry Ghaly
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - May Aly El-Manawaty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Farouk Rasmy Melek
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Marian Nabil
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| |
Collapse
|
3
|
Ndhlala AR, Thibane VS, Masehla CM, Mokwala PW. Ethnobotany and Toxicity Status of Medicinal Plants with Cosmeceutical Relevance from Eastern Cape, South Africa. PLANTS 2022; 11:plants11111451. [PMID: 35684224 PMCID: PMC9182599 DOI: 10.3390/plants11111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
The indigenous people of the Eastern Cape residing within the richest plant biodiversity in the world, including Africa’s floral ‘gold mine’, have a long history of plant use for skincare. However, such rich flora comes with numerous plants that have the potential to cause harm to humans through their usage. Therefore, the study was aimed at documenting the toxicity status of important medicinal plants used by the indigenous people from the Eastern Cape for skincare and supported by literature for cosmeceutical relevance. A list of plants used for skincare was produced following an ethnobotanical survey. In addition, data on the level of toxicity and cosmeceutical relevance of plants listed from the survey were collected from literature resources. The study listed a total of 38 plants from 25 plant families, the majority being represented by the Asphodelaceae and Asteraceae, both at 13.2%. The most preferred plant parts were the leaves (60.4%) indicating sustainable harvesting practices by the community. The literature reports validated 70% of the medicinal plants surveyed for skincare were nontoxic. Most of the plants can be incorporated in the formulation of products intended for skincare due to their low toxicity and high cosmeceutical relevance.
Collapse
Affiliation(s)
- Ashwell R. Ndhlala
- Green Technologies Research Centre of Excellence, School of Agricultural and Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
- Correspondence: ; Tel.: +27-15-268-3706
| | - Vuyisile S. Thibane
- Department of Biochemistry and Biotechnology, Sefako Makgatho Health Sciences University, Ga-Rankuwa 0204, South Africa;
| | - Cecilia M. Masehla
- Department of Biodiversity, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; (C.M.M.); (P.W.M.)
| | - Phatlane W. Mokwala
- Department of Biodiversity, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; (C.M.M.); (P.W.M.)
| |
Collapse
|
4
|
Akindele AJ, Sowemimo A, Agunbiade FO, Sofidiya MO, Awodele O, Ade-Ademilua O, Orabueze I, Ishola IO, Ayolabi CI, Salu OB, Akinleye MO, Oreagba IA. Bioprospecting for Anti-COVID-19 Interventions From African Medicinal Plants: A Review. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221096968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emergence of the novel coronavirus (SARS-CoV-2) that emanated from Wuhan in China in 2019 has become a global concern. The current situation warrants ethnomedicinal drug discovery and development for delivery of phytomedicines with potential for the treatment of COVID-19. The aim of this review is to provide a detailed evaluation of available information on plant species used in African traditional medicines with antiviral, anti-inflammatory, immunomodulatory, and COVID-19 symptoms relieving effects. Literature from scientific databases such as Scopus, PubMed, Google scholar, African Journals OnLine (AJOL), Science Direct, and Web of Science were used for this review. A total of 35 of the 38 reviewed plants demonstrated a wide range of antiviral activities. Bryophyllum pinnatum, Aframomum melegueta, Garcinia kola, Sphenocentrum jollyanum, Adansonia digitata, Sutherlandia frutescens, Hibiscus sabdariffa, Moringa oleifera, and Nigella sativa possess a combination of antiviral, immunomodulatory, anti-inflammatory, and COVID-19 symptoms relieving activities. Nine, 13, and 10 of the plants representing 23.7%, 34.2%, and 26.3% of the plants studied had antiviral activity with 3 other activities, antiviral activity with 2 other activities, and antiviral with one pharmacological activity alone, respectively. The plants studied were reported to be relatively safe at the subchronic toxicity level, except for 2. The study provides baseline information on the pharmacological activities, toxicity, and chemical components of 9 African medicinal plants with antiviral, immunomodulatory, anti-inflammatory, and symptoms relieving activities, thereby making the plants candidates for further investigation for effectiveness against COVID-19.
Collapse
Affiliation(s)
- Abidemi J. Akindele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abimbola Sowemimo
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Foluso O. Agunbiade
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Chemistry, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Margaret O. Sofidiya
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Olufunsho Awodele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Omobolanle Ade-Ademilua
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Botany, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Ifeoma Orabueze
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ismail O. Ishola
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Christianah I. Ayolabi
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Microbiology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Olumuyiwa B. Salu
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Medical Microbiology & Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Moshood O. Akinleye
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ibrahim A. Oreagba
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | | |
Collapse
|
5
|
Aloe arborescens: In Vitro Screening of Genotoxicity, Effective Inhibition of Enzyme Characteristics for Disease Etiology, and Microbiological Activity. Molecules 2022; 27:molecules27072323. [PMID: 35408722 PMCID: PMC9000289 DOI: 10.3390/molecules27072323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/22/2023] Open
Abstract
The present study assessed the genotoxicity, the possibility of inhibiting selected enzymes, and the microbial activity of lyophilisate from 3-year-old A. arborescens leaves obtained from controlled crops. The lyophilisate from 3-year-old A. arborescens leaves was standardized for aloin A and aloenin A content. Moreover, concentrations of polyphenolic compounds and phenolic acids were determined. The first stage of the research was to determine genotoxicity using the comet test, which confirmed the safety of A. arborescens. Assays of enzymatic inhibition were performed for hyaluronidase (IC50 = 713.24 ± 41.79 µg/mL), α-glucosidase (IC50 = 598.35 ± 12.58 µg/mL), acetylcholinesterase and butyrylcholinesterase (1.16 vs. 0.34 µM of eserine/g d.m., respectively). The next stage of the research was to determine the ability of the healing properties using the scratch test, which showed a positive response using the extract. Microbial activity was evaluated and obtained against Gram-negative and Gram-positive bacteria and yeasts. We concluded that A. arborescens leaf gel meets the important conditions for plant raw materials to obtain semi-solid forms of herbal medicinal products.
Collapse
|
6
|
Nalimu F, Oloro J, Kahwa I, Ogwang PE. Review on the phytochemistry and toxicological profiles of Aloe vera and Aloe ferox. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:145. [PMID: 34307697 PMCID: PMC8294304 DOI: 10.1186/s43094-021-00296-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background Aloe vera and Aloe ferox have over the years been among the most sought-after Aloe species in the treatment of ailments worldwide. This review provides categorized literature on the phytochemical and scientifically proven toxicological profiles of A. vera and A. ferox to facilitate their exploitation in therapy. Main body of the abstract Original full-text research articles were searched in PubMed, ScienceDirect, Research gate, Google Scholar, and Wiley Online Library using specific phrases. Phenolic acids, flavonoids, tannins, and anthraquinones were the main phytochemical classes present in all the two Aloe species. Most of the phytochemical investigations and toxicity studies have been done on the leaves. Aloe vera and Aloe ferox contain unique phytoconstituents including anthraquinones, flavonoids, tannins, sterols, alkaloids, and volatile oils. Aloe vera hydroalcoholic leaf extract showed a toxic effect on Kabir chicks at the highest doses. The methanolic, aqueous, and supercritical carbon dioxide extracts of A. vera leaf gel were associated with no toxic effects. The aqueous leaf extract of A. ferox is well tolerated for short-term management of ailments but long-term administration may be associated with organ toxicity. Long-term administration of the preparations from A. vera leaves and roots was associated with toxic effects. Short conclusion This review provides beneficial information about the phytochemistry and toxicity of A. vera and A. ferox and their potential in the treatment of COVID-19 which up to date has no definite cure. Clinical trials need to be carried out to clearly understand the toxic effects of these species.
Collapse
Affiliation(s)
- Florence Nalimu
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmaceutical Sciences, Faculty of Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Joseph Oloro
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Ivan Kahwa
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
7
|
More GK, Makola RT, Prinsloo G. In Vitro Evaluation of Anti-Rift Valley Fever Virus, Antioxidant and Anti-Inflammatory Activity of South African Medicinal Plant Extracts. Viruses 2021; 13:221. [PMID: 33572659 PMCID: PMC7912315 DOI: 10.3390/v13020221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/02/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Rift valley fever virus (RVFV) is a mosquito-borne virus endemic to sub-Saharan African countries, and the first sporadic outbreaks outside Africa were reported in the Asia-Pacific region. There are no approved therapeutic agents available for RVFV; however, finding an effective antiviral agent against RVFV is important. This study aimed to evaluate the antiviral, antioxidant and anti-inflammatory activity of medicinal plant extracts. Twenty medicinal plants were screened for their anti-RVFV activity using the cytopathic effect (CPE) reduction method. The cytotoxicity assessment of the extracts was done before antiviral screening using the MTT assay. Antioxidant and reactive oxygen/nitrogen species' (ROS/RNS) inhibitory activity by the extracts was investigated using non-cell-based and cell-based assays. Out of twenty plant extracts tested, eight showed significant potency against RVFV indicated by a decrease in tissue culture infectious dose (TCID50) < 105. The cytotoxicity of extracts showed inhibitory concentrations values (IC50) > 200 µg/mL for most of the extracts. The antioxidant activity and anti-inflammatory results revealed that extracts scavenged free radicals exhibiting an IC50 range of 4.12-20.41 µg/mL and suppressed the production of pro-inflammatory mediators by 60-80% in Vero cells. This study demonstrated the ability of the extracts to lower RVFV viral load and their potency to reduce free radicals.
Collapse
Affiliation(s)
- Garland K. More
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, Johannesburg 1710, South Africa;
| | - Raymond T. Makola
- Department of Biochemistry Microbiology and Biotechnology, School of Molecular and Life Science, University of Limpopo (Turfloop Campus) Sovenga, Polokwane 0727, South Africa;
- National institute of Communicable Diseases, Special Viral Pathogen/Arbovirus Unit, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa
| | - Gerhard Prinsloo
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, Johannesburg 1710, South Africa;
| |
Collapse
|
8
|
Acute oral toxicity test from leaf exudates of 17 Aloe species from East and South of the Great Rift Valley in Ethiopia. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
van Vuuren S, Frank L. Review: Southern African medicinal plants used as blood purifiers. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112434. [PMID: 31812645 DOI: 10.1016/j.jep.2019.112434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMALOGICAL RELEVANCE Blood purification practices, also referred to as blood cleansing or detoxification, is an ancient concept which is widespread amongst African traditional medicine, but for which no modern scientific basis exists. There prevails considerable ambiguity in defining what a blood purifier is. AIM OF THE STUDY The purpose of this review is to firstly define what a blood purifier is in the context of African traditional medicine and compare to other cultural and westernized interpretations. Thereafter, this study identifies traditionally used medicinal plants used as blood purifiers in southern Africa and correlates these species to scientific studies, which may support evidence for these "blood purifying plant species". MATERIALS AND METHODS Ethnobotanical books and review articles were used to identify medicinal plants used for blood purification. Databases such as Scopus, ScienceDirect, PubMed and Google Scholar were used to source scientific articles. An evaluation was made to try correlate traditional use to scientific value of the plant species. RESULTS One hundred and fifty nine plant species have been documented as traditional remedies for blood purification. Most of the plant species have some pharmacological activity, however, very little link to the traditional use for blood purification. There has been some justification of the link between blood purification and the use as an antimicrobial and this has been explored in many of the plant species identified as blood purifiers. Other pharmacological studies specifically pertaining to the blood require further attention. CONCLUSION Irrespective of the ambiguity of interpretation, medicinal plants used to "cleanse the blood", play an important holistic role in traditional medicine and this review with recommendations for further study provides some value of exploring this theme in the future.
Collapse
Affiliation(s)
- S van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| | - L Frank
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
10
|
Donkor AM, Donkor MN, Kuubabongnaa N. Evaluation of anti-infective potencies of formulated aloin A ointment and aloin A isolated from Aloe barbadensis Miller. BMC Chem 2020; 14:8. [PMID: 32047877 PMCID: PMC7006150 DOI: 10.1186/s13065-020-0659-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 01/08/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction Isolated bioactive components of plants or their raw extract are utilized as complementary or alternate remedy in copious illnesses. The current research was aimed at assessing the activity of aloin A isolated from Aloe barbadensis Miller and its formulated ointment against six (6) selected clinical isolates. Methods The column chromatography was utilized in isolating aloin A from chloroform/methanol solvent polarity. The characterization of the isolated compound was performed by spectroscopy techniques corresponding to UV, IR, 1H- and 13C-NMR spectroscopy. It was formulated as ointment using polyethylene glycol (PEG) and both the ointment and the isolated compound were probed for in vitro antimicrobial activity. Results Aloin A has been isolated from chloroform/methanol solvent mixture. The structure has been explicated as (10S)-10-β-d-glucopyranosyl-1,8-dihydroxy-3-(hydroxymethyl)-9(10H)-anthracenone(1S)-1,5-anhydro-1-[(9S)-4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydro-9-anthracenyl]-d-glucitol. The minimum inhibitory concentration (MIC) of the isolated aloin A on the pathogens ranged from 2.5 to 5.0 mg/ml and 0.32 to 5.0 mg/ml for both aloin A and the formulated ointment respectively. It was further revealed that the activity of aloin A showed dose dependence against all the test microorganisms. There was no significant difference in the activity of the drug against K. pneumoniae, S. aureus, E. coli, C. albicans and T. flavus (P > 0.05) when the concentration was raised from 2.5 to 5 mg/ml, however, there was significant difference (P ˂ 0.05) in activity against P. aeruginosa. The formulated ointment exhibited dose dependent activity against all test microorganisms. At low concentrations, the ointment showed no significant difference in diameter zone of inhibition against all test microorganisms (P > 0.05) except P. aeruginosa which exhibited a highly significant difference (P < 0.05). Conclusion Both the isolated aloin A and its formulated ointment demonstrated substantial inhibition of growth of the pathogenic strains. These findings sturdily suggest that aloin A is a nascent drug that could be explored as skin and wound transmittable agent.
Collapse
Affiliation(s)
- Addai-Mensah Donkor
- Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, University for Development Studies, Navrongo Campus, Navrongo, Ghana
| | - Martin Ntiamoah Donkor
- Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, University for Development Studies, Navrongo Campus, Navrongo, Ghana
| | - Ngmenpone Kuubabongnaa
- Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, University for Development Studies, Navrongo Campus, Navrongo, Ghana
| |
Collapse
|
11
|
Davids D, Gibson D, Johnson Q. Ethnobotanical survey of medicinal plants used to manage High Blood Pressure and Type 2 Diabetes Mellitus in Bitterfontein, Western Cape Province, South Africa. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:755-766. [PMID: 27780752 DOI: 10.1016/j.jep.2016.10.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/08/2016] [Accepted: 10/21/2016] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The aim of this study was to identify and document medicinal plants used to manage High Blood Pressure and Type 2 Diabetes Mellitus in Bitterfontein, Western Cape Province, South Africa. METHODS One hundred and twelve (112) respondents were interviewed between August 2014 and September 2015 through semi-structured surveys to gather data on the percentage of people who had been diagnosed with High Blood Pressure and/or Type 2 Diabetes Mellitus and to determine the frequency of medicinal plant and allopathic medicine use. Twelve (12) key respondents were subsequently selected, using a non-probability snowball sampling method. They were interviewed in-depth concerning their plant practices and assisted with plant collection. RESULTS Twenty-four plant (24) species belonging to 15 families were identified for the management of High Blood Pressure and Type 2 Diabetes Mellitus. The most frequently reported families were Asteraceae (20.8%), Lamiaceae (16.67%), Crassulaceae (8.33%) and Aizoaceae (8.33%). The remaining (45.54%) were evenly split over eleven families- Fabaceae, Amaryllidaceae, Anacardiaceae, Capparaceae, Geraniaceae, Apiaceae, Convolvulaceae, Apocynaceae, Rutaceae, Asphodelaceae and Thymelaeaceae. The most commonly used plant species overall was Lessertia frutescens (96.55%). The most frequently used plant parts included leaves (57.63%) roots/bulbs (15.25%) and stems (11.86%), mostly prepared as infusions or decoctions for oral administration. CONCLUSIONS Medicinal plants are widely used by High Blood Pressure and Type 2 Diabetes Mellitus sufferers. They employ diverse plant species to manage both conditions. In addition, some sufferers often use prescribed allopathic medication, as well as medicinal plants, but at different intervals. Despite high usage the plants identified are not currently threatened (Red Data list status: least concern).
Collapse
Affiliation(s)
- Denver Davids
- Department of Anthropology and Sociology, University of the Western Cape (UWC), Bellville, South Africa.
| | - Diana Gibson
- Department of Anthropology and Sociology, University of the Western Cape (UWC), Bellville, South Africa.
| | - Quinton Johnson
- Nelson Mandela Metro University (NMMU), George, Southern Cape, South Africa.
| |
Collapse
|
12
|
Amoo SO, Aremu AO, Van Staden J. Unraveling the medicinal potential of South African Aloe species. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:19-41. [PMID: 24509153 DOI: 10.1016/j.jep.2014.01.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloe species (family: Xanthorrhoeaceae) are widely used in ethnomedicine for treating various ailments. Approximately 125 Aloe taxa are documented as indigenous to South Africa. This review was aimed at critically evaluating the available data on the ethnomedicinal uses, pharmacological activities, safety and conservation status of the documented South African Aloe species. MATERIALS AND METHODS A detailed search using major electronic search engines (such as Google Scholar, Scopus and Scirus) and ethnobotanical literature was undertaken. Search terms used included 'medicinal properties of Aloe species', 'biological activity of South African Aloe species' and 'safety and toxicological evaluation of aloes'. RESULTS Although Aloe species are widely used as laxatives and for treating wound and skin-related ailments, only about 20% of South African Aloe species have been clearly documented for their medicinal uses. The pharmacological potential including the antimicrobial, antiinflammatory, antiplasmodial and anthelmintic activities of some of the species has been established, providing a rationale for their use in traditional medicine. Successful micropropagation protocols have been developed as a conservation strategy, but only for a few species. CONCLUSIONS The highlighted medicinal activities of some Aloe species indicate their therapeutic potential. Nonetheless, further research especially on the understudied species is required to properly document their ethnomedicinal uses and fully explore their pharmacological value.
Collapse
Affiliation(s)
- Stephen O Amoo
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Adeyemi O Aremu
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.
| |
Collapse
|