1
|
Navegantes Lima KC, Gaspar SLDF, Oliveira ALDB, dos Santos SM, Quadros LBG, de Oliveira JP, Pereira RCDS, Dias AGDS, Gato LDS, Alencar LYN, dos Santos ALP, Dorneles GP, Romão PRT, Stutz H, Sovrani V, Monteiro MC. Lipid Fraction from Agaricus brasiliensis as a Potential Therapeutic Agent for Lethal Sepsis in Mice. Antioxidants (Basel) 2024; 13:927. [PMID: 39199173 PMCID: PMC11351130 DOI: 10.3390/antiox13080927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Sepsis is a potentially fatal clinical condition that results from an immune imbalance in the host during an infection. It presents systemic alterations due to excessive activation of pro-inflammatory mediators that contribute to inflammation, formation of reactive species, and tissue damage. Anti-inflammatory mediators are then extensively activated to regulate this process, leading to immune exhaustion and, consequently, immunosuppression of the host. Considering the biological activities of the nutraceutical Agaricus brasiliensis (A. brasiliensis), such as immunomodulatory, antioxidant, and antitumor activities, the present study investigated the therapeutic potential of the lipid fraction of A. brasiliensis (LF) in a model of lethal sepsis in mice (Mus musculus), induced by cecal ligation and perforation (CLP). The results showed that treatment of septic animals with LF or LF associated with ertapenem (LF-Erta) reduced systemic inflammation, promoting improvement in clinical parameters and increased survival. The data show a reduction in pro-inflammatory and oxidative stress markers, regulation of the anti-inflammatory response and oxidizing agents, and increased bacterial clearance in the peritoneal cavity and liver. Thus, it can be concluded that LF as a treatment, and in conjunction with antibiotic therapy, has shown promising effects as a hepatoprotective, antioxidant, antimicrobial, and immunomodulatory agent.
Collapse
Affiliation(s)
- Kely Campos Navegantes Lima
- Neuroscience and Cellular Biology Post Graduation Program, Institute of Biological Sciences, Federal University of Pará, Pará 66075-110, Brazil; (K.C.N.L.); (A.L.d.B.O.)
| | - Silvia Leticia de França Gaspar
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | - Ana Ligia de Brito Oliveira
- Neuroscience and Cellular Biology Post Graduation Program, Institute of Biological Sciences, Federal University of Pará, Pará 66075-110, Brazil; (K.C.N.L.); (A.L.d.B.O.)
| | - Sávio Monteiro dos Santos
- Pharmaceutical Science Post-Graduation Program, Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil;
| | - Lucas Benedito Gonçalves Quadros
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | - Juliana Pinheiro de Oliveira
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | - Rayane Caroline dos Santos Pereira
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | - Alexandre Guilherme da Silva Dias
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | - Lucas da Silva Gato
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | | | - Alanna Lorena Pimentel dos Santos
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
| | - Gilson Pires Dorneles
- Laboratory of Cellular and Molecular Immunology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil; (G.P.D.); (P.R.T.R.)
| | - Pedro Roosevelt Torres Romão
- Laboratory of Cellular and Molecular Immunology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil; (G.P.D.); (P.R.T.R.)
| | - Herta Stutz
- Department of Food Engineering, Midwest State University-UNICENTRO, Simeao de Camargo Varela de Sá, 03, Guarapuava 85.040-080, Brazil; (H.S.); (V.S.)
| | - Vanessa Sovrani
- Department of Food Engineering, Midwest State University-UNICENTRO, Simeao de Camargo Varela de Sá, 03, Guarapuava 85.040-080, Brazil; (H.S.); (V.S.)
| | - Marta Chagas Monteiro
- Neuroscience and Cellular Biology Post Graduation Program, Institute of Biological Sciences, Federal University of Pará, Pará 66075-110, Brazil; (K.C.N.L.); (A.L.d.B.O.)
- School of Pharmacy, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil; (S.L.d.F.G.); (L.B.G.Q.); (J.P.d.O.); (R.C.d.S.P.); (A.G.d.S.D.); (L.d.S.G.); (A.L.P.d.S.)
- Pharmaceutical Science Post-Graduation Program, Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
2
|
Navegantes-Lima KC, Monteiro VVS, de França Gaspar SL, de Brito Oliveira AL, de Oliveira JP, Reis JF, de Souza Gomes R, Rodrigues CA, Stutz H, Sovrani V, Peres A, Romão PRT, Monteiro MC. Agaricus brasiliensis Mushroom Protects Against Sepsis by Alleviating Oxidative and Inflammatory Response. Front Immunol 2020; 11:1238. [PMID: 32714320 PMCID: PMC7342083 DOI: 10.3389/fimmu.2020.01238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Sepsis is characterized by the host's dysregulated immune response to an infection followed by a potentially fatal organ dysfunction. Although there have been some advances in the treatment of sepsis, mainly focused on broad-spectrum antibiotics, mortality rates remain high, urging for the search of new therapies. Oxidative stress is one of the main features of septic patients, so antioxidants can be a good alternative treatment. Agaricus brasiliensis is a nutraceutical rich in bioactive compounds such as polyphenols and polysaccharides, exhibiting antioxidant, antitumor, and immunomodulatory activities. Here, we investigated the immunomodulatory and antioxidant effects of A. brasilensis aqueous extract in the cecal ligation and puncture (CLP) sepsis model. Our data showed that aqueous extract of A. brasiliensis reduced systemic inflammatory response and improved bacteria clearance and mice survival. In addition, A brasiliensis decreased the oxidative stress markers in serum, peritoneal cavity, heart and liver of septic animals, as well as ROS production (in vitro and in vivo) and tert-Butyl hydroperoxide-induced DNA damage in peripheral blood mononuclear cells from healthy donors in vitro. In conclusion, the aqueous extract of A. brasiliensis was able to increase the survival of septic animals by a mechanism involving immunomodulatory and antioxidant protective effects.
Collapse
Affiliation(s)
- Kely Campos Navegantes-Lima
- Neuroscience and Cellular Biology Post Graduation Program, Institute of Biological Sciences, Federal University of Pará, Pará, Brazil
| | - Valter Vinicius Silva Monteiro
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Graduate Program in Basic and Applied Immunology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Ana Ligia de Brito Oliveira
- Neuroscience and Cellular Biology Post Graduation Program, Institute of Biological Sciences, Federal University of Pará, Pará, Brazil
| | | | - Jordano Ferreira Reis
- School of Pharmacy, Health Science Institute, Federal University of Pará, Pará, Brazil
| | - Rafaelli de Souza Gomes
- Pharmaceutical Science Post-Graduation Program, Faculty of Pharmacy, Federal University of Pará, Pará, Brazil
| | - Caroline Azulay Rodrigues
- Pharmaceutical Science Post-Graduation Program, Faculty of Pharmacy, Federal University of Pará, Pará, Brazil
| | - Herta Stutz
- Department of Food Engineering, Midwest State University-UNICENTRO, Guarapuava, Brazil
| | - Vanessa Sovrani
- Department of Biochemistry, Federal University of Rio Grande de Sul, Porto Alegre, Brazil
| | - Alessandra Peres
- Laboratory of Cellular and Molecular Immunology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratory of Cellular and Molecular Immunology, Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Marta Chagas Monteiro
- Neuroscience and Cellular Biology Post Graduation Program, Institute of Biological Sciences, Federal University of Pará, Pará, Brazil.,School of Pharmacy, Health Science Institute, Federal University of Pará, Pará, Brazil.,Pharmaceutical Science Post-Graduation Program, Faculty of Pharmacy, Federal University of Pará, Pará, Brazil
| |
Collapse
|
3
|
Salivary Gland Extract from Aedes aegypti Improves Survival in Murine Polymicrobial Sepsis through Oxidative Mechanisms. Cells 2018; 7:cells7110182. [PMID: 30360497 PMCID: PMC6262460 DOI: 10.3390/cells7110182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
Sepsis is a systemic disease with life-threatening potential and is characterized by a dysregulated immune response from the host to an infection. The organic dysfunction in sepsis is associated with the production of inflammatory cascades and oxidative stress. Previous studies showed that Aedes aegypti saliva has anti-inflammatory, immunomodulatory, and antioxidant properties. Considering inflammation and the role of oxidative stress in sepsis, we investigated the effect of pretreatment with salivary gland extract (SGE) from Ae. aegypti in the induction of inflammatory and oxidative processes in a murine cecum ligation and puncture (CLP) model. Here, we evaluated animal survival for 16 days, as well as bacterial load, leukocyte migration, and oxidative parameters. We found that the SGE pretreatment improved the survival of septic mice, reduced bacterial load and neutrophil influx, and increased nitric oxide (NO) production in the peritoneal cavity. With regard to oxidative status, SGE increased antioxidant defenses as measured by Trolox equivalent antioxidant capacity (TEAC) and glutathione (GSH), while reducing levels of the oxidative stress marker malondialdehyde (MDA). Altogether, these data suggest that SGE plays a protective role in septic animals, contributing to oxidative and inflammatory balance during sepsis. Therefore, Ae. aegypti SGE is a potential source for new therapeutic molecule(s) in polymicrobial sepsis, and this effect seems to be mediated by the control of inflammation and oxidative damage.
Collapse
|