1
|
Lu C, Chen M, Zhao Y, Zhan Y, Wei X, Lu L, Yang M, Gong X. A Co-MOF encapsulated microneedle patch activates hypoxia induction factor-1 to pre-protect transplanted flaps from distal ischemic necrosis. Acta Biomater 2024; 184:171-185. [PMID: 38871202 DOI: 10.1016/j.actbio.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Avoiding ischemic necrosis after flap transplantation remains a significant clinical challenge. Developing an effective pretreatment method to promote flap survival postoperatively is crucial. Cobalt chloride (CoCl2) can increase cell tolerance to ischemia and hypoxia condition by stimulating hypoxia-inducible factor-1 (HIF-1) expression. However, the considerable toxic effects severely limit the clinical application of CoCl2. In this study, cobalt-based metal-organic frameworks (Co-MOF) encapsulated in a microneedle patch (Co-MOF@MN) was developed to facilitate the transdermal sustained release of Co2+ for rapid, minimally invasive rapid pretreatment of flap transplantation. The MN patch was composed of a fully methanol-based two-component cross-linked polymer formula, with a pyramid structure and high mechanical strength, which satisfied the purpose of penetrating the skin stratum corneum of rat back to achieve subcutaneous vascular area administration. Benefiting from the water-triggered disintegration of Co-MOF and the transdermal delivery via the MN patch, preoperative damage and side effects were effectively mitigated. Moreover, in both the oxygen-glucose deprivation/recovery (OGD/R) cell model and the rat dorsal perforator flap model, Co-MOF@MN activated the HIF-1α pathway and its associated downstream proteins, which reduced reperfusion oxidative damage, improved blood supply in choke areas, and increased flap survival rates post-transplantation. This preprotection strategy, combining MOF nanoparticles and the MN patch, meets the clinical demands for trauma minimization and uniform administration in flap transplantation. STATEMENT OF SIGNIFICANCE: Cobalt chloride (CoCl2) can stimulate the expression of hypoxia-inducible factor (HIF-1) and improve the tolerance of cells to ischemia and hypoxia conditions. However, the toxicity and narrow therapeutic window of CoCl2 severely limit its clinical application. Herein, we explored the role of Co-MOF as a biocompatible nanocage for sustained release of Co2+, showing the protective effect on vascular endothelial cells in the stress model of oxygen-glucose deprivation. To fit the clinical needs of minimal trauma in flap transplantation, a Co-MOF@MN system was developed to achieve local transdermal delivery at the choke area, significantly improving blood supply opening and flap survival rate. This strategy of two-step delivery of Co2+ realized the enhancement of biological functions while ensuring the biosafety.
Collapse
Affiliation(s)
- Cheng Lu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Miao Chen
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Yuanyuan Zhao
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Yongxin Zhan
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Xin Wei
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Laijin Lu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China; Orthopedics Central Laboratory, Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Changchun 130021, PR China
| | - Mingxi Yang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China; Orthopedics Central Laboratory, Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Changchun 130021, PR China.
| | - Xu Gong
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China; Orthopedics Central Laboratory, Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
2
|
Yılmaz B, Kose O, Karahan N, Tumentemur G, Ertan MB, Ozdemir G, Sirin E. Effect of cilostazol on healing of achilles tendon ruptures: an experimental study on rats. Connect Tissue Res 2024; 65:226-236. [PMID: 38722149 DOI: 10.1080/03008207.2024.2349817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE This study aimed to evaluate whether cilostazol (phosphodiesterase III inhibitor) could enhance the healing of Achilles tendon ruptures in rats. MATERIALS AND METHODS The Achilles tendons of 24 healthy male adult rats were incised and repaired. The rats were randomly allocated to cilostazol and control groups. The cilostazol group received daily intragastric administration of 50 mg/kg cilostazol for 28 days, while the control group did not receive any medication. The rats were sacrificed on the 30th day, and the Achilles tendon was evaluated for biomechanical properties, histopathological characteristics, and immunohistochemical analysis. RESULTS All rats completed the experiment. The Movin sum score of the control group was significantly higher (p = 0.008) than that of the cilostazol group, with means of 11 ± 0.63 and 7.50 ± 1.15, respectively. Similarly, the mean Bonar score was significantly higher (p = 0.026) in the control group compared to the cilostazol group (8.33 ± 1.50 vs. 5.5 ± 0.54, respectively). Moreover, the Type I/Type III Collagen ratio was notably higher (p = 0.016) in the cilostazol group (52.2 ± 8.4) than in the control group (34.6 ± 10.2). The load to failure was substantially higher in the cilostazol group than in the control group (p = 0.034), suggesting that the tendons in the cilostazol group were stronger and exhibited greater resistance to failure. CONCLUSIONS The results of this study suggest that cilostazol treatment significantly improves the biomechanical and histopathological parameters of the healing Achilles tendon in rats. Cilostazol might be a valuable supplementary therapy in treating Achilles tendon ruptures in humans. Additional clinical studies are, however, required to verify these outcomes.
Collapse
Affiliation(s)
- Baris Yılmaz
- Fatih Sultan Mehmet Training & Research Hospital, Department of Orthopedics and Traumatology, University of Health Sciences, Istanbul, Turkey
| | - Ozkan Kose
- Antalya Training & Research Hospital, Department of Orthopedics and Traumatology, University of Health Sciences, Antalya, Turkey
| | - Nazım Karahan
- Fatih Sultan Mehmet Training & Research Hospital, Department of Orthopedics and Traumatology, University of Health Sciences, Istanbul, Turkey
| | - Gamze Tumentemur
- Vocational School of Health Services, Department of Pedology, Acibadem University, Istanbul, Turkey
| | - Mehmet Barıs Ertan
- Antalya Training & Research Hospital, Department of Orthopedics and Traumatology, University of Health Sciences, Antalya, Turkey
| | - Guzelali Ozdemir
- Ankara Bilkent City Hospital, Department of Orthopedics and Traumatology, University of Health Sciences, Ankara, Turkey
| | - Evrim Sirin
- Medical Faculty, Department of Orthopedics and Traumatology, Marmara University, Istanbul, Turkey
| |
Collapse
|
3
|
Takahashi K, Higashizono K, Fukatsu K, Murakoshi S, Takayama H, Noguchi M, Matsumoto N, Seto Y. Prehabilitation Ameliorates Gut Ischemia Reperfusion Injury in Mice. J Surg Res 2023; 282:71-83. [PMID: 36257166 DOI: 10.1016/j.jss.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/01/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION We previously demonstrated that prehabilitation by running on a treadmill leads to improved survival after gut ischemia reperfusion (I/R) in mice. The purpose of this research was to examine whether prehabilitation attenuates inflammatory responses after gut I/R in mice. MATERIALS AND METHODS Male C57BL/6J mice (n = 92) were assigned to the sedentary (n = 46) or the exercise (n = 46) group. The exercise group ran on a treadmill for 4 wk, while the sedentary mice did not exercise. After the 4-week pretreatment, all mice underwent gut I/R and the blood, urine, small intestine, lung, liver, and gastrocnemius were harvested prior to ischemia or at 0, 3, 6, or 24 h after reperfusion. Histologically demonstrated organ damage, cytokine levels in the blood, gut and gastrocnemius, myeloperoxidase activity in the gut, 8-hydroxy-2'-deoxyguanosine levels in urine and the gut, and adenosine triphosphate (ATP) and ATP + ADP + adenosine monophosphate levels in the gut and gastrocnemius were evaluated. RESULTS The treadmill exercise reduced gut and lung injuries at 3 h and liver injury at 6 h after reperfusion. Running on the treadmill also decreased proinflammatory cytokine levels in the blood at 6 h, gut at 3 h and gastrocnemius at 6 h after reperfusion, myeloperoxidase activity in the gut prior to ischemia, and 6 h after reperfusion and the urinary 8-hydroxy-2'-deoxyguanosine level at 24 h after reperfusion, while ATP levels in exercised mice prior to ischemia and 3 h after reperfusion were increased in the intestine as compared to the levels in sedentary mice. CONCLUSIONS Prehabilitation with treadmill exercise reduces inflammatory responses after gut I/R and may exert protective actions against gut I/R.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Higashizono
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Fukatsu
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Surgical Center, The University of Tokyo Hospital, Tokyo, Japan.
| | - Satoshi Murakoshi
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Surgical Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Haruka Takayama
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Midori Noguchi
- Surgical Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Nana Matsumoto
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Zhang H, Liu M, Kim HT, Feeley BT, Liu X. Preconditioning improves muscle regeneration after ischemia-reperfusion injury. J Orthop Res 2021; 39:1889-1897. [PMID: 33232533 PMCID: PMC9257970 DOI: 10.1002/jor.24909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 02/04/2023]
Abstract
Ischemia-reperfusion injury (IRI) is a critical condition associated with serious clinical manifestations. Extensive research has focused on the strategies increasing organ tolerance to IRI. Preconditioning (PC) has been shown to provide protection to various organs toward IRI. However, the underlying mechanisms remain unknown. This study aimed to evaluate the role of PC on muscle regeneration after IRI and the potential underlying mechanisms. Three-month-old male UCP-1 reporter mice underwent unilateral hindlimb IRI with or without PC, the tissue viability and injury index were measured at 24 h after IRI. Hindlimb gait, muscle contractility, muscle histology were analyzed at 2 weeks after IRI. In another group of animals, β3 adrenergic receptor (β3AR) agonist amibegron and β3AR antagonist SR-59230A were administrated before PC/IRI, the hindlimb function and muscle regeneration were evaluated at 2 weeks after IRI. Our results showed that PC has little effect on improving the tissue viability at the acute phase of IRI, but it showed a long-term beneficial role of improving hindlimb function and muscle regeneration as evidenced by increased central nuclei regenerating myofibers. The effects of PC are related to inducing muscle fibro-adipogenic progenitor (FAP) brown/beige-like adipocyte (BAT) differentiation. Amibegron treatment displayed a similar role of PC while SR-59230A abolished the effect of PC. This study suggests PC has a beneficial role in promoting muscle regeneration after IRI through β3AR signaling pathway-stimulated FAP-BAT differentiation.
Collapse
Affiliation(s)
- He Zhang
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA,Department of Exercise Physiology, Beijing Sports University, Beijing, China
| | - Mengyao Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Hubert T. Kim
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Brian T. Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Elrashidy RA, Hasan RA. Cilostazol preconditioning alleviates cyclophosphamide-induced cardiotoxicity in male rats: Mechanistic insights into SIRT1 signaling pathway. Life Sci 2020; 266:118822. [PMID: 33275987 DOI: 10.1016/j.lfs.2020.118822] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023]
Abstract
AIMS Cyclophosphamide (CYP) is a potent anticancer agent with well-known cardiotoxicity that limits its clinical applications. Cilostazol is a vosodilating drug, showing a cardioprotective effect in some cardiac disorders; however its effect in CYP-induced cardiotoxicity is still uncertain. We investigated the effect of cilostazol against CYP-induced cardiotoxicity and the contribution of SIRT1 signaling. MATERIALS AND METHODS 7 week-old male Wistar albino rats were treated with cilostazol (30 mg/kg/day, orally) in the absence or presence of SIRT1 inhibitor, EX-527 (5 mg/kg/day, IP) for 10 days and injected with CYP (200 mg/kg, IP) on the 7th day of the study. Age-matched rats were used as control group. On the 11th day, hearts were harvested for biochemical, immunoblotting and histological analyses. Markers of cardiac injury were assessed in plasma samples. KEY FINDINGS CYP injection contributed to cardiac injury manifested as significant increases in plasma activities of heart enzymes and cardiac troponin I levels. Cilostazol attenuated cardiac injury and minimized the histological lesions in hearts of CYP-treated rats. Cilostazol induced 3 fold up-regulation of SIRT1 and promoted the antioxidant defense response through FoxO1-related mechanism in hearts of CYP-treated rats. Cilostazol suppressed the CYP-induced up-regulation of PARP1 and p53, and blocked the NF-kB p65-mediated inflammatory response in hearts of CYP-treated rats. All the beneficial effects of cilostazol were almost abolished by EX-527. SIGNIFICANCE These data provided insights into the mechanism underlying the cardioprotective effect of cilostazol in CYP-treated rats through upregulation of SIRT1 signaling, suggesting that cilostazol might be a candidate modality for CYP-induced cardiotoxicity.
Collapse
Affiliation(s)
- Rania A Elrashidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Rehab A Hasan
- Histology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Conditioning attenuates kidney and heart injury in rats following transient suprarenal occlusion of the abdominal aorta. Sci Rep 2020; 10:5040. [PMID: 32193441 PMCID: PMC7081351 DOI: 10.1038/s41598-020-61268-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/11/2020] [Indexed: 11/08/2022] Open
Abstract
Suprarenal aortic clamping during abdominal aortic aneurysm (AAA) repair results in ischemia-reperfusion injury (IRI) in local (i.e. kidney) and distant (i.e. heart) tissue. To investigate perioperative approaches that mitigate IRI-induced tissue damage, Wistar rats underwent suprarenal aortic clamping either alone or in combination with short cycles of ischemic conditioning before and/or after clamping. Serum analysis revealed significant reduction in key biochemical parameters reflecting decreased tissue damage at systemic level and improved renal function in conditioned groups compared to controls (p < 0.05), which was corroborated by histolopathological evaluation. Importantly, the levels of DNA damage, as reflected by the biomarkers 8-oxo-G, γH2AX and pATM were reduced in conditioned versus non-conditioned cases. In this setting, NADPH oxidase, a source of free radicals, decreased in the myocardium of conditioned cases. Of note, administration of 5-HD and 8-SPT blocking key protective signaling routes abrogated the salutary effect of conditioning. To further understand the non-targeted effect of IRI on the heart, it was noted that serum TGF-β1 levels decreased in conditioned groups, whereas this difference was eliminated after 5-HD and 8-SPT administration. Collectively, conditioning strategies reduced both renal and myocardial injury. Additionally, the present study highlights TGF-β1 as an attractive target for manipulation in this context.
Collapse
|
7
|
Dehyadegari S, Oloumi MM, Azizi S. Histopathological evaluation of the role of negative electrical charge on renal ischemia/reperfusion injuries on brain and heart tissues in rat. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2020; 11:15-20. [PMID: 32537102 PMCID: PMC7282218 DOI: 10.30466/vrf.2018.86965.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/29/2018] [Indexed: 11/08/2022]
Abstract
This study was performed to evaluate the role of electroacupuncture on kidney 1 (Ki1) acupoint to prevent the heart and brain injury following ischemia/reperfusion of both kidneys. 24 Sprague Dawley rats were randomly assigned into four equal groups. In the treatment 1 group, following anesthesia, acupuncture needles were inserted on Ki1 on the palm of both hindlimbs and connected to electroacupuncture unit for a 3.00 Hz direct current, 1 hr before surgery until the end of surgery. In treatment two groups, the electroacupuncture was also performed 48 and 24 hr before the operation, with the same protocol as treatment 1. Control 1 and control 2 groups had the same procedures like the treatment ones, except for acupuncture. Immediately after reperfusion, the samples of brains and hearts were taken and prepared for microscopic examination. Histopathological study of the heart in the control and treatment groups showed the breakage of myofibrils, hyaline necrosis, edema and disorganization of myocytes. The severity of cardiac lesions was decreased in both treatment groups in comparison with the controls. Brain in control and treatment groups showed ischemic necrosis, disorganization of the neurons in the hippocampus, and edema. The severity of lesions was reduced in the treatment groups and showed a significant difference between the control and treatment 1. It could be concluded that electroacupuncture on the Ki1 point could reduce the severity of damages induced by renal ischemia/reperfusion in the remote organs of the heart and brain.
Collapse
Affiliation(s)
- Sara Dehyadegari
- DVM Graduate, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Mehdi Oloumi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahrzad Azizi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
8
|
Li J, Xiang X, Xu H, Shi Y. Cilostazol Promotes Angiogenesis and Increases Cell Proliferation After Myocardial Ischemia-Reperfusion Injury Through a cAMP-Dependent Mechanism. Cardiovasc Eng Technol 2019; 10:638-647. [PMID: 31625080 DOI: 10.1007/s13239-019-00435-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE Previous study indicated the protective role of cilostazol in ischemia-reperfusion (I/R) injury. Here, we aimed to explore the function of cilostazol in myocardial I/R injury and the underlying mechanism. METHODS The myocardial I/R injury rat model was constructed, and the expression levels of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor receptor b (PDGF-B) and the number of new blood vessels were measured by qRT-PCR and immunohistochemistry. VSMC and HUVEC cells were treated with hypoxia to induce in vivo I/R injury model. The protein expression of AKT, endothelial nitric oxide synthase (eNOS) and apoptosis-related protein levels were detected by western blotting. Besides, the positive staining rate and cell viability were tested by 5-bromo-2-deoxyuridine (Brdu)/4',6-diamidino-2-phenylindole (DAPI) or DAPI/TdT-mediated dUTP Nick-End Labeling (TUNEL) staining and MTT assay. RESULTS Cilostazol promoted angiogenesis by increasing the number of new blood vessels and up-regulating the expression of VEGF, HGF, bFGF and PDGF-B in myocardial I/R-injury rat model. The in vitro experiments showed that cilostazol increased the level of eNOS and AKT, and also enhanced cell proliferation in hypoxia-treated VSMC and HUVEC cells. Furthermore, after 8-Br-cAMP treatment, VEGF, HGF, bFGF, PDGF-B, p-AKT and p-eNOS expression were up-regulated, while cleaved-caspase 3 and cleaved-PARP expression were down-regulated. In addition, the effects of cilostazol on cell viability and apoptosis were aggravated by 8-Br-cAMP and attenuated after KT-5720 treatment. CONCLUSION Cilostazol could promote angiogenesis, increase cell viability and inhibit cell apoptosis, consequently protecting myocardial tissues against I/R-injury through activating cAMP.
Collapse
Affiliation(s)
- Jiangjin Li
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China.
| | - Xiaoli Xiang
- Department of Nephrology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Hai Xu
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Yafei Shi
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| |
Collapse
|
9
|
Wang L, Lin R, Guo L, Hong M. Rosuvastatin relieves myocardial ischemia/reperfusion injury by upregulating PPAR‑γ and UCP2. Mol Med Rep 2018; 18:789-798. [PMID: 29845235 PMCID: PMC6059708 DOI: 10.3892/mmr.2018.9062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate whether pretreatment with rosuvastatin (RS) can provide cardioprotection in a myocardial ischemia/reperfusion (MI/R) model. The protective effect of RS on myocardial oxygen-glucose deprivation/reperfusion (OGD/R) injury was also evaluated by upregulating peroxisome proliferator-activated receptor-γ (PPAR-γ). In the present study, MI/R model was established and activities of superoxide dismutase (SOD), lactate dehydrogenase (LDH), creatine kinase-muscle/brain (CK-MB), malondialdehyde (MDA), and troponin I/T were measured. The infarct size was measured using Evans blue staining and cell viability was measured by MTT assay. Reactive oxygen species (ROS) levels were assessed by flow cytometry. Caspase-9, cytochrome c (cyt c), mitochondrial uncoupling protein 2 (UCP2) and PPAR-γ expression levels were detected by reverse transcription-quantitative polymerase chain reaction and western blotting. The results indicated that RS increased SOD activity, and decreased LDH, CK-MB, MDA and troponin I/T activities. The effect of RS was reversed by atractyloside (ATR). RS inhibited myocardial infarct size, downregulated expression of caspase-9 and cyt c and upregulated expression of UCP2 and PPAR-γ by inhibiting ATR. Furthermore, the results indicated that RS promoted cardiomyocyte viability, inhibited LDH release, reduced ROS production, decreased expression of caspase-9 and cyt c, and increased expression of UCP2 and PPAR-γ following OGD/R damage. Therefore, the present study demonstrated that RS protects primary myocardial cells against OGD/R injury by regulating PPAR-γ and UCP2. RS may be a promising therapeutic agent for treatment of MI/R injury.
Collapse
Affiliation(s)
- Ling Wang
- Department of Cardiovascular Medicine, Quanzhou First Hospital, Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Rong Lin
- Department of Cardiovascular Medicine, Quanzhou First Hospital, Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Langtao Guo
- Department of Cardiovascular Medicine, Quanzhou First Hospital, Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Meiman Hong
- Department of Cardiovascular Medicine, Quanzhou First Hospital, Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
10
|
Li J, Xiang X, Gong X, Shi Y, Yang J, Xu Z. Cilostazol protects mice against myocardium ischemic/reperfusion injury by activating a PPARγ/JAK2/STAT3 pathway. Biomed Pharmacother 2017; 94:995-1001. [PMID: 28810537 DOI: 10.1016/j.biopha.2017.07.143] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023] Open
Abstract
Myocardial ischemia/reperfusion (MIR) injury causes severe arrhythmias and a high lethality. The present study is designed to investigate the effect of cilostazol on MIR injury and the underlying mechaism. We measured the effects of cilostazol on heart function parameters in a mouse model of MIR. Proinflammatory cytokines and apoptosis proteins in the myocardium were examined to investigate the anti-inflammatory and anti-apoptosis ability of cilostazol. The participation of PPARγ/JAK2/STAT3 pathway was investigated. Results showed that the impairment of hemodynamic parameters caused by MIR was attenuated by cilostazol. The IL-6, IL-1β and TNF-a levels were all decreased by cilostazol. Cilostazol also significantly inhibited Bax and cleaved caspase-3 levels and restored the Bcl-2 levels. PPARγ, JAK2 and STAT3 were all activated by cilostazol. Treatment of inhibitors of them abolished the protective effects of cilostazol on cardiac function, myocardial inflammation and apoptosis. In summary, cilostazol alleviated the cardiac function impairment, myocardial inflammation and apoptosis induced by MIR. The results present a novel signaling mechanism that cilostazol protects MIR injury by activating a PPARγ/JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Jiangjin Li
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China.
| | - Xiaoli Xiang
- Department of Nephrology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Xiaoxuan Gong
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Yafei Shi
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Jing Yang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Zuo Xu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| |
Collapse
|
11
|
Fujii T, Obara H, Matsubara K, Fujimura N, Yagi H, Hibi T, Abe Y, Kitago M, Shinoda M, Itano O, Tanabe M, Masugi Y, Sakamoto M, Kitagawa Y. Oral administration of cilostazol improves survival rate after rat liver ischemia/reperfusion injury. J Surg Res 2017; 213:207-214. [PMID: 28601316 DOI: 10.1016/j.jss.2017.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cilostazol is a type III phosphodiesterase inhibitor used to treat the symptoms of intermittent claudication. Recent studies have shown that cilostazol decreases ischemia/reperfusion (I/R) injury in several organs. MATERIALS AND METHODS We evaluated the effects of cilostazol in a rat model of liver I/R injury. Thirty male Wistar rats with liver I/R injury were divided into a cilostazol or saline (control) group (n = 15 each). Each rat was orally administered cilostazol or saline for 3 d before I/R injury. Liver I/R injury was induced via 1 h of warm ischemia of the median and left lateral liver lobes, followed by 3 h of reperfusion. The rats were then euthanized. Serum aspartate aminotransferase, alanine aminotransferase, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels were measured. The Mann-Whitney U test was used to compare the differences between the treatment groups. Histologic examination was performed on the liver tissues. We also conducted a survival study to confirm the effect of cilostazol on the mortality rate in rats. For the survival study, a liver I/R injury model with an ischemia time of 1.5 h was used, and the rats were observed for 1 wk. RESULTS Serum aspartate aminotransferase, alanine aminotransferase, IL-1β, and IL-6 levels were significantly lower in the cilostazol group than in the saline group. Treatment with cilostazol significantly improved pathological findings associated with liver I/R injury and increased survival rate compared to that in controls. CONCLUSIONS Cilostazol reduced mortality and alleviated the effects of liver I/R injury in Wistar rats.
Collapse
Affiliation(s)
- Taku Fujii
- Department of Surgery, Hiratsuka City Hospital, Kanagawa, Japan
| | - Hideaki Obara
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan.
| | - Kentaro Matsubara
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Fujimura
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Taizo Hibi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Shinoda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Osamu Itano
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7190943. [PMID: 28116037 PMCID: PMC5225393 DOI: 10.1155/2016/7190943] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states.
Collapse
|