1
|
Ibrahim A, Gupton M, Schroeder F. Regenerative Medicine in Orthopedic Surgery: Expanding Our Toolbox. Cureus 2024; 16:e68487. [PMID: 39364457 PMCID: PMC11447103 DOI: 10.7759/cureus.68487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Regenerative medicine leverages the body's inherent regenerative capabilities to repair damaged tissues and address organ dysfunction. In orthopedics, this approach includes a variety of treatments collectively known as orthoregeneration, encompassing modalities such as prolotherapy, extracorporeal shockwave therapy, pulsed electromagnetic field therapy, therapeutic ultrasound, and photobiomodulation therapy, and orthobiologics like platelet-rich plasma and cell-based therapies. These minimally invasive techniques are becoming prominent due to their potential for fewer complications in orthopedic surgery. As regenerative medicine continues to advance, surgeons must stay informed about these developments. This paper highlights the current state of regenerative medicine in orthopedics and advocates for further clinical research to validate and expand these treatments to enhance patient outcomes.
Collapse
Affiliation(s)
- Ayah Ibrahim
- Orthopedic Surgery, Burrell College of Osteopathic Medicine, Las Cruces, USA
| | - Marco Gupton
- Orthopedic Surgery, Mountainview Regional Medical Center, Las Cruces, USA
| | - Frederick Schroeder
- Orthopedic Surgery, Burrell College of Osteopathic Medicine, Las Cruces, USA
| |
Collapse
|
2
|
Bordett R, Danazumi KB, Wijekoon S, Garcia CJ, Abdulmalik S, Kumbar SG. Advancements in stimulation therapies for peripheral nerve regeneration. Biomed Mater 2024; 19:052008. [PMID: 39025114 PMCID: PMC11425301 DOI: 10.1088/1748-605x/ad651d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Soft-tissue injuries affecting muscles, nerves, vasculature, tendons, and ligaments often diminish the quality of life due to pain, loss of function, and financial burdens. Both natural healing and surgical interventions can result in scarring, which potentially may impede functional recovery and lead to persistent pain. Scar tissue, characterized by a highly disorganized fibrotic extracellular matrix, may serve as a physical barrier to regeneration and drug delivery. While approaches such as drugs, biomaterials, cells, external stimulation, and other physical forces show promise in mitigating scarring and promoting regenerative healing, their implementation remains limited and challenging. Ultrasound, laser, electrical, and magnetic forms of external stimulation have been utilized to promote soft tissue as well as neural tissue regeneration. After stimulation, neural tissues experience increased proliferation of Schwann cells, secretion of neurotropic factors, production of myelin, and growth of vasculature, all aimed at supporting axon regeneration and innervation. Yet, the outcomes of healing vary depending on the pathophysiology of the damaged nerve, the timing of stimulation following injury, and the specific parameters of stimulation employed. Increased treatment intensity and duration have been noted to hinder the healing process by inducing tissue damage. These stimulation modalities, either alone or in combination with nerve guidance conduits and scaffolds, have been demonstrated to promote healing. However, the literature currently lacks a detailed understanding of the stimulation parameters used for nerve healing applications. In this article, we aim to address this gap by summarizing existing reports and providing an overview of stimulation parameters alongside their associated healing outcomes.
Collapse
Affiliation(s)
- Rosalie Bordett
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Khadija B Danazumi
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Suranji Wijekoon
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Christopher J Garcia
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sangamesh G Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
3
|
Li Z, Ye K, Yin Y, Zhou J, Li D, Gan Y, Peng D, Zhao L, Xiao M, Zhou Y, Dai Y, Tang Y. Low-intensity pulsed ultrasound ameliorates erectile dysfunction induced by bilateral cavernous nerve injury through enhancing Schwann cell-mediated cavernous nerve regeneration. Andrology 2023; 11:1188-1202. [PMID: 36762774 DOI: 10.1111/andr.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Cavernous nerve injury-induced erectile dysfunction caused by pelvic surgery or trauma is refractory to conventional medications and required an alternative treatment. Low-intensity pulsed ultrasound is a noninvasive mechanical therapy that promotes nerve regeneration. OBJECTIVES To investigate the therapeutic effect and potential mechanism of low-intensity pulsed ultrasound in the treatment of neurogenic erectile dysfunction. MATERIALS AND METHODS Thirty rats were randomly divided into the sham-operated group, bilateral cavernous nerve injury group, and bilateral cavernous nerve injury + low-intensity pulsed ultrasound group. The erectile function was assessed 3 weeks after daily low-intensity pulsed ultrasound treatment. The penile tissues and cavernous nerve tissues were harvested and subjected to histologic analysis. Primary Schwann cells and explants were extracted from adult rats. The effects of low-intensity pulsed ultrasound on proliferation, migration, and nerve growth factor expression of Schwann cells and axonal elongation were examined in vitro. RNA sequencing and western blot assay were applied to predict and verify the molecular mechanism of low-intensity pulsed ultrasound-induced Schwann cell activation. RESULTS Our study showed that low-intensity pulsed ultrasound promoted Schwann cells proliferation, migration, and neurotrophic factor nerve growth factor expression. Meanwhile, low-intensity pulsed ultrasound exhibits a stronger ability to enhance Schwann cells-mediated neurite outgrowth of major pelvic ganglion neurons and major pelvic ganglion/cavernous nerve explants in vitro. In vivo experiments demonstrated that the erectile function of the rats in the bilateral cavernous nerve injury + low-intensity pulsed ultrasound group was significantly higher than those in the bilateral cavernous nerve injury groups. Moreover, the expression levels of smooth muscle and cavernous endothelium also increased significantly in the bilateral cavernous nerve injury + low-intensity pulsed ultrasound group. In addition, we observed the higher density and number of cavernous nerve regenerating axons in the bilateral cavernous nerve injury + low-intensity pulsed ultrasound group, indicating that low-intensity pulsed ultrasound promotes axonal regeneration following cavernous nerve injury in vivo. RNA sequencing analysis and bioinformatic analysis suggested that low-intensity pulsed ultrasound might trigger the activation of the PI3K/Akt pathway. Western blot assay confirmed that low-intensity pulsed ultrasound activated Schwann cells through TrkB/Akt/CREB signaling. CONCLUSIONS Low-intensity pulsed ultrasound promoted nerve regeneration and ameliorated erectile function by enhancing Schwann cells proliferation, migration, and neurotrophic factor nerve growth factor expression. The TrkB/Akt/CREB axis is the possible mechanism of low-intensity pulsed ultrasound-mediated Schwann cell activation. Low-intensity pulsed ultrasound-based therapy could be a novel potential treatment strategy for cavernous nerve injury-induced neurogenic erectile dysfunction.
Collapse
Affiliation(s)
- Zitaiyu Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Kun Ye
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yinghao Yin
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Jun Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Dongjie Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongyi Peng
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liangyu Zhao
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Ming Xiao
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
4
|
Ribeiro DSC, Machado LJ, Pereira JG, Baptista ARDS, da Rocha EMDS. Laser therapy in the treatment of feline sporotrichosis: A case series. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2023; 45:e005822. [PMID: 37146090 PMCID: PMC10153455 DOI: 10.29374/2527-2179.bjvm005822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/03/2023] [Indexed: 05/07/2023] Open
Abstract
Sporotrichosis is the most prevalent subcutaneous mycosis in Latin America and is an important zoonosis in expansion throughout all the brazilian territory. Domestic cats are highly susceptible to the disease and play an important role in the spread of the agent to both other animals and humans. Sporothrix brasiliensis, the predominant species in the country, has greater virulence and some isolates also showed resistance to azoles, the class of antifungals of choice for treatment. Because it is a long-duration treatment, of high cost, and oral use, sick animals are often abandoned, which contributes to the spread and permanence of the infection as an important public health problem. Therefore, new therapeutic alternatives or adjuncts to treatment with antifungals may contribute to combating this zoonotic agent. In this work we describe the result of the treatment with laser therapy of eight Sporothrix spp infected cats. Our findings show the efficacy of the laser treatment even in different clinical forms. This technique has the potential to decrease the time length and costs of conventional treatment as well as the improvement of the treatment results.
Collapse
Affiliation(s)
- Daniella Souther Carvalho Ribeiro
- Veterinarian, MSc. Programa de Pós-graduação em Microbiologia e Parasitologia Aplicadas (PPGMPA),Departamento de Microbiologia e Parasitologia,Instituto Biomédico, Universidade Federal Fluminense (UFF)- Niterói, RJ, Brazil.
| | | | | | | | - Elisabeth Martins da Silva da Rocha
- Veterinarian, DSc., Departamento de Microbiologia e Parasitologia (MIP), Instituto Biomédico. Universidade Federal Fluminense (UFF). Niterói, RJ, Brazil.
- Correspondence
Elisabeth Martins da Silva da Rocha
Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense - UFF, Campus Valonguinho
Alameda Barros Terra, s/nº, Bloco E, Quinto Pavimento
CEP 24020-150 - Niterói (RJ), Brasil
E-mail:
| |
Collapse
|
5
|
Acheta J, Stephens SBZ, Belin S, Poitelon Y. Therapeutic Low-Intensity Ultrasound for Peripheral Nerve Regeneration – A Schwann Cell Perspective. Front Cell Neurosci 2022; 15:812588. [PMID: 35069118 PMCID: PMC8766802 DOI: 10.3389/fncel.2021.812588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 01/22/2023] Open
Abstract
Peripheral nerve injuries are common conditions that can arise from trauma (e.g., compression, severance) and can lead to neuropathic pain as well as motor and sensory deficits. Although much knowledge exists on the mechanisms of injury and nerve regeneration, treatments that ensure functional recovery following peripheral nerve injury are limited. Schwann cells, the supporting glial cells in peripheral nerves, orchestrate the response to nerve injury, by converting to a “repair” phenotype. However, nerve regeneration is often suboptimal in humans as the repair Schwann cells do not sustain their repair phenotype long enough to support the prolonged regeneration times required for successful nerve regrowth. Thus, numerous strategies are currently focused on promoting and extending the Schwann cells repair phenotype. Low-intensity ultrasound (LIU) is a non-destructive therapeutic approach which has been shown to facilitate peripheral nerve regeneration following nerve injury in rodents. Still, clinical trials in humans are scarce and limited to small population sizes. The benefit of LIU on nerve regeneration could possibly be mediated through the repair Schwann cells. In this review, we discuss the known and possible molecular mechanisms activated in response to LIU in repair Schwann cells to draw support and attention to LIU as a compelling regenerative treatment for peripheral nerve injury.
Collapse
|
6
|
Sasso LL, de Souza LG, Girasol CE, Marcolino AM, de Jesus Guirro RR, Barbosa RI. Photobiomodulation in Sciatic Nerve Crush Injuries in Rodents: A Systematic Review of the Literature and Perspectives for Clinical Treatment. J Lasers Med Sci 2020; 11:332-344. [PMID: 32802295 DOI: 10.34172/jlms.2020.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective : The aim of the study was to perform a literature review to analyze the effect of photobiomodulation in experimental studies on peripheral nerve regeneration after sciatic nerve crush injury in rodents. Methods: A bibliographic search was performed in the electronic databases, including MEDLINE (PubMed), SCOPUS, and SciELO, from 2008 to 2018. Results: A total of 1912 articles were identified in the search, and only 19 fulfilled all the inclusion criteria. Along with the parameters most found in the manuscripts, the most used wavelengths were 660 nm and 830 nm, power of 30 and 40 mW, and energy density of 4 and 10 J/cm2 . For total energy throughout the intervention period, the lowest energy found with positive effects was 0.70 J, and the highest 1.141 J. Seventeen studies reported positive effects on nerve regeneration. The variables selected to analyze the effect were: Sciatic Functional Index (SFI), Static Sciatic Index (SSI), morphometric, morphological, histological, zymographic, electrophysiological, resistance mechanics and range of motion (ROM). The variety of parameters used in the studies demonstrated that there is yet no pre-determined protocol for treating peripheral nerve regeneration. Only two studies by different authors used the same power, energy density, beam area, and power density. Conclusion: It was concluded that the therapeutic window of the photobiomodulation presents a high variability of parameters with the wavelength (632.8 to 940 nm), power (5 to 170 mW) and energy density (3 to 280 J /cm2 ), promoting nerve regeneration through the expression of cytokines and growth factors that aid in modulating the inflammatory process, improving morphological aspects, restoring the functionality to the animals in a brief period.
Collapse
Affiliation(s)
- Letícia Lemes Sasso
- Department of Health Sciences, Federal University of Santa Catarina/UFSC - Araranguá, Brazil
| | - Luana Gabriel de Souza
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina / UFSC - Araranguá, Brazil
| | - Carlos Eduardo Girasol
- Postgraduate Program in Rehabilitation and Functional Performance, University of São Paulo/USP - Ribeirão Preto, Brazil
| | - Alexandre Márcio Marcolino
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina / UFSC - Araranguá, Brazil
| | | | - Rafael Inácio Barbosa
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina / UFSC - Araranguá, Brazil.,Postgraduate Program in Rehabilitation and Functional Performance, University of São Paulo/USP - Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Alayat MSM, Basalamah MA, Elbarrany WGEAE, El-Sawy NAM, Abdel-Kafy EM, El-Fiky AAR. Dose-dependent effect of the pulsed Nd:YAG laser in the treatment of crushed sciatic nerve in Wister rats: an experimental model. Lasers Med Sci 2020; 35:1989-1998. [PMID: 32193821 DOI: 10.1007/s10103-020-02999-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
The objective of the study was to investigate the efficacy of three energy densities 4, 10, and 50 J/cm2 of pulsed Nd:YAG laser for the treatment of crushed sciatic nerve in Wister rats by evaluating changes in the sciatic functional index and the electrophysiology.A total of 180 Wistar rats were involved in the study. Rats were randomly assigned to five groups. Rats were subjected to the sciatic nerve crushing. Control negative (CONT-ve), which received no crushing; control positive (CONT+ve), which received crushing with no laser; and HILT-4, HILT-10, and HILT-50 groups, which received pulsed Nd:YAG laser (10 Hz, 360 mJ/cm2) with energy densities 4, 10, and 50 J/cm2, respectively. The SFI, the amilitude of compound motor action potential (CMAP) and sciatic motor nerve conduction velocity (MNCV) were measured before and after seven, 14, and 21 days after crushing. For the SFI and electrophysiological analysis, repeated measures ANOVA is used, followed by Bonferroni's repeated-measures test. Statistical significance was set at p < 0.05. After one week, there was no significant difference in SFI, CMAP, and MNCV among the three laser groups with significant changes between them and CONT-ve and CONT+ve groups. There was a significant increase in either CMAP amplitude or MNCV after 14 days with significant decrease in the SFI after 21 days among all treatment groups. The pulsed Nd:YAG laser applied with energy densities 4, 10, and 50 J/cm2 significantly decreased the SFI and increased the CMAP and MNCV of the crushed sciatic nerve in Wister rats. Among laser doses, the difference in the rate of recovery in the electrophysiology was found after two weeks while in the SFI after three weeks. The improvement after the nerve injury was time and dose dependent.
Collapse
Affiliation(s)
| | | | | | | | - Ehab Mohamed Abdel-Kafy
- Physical Therapy Department, Faculty of Applied Medical Science, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Amir Abdel-Raouf El-Fiky
- Physical Therapy Department, Faculty of Applied Medical Science, Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
8
|
Kolu E, Buyukavci R, Akturk S, Eren F, Ersoy Y. Comparison of high-intensity laser therapy and combination of transcutaneous nerve stimulation and ultrasound treatment in patients with chronic lumbar radiculopathy: A randomized single-blind study. Pak J Med Sci 2018; 34:530-534. [PMID: 30034410 PMCID: PMC6041553 DOI: 10.12669/pjms.343.14345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objective: To compare the effects of high-intensity laser therapy (HILT) and a combination of transcutaneous nerve stimulation (TENS) with ultrasound (US) therapy on pain and functionality in patients with chronic lumbar radiculopathy. Methods: This prospective randomized comparative study was conducted in Department of physical medicine and rehabilitation, Turgut Ozal Medicine Center, Malatya, Turkey from April 2016 to September 2016. A total of 54 patients with chronic lumbar radiculopathy were enrolled in this study. The patients were randomly divided into two groups: Group 1 (n:27) received 10 sessions of a combination of hot pack, TENS, US and exercise, and Group 2 (n:27) received hot pack, HILT and exercise. The outcomes measured were low back with unilateral leg pain level measured by visual analog scale (VAS) and functionality measured with the Oswestry Disability Index (ODI) at the end of the therapy and four weeks later. p-value less than 0.05 considered statistically significant. Results: In two groups, VAS (low back with unilateral leg pain) and ODI scores showed significant changes. At the end of the 2 weeks intervention, participants in Group-1 showed a significantly greater decrease in pain than participants in Group-2. Statistically significant differences in pain variation and functionality (VAS and ODI) were observed four weeks after treatment sessions for participants in the TENS+US therapy group compared with participants in the HILT group. Conclusion: HILT and TENS+US combined with exercise were effective treatment modalities in decreasing the VAS and ODI scores. TENS+US combined with exercises were more effective than HILT combined with exercise.
Collapse
Affiliation(s)
- Emine Kolu
- Emine Kolu, Inonu University, Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Malatya, Turkey
| | - Raikan Buyukavci
- Raikan Buyukavci, Inonu University, Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Malatya, Turkey
| | - Semra Akturk
- Semra Akturk, Inonu University, Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Malatya, Turkey
| | - Fatma Eren
- Fatma Eren, Inonu University, Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Malatya, Turkey
| | - Yuksel Ersoy
- Yuksel Ersoy, Inonu University, Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Malatya, Turkey
| |
Collapse
|
9
|
Daeschler SC, Harhaus L, Schoenle P, Boecker A, Kneser U, Bergmeister KD. Ultrasound and shock-wave stimulation to promote axonal regeneration following nerve surgery: a systematic review and meta-analysis of preclinical studies. Sci Rep 2018; 8:3168. [PMID: 29453349 PMCID: PMC5816639 DOI: 10.1038/s41598-018-21540-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/06/2018] [Indexed: 01/21/2023] Open
Abstract
Limited regeneration after nerve injury often leads to delayed or incomplete reinnervation and consequently insufficient muscle function. Following nerve surgery, application of low-intensity ultrasound or extracorporeal shock waves may promote nerve regeneration and improve functional outcomes. Because currently clinical data is unavailable, we performed a meta-analysis following the PRISMA-guidelines to investigate the therapeutic effect of ultrasound and shock wave therapies on motor nerve regeneration. Ten ultrasound-studies (N = 445 rats) and three shock-wave studies (N = 110 rats) were identified from multiple databases. We calculated the difference in means or standardized mean difference with 95% confidence intervals for motor function, nerve conduction velocity and histomorphological parameters of treated versus sham or non-treated animals. Ultrasound treatment showed significantly faster nerve conduction, increased axonal regeneration with thicker myelin and improved motor function on sciatic functional index scale (week two: DM[95%CI]: 19,03[13,2 to 25,6], 71 animals; week four: 7,4[5,4 to 9,5], 47 animals). Shock wave induced recovery improvements were temporarily significant. In conclusion, there is significant evidence for low-intensity ultrasound but not for extracorporeal shock wave treatment to improve nerve regeneration. Prospective clinical trials should therefore investigate available FDA-approved ultrasound devices as adjunct postoperative treatment following nerve surgery.
Collapse
Affiliation(s)
- Simeon C Daeschler
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - Philipp Schoenle
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - Arne Boecker
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital Ludwigshafen, Ludwigshafen, Germany
| | - Konstantin D Bergmeister
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital Ludwigshafen, Ludwigshafen, Germany.
| |
Collapse
|
10
|
Hu Z, Zhang H, Mordovanakis A, Paulus YM, Liu Q, Wang X, Yang X. High-precision, non-invasive anti-microvascular approach via concurrent ultrasound and laser irradiation. Sci Rep 2017; 7:40243. [PMID: 28074839 PMCID: PMC5225605 DOI: 10.1038/srep40243] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/05/2016] [Indexed: 11/09/2022] Open
Abstract
Antivascular therapy represents a proven strategy to treat angiogenesis. By applying synchronized ultrasound bursts and nanosecond laser irradiation, we developed a novel, selective, non-invasive, localized antivascular method, termed photo-mediated ultrasound therapy (PUT). PUT takes advantage of the high native optical contrast among biological tissues and can treat microvessels without causing collateral damage to the surrounding tissue. In a chicken yolk sac membrane model, under the same ultrasound parameters (1 MHz at 0.45 MPa and 10 Hz with 10% duty cycle), PUT with 4 mJ/cm2 and 6 mJ/cm2 laser fluence induced 51% (p = 0.001) and 37% (p = 0.018) vessel diameter reductions respectively. With 8 mJ/cm2 laser fluence, PUT would yield vessel disruption (90%, p < 0.01). Selectivity of PUT was demonstrated by utilizing laser wavelengths at 578 nm or 650 nm, where PUT selectively shrank veins or occluded arteries. In a rabbit ear model, PUT induced a 68.5% reduction in blood perfusion after 7 days (p < 0.001) without damaging the surrounding cells. In vitro experiments in human blood suggested that cavitation may play a role in PUT. In conclusion, PUT holds significant promise as a novel non-invasive antivascular method with the capability to precisely target blood vessels.
Collapse
Affiliation(s)
- Zizhong Hu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA.,Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Haonan Zhang
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Institute of Acoustics, Tongji University, Shanghai, P.R. China
| | - Aghapi Mordovanakis
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Yannis M Paulus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Qinghuai Liu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Xinmai Yang
- Bioengineering Research Center and Department of Mechanical Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
11
|
Stefancic M, Vidmar G, Blagus R. Long-term recovery of muscle strength after denervation in the fibular division of the sciatic nerve. Muscle Nerve 2016; 54:702-8. [DOI: 10.1002/mus.25103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Martin Stefancic
- University Rehabilitation Institute; Linhartova 51 SI-1000 Ljubljana Slovenia
| | - Gaj Vidmar
- University Rehabilitation Institute; Linhartova 51 SI-1000 Ljubljana Slovenia
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics, University of Ljubljana; Ljubljana Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska; Koper Slovenia
| | - Rok Blagus
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics, University of Ljubljana; Ljubljana Slovenia
| |
Collapse
|
12
|
Kim SH, Kim YH, Lee HR, Choi YE. Short-term effects of high-intensity laser therapy on frozen shoulder: A prospective randomized control study. ACTA ACUST UNITED AC 2015; 20:751-7. [PMID: 25770420 DOI: 10.1016/j.math.2015.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 02/12/2015] [Accepted: 02/20/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Frozen shoulder, which is characterized by shoulder pain and limitation of the range of motion (ROM), is a common disorder. High-intensity laser therapy (HILT) was recently introduced in the musculoskeletal therapeutic field. OBJECTIVE The objective of this study is to evaluate the clinical efficacy of HILT in patients with frozen shoulder. DESIGN A prospective randomized controlled study. METHOD Patients with frozen shoulder were randomly divided into 2 groups: a HILT group (n = 33) and a placebo group (n = 33). The treatment was administered 3 times per week on alternate days for 3 weeks. For all patients, the visual analog scale (VAS) for pain, VAS for satisfaction, and passive ROM were measured at baseline and 3, 8, and 12 weeks after the treatment. RESULTS The HILT group had a lower pain VAS score at 3 weeks (3.2 ± 1.7 vs. 4.3 ± 2.2, p = 0.033) and 8 weeks (2.2 ± 2.0 vs. 3.4 ± 2.7, p = 0.042), however, no statistically significant difference in the pain VAS was observed between the two groups at the final follow-up (12 weeks). No statistical difference in the ROM and the satisfaction VAS was observed between the 2 groups at serial follow-ups. CONCLUSIONS In management of frozen shoulder, HILT provided significant pain relief at 3 and 8 weeks, but not at the final follow-up time point. HILT is a noninvasive adjuvant treatment that can reduce pain in frozen shoulders. Further study is needed in order to optimize the dose and duration of HILT.
Collapse
Affiliation(s)
- Sae Hoon Kim
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Yeon Ho Kim
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Hwa-Ryeong Lee
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Young Eun Choi
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|