1
|
Chen C, Han Y, Xiao H, Zou B, Wu D, Sha L, Yang C, Liu S, Cheng Y, Wang Y, Kang H, Fan X, Zhou Y, Zhang T, Zhang H. Chromosome-specific painting in Thinopyrum species using bulked oligonucleotides. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:177. [PMID: 37540294 DOI: 10.1007/s00122-023-04423-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Chromosome-specific painting probes were developed to identify the individual chromosomes from 1 to 7E in Thinopyrum species and detect alien genetic material of the E genome in a wheat background. The E genome of Thinopyrum is closely related to the ABD genome of wheat (Triticum aestivum L.) and harbors genes conferring beneficial traits to wheat, including high yield, disease resistance, and unique end-use quality. Species of Thinopyrum vary from diploid (2n = 2x = 14) to decaploid (2n = 10x = 70), and chromosome structural variation and differentiation have arisen during polyploidization. To investigate the variation and evolution of the E genome, we developed a complete set of E genome-specific painting probes for identification of the individual chromosomes 1E to 7E based on the genome sequences of Th. elongatum (Host) D. R. Dewey and wheat. By using these new probes in oligonucleotide-based chromosome painting, we showed that Th. bessarabicum (PI 531711, EbEb) has a close genetic relationship with diploid Th. elongatum (EeEe), with five chromosomes (1E, 2E, 3E, 6E, and 7E) maintaining complete synteny in the two species except for a reciprocal translocation between 4 and 5Eb. All 14 pairs of chromosomes of tetraploid Th. elongatum have maintained complete synteny with those of diploid Th. elongatum (Thy14), but the two sets of E genomes have diverged. This study also demonstrated that the E genome-specific painting probes are useful for rapid and effective detection of the alien genetic material of E genome in wheat-Thinopyrum derived lines.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - He Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bingcan Zou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Cairong Yang
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, 611130, Sichuan, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Kroupin PY, Ulyanov DS, Karlov GI, Divashuk MG. The launch of satellite: DNA repeats as a cytogenetic tool in discovering the chromosomal universe of wild Triticeae. Chromosoma 2023:10.1007/s00412-023-00789-4. [PMID: 36905415 DOI: 10.1007/s00412-023-00789-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
Fluorescence in situ hybridization is a powerful tool that enables plant researchers to perform systematic, evolutionary, and population studies of wheat wild relatives as well as to characterize alien introgression into the wheat genome. This retrospective review reflects on progress made in the development of methods for creating new chromosomal markers since the launch of this cytogenetic satellite instrument to the present day. DNA probes based on satellite repeats have been widely used for chromosome analysis, especially for "classical" wheat probes (pSc119.2 and Afa family) and "universal" repeats (45S rDNA, 5S rDNA, and microsatellites). The rapid development of new-generation sequencing and bioinformatical tools, and the application of oligo- and multioligonucleotides has resulted in an explosion in the discovery of new genome- and chromosome-specific chromosome markers. Owing to modern technologies, new chromosomal markers are appearing at an unprecedented velocity. The present review describes the specifics of localization when employing commonly used vs. newly developed probes for chromosomes in J, E, V, St, Y, and P genomes and their diploid and polyploid carriers Agropyron, Dasypyrum, Thinopyrum, Pseudoroegneria, Elymus, Roegneria, and Kengyilia. Particular attention is paid to the specificity of probes, which determines their applicability for the detection of alien introgression to enhance the genetic diversity of wheat through wide hybridization. The information from the reviewed articles is summarized into the TRepeT database, which may be useful for studying the cytogenetics of Triticeae. The review describes the trends in the development of technology used in establishing chromosomal markers that can be used for prediction and foresight in the field of molecular biology and in methods of cytogenetic analysis.
Collapse
Affiliation(s)
- Pavel Yu Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia.
| | - Daniil S Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Gennady I Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Mikhail G Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| |
Collapse
|
3
|
Rosselló JA, Maravilla AJ, Rosato M. The Nuclear 35S rDNA World in Plant Systematics and Evolution: A Primer of Cautions and Common Misconceptions in Cytogenetic Studies. FRONTIERS IN PLANT SCIENCE 2022; 13:788911. [PMID: 35283933 PMCID: PMC8908318 DOI: 10.3389/fpls.2022.788911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/27/2022] [Indexed: 05/04/2023]
Abstract
The ubiquitous presence of rRNA genes in nuclear, plastid, and mitochondrial genomes has provided an opportunity to use genomic markers to infer patterns of molecular and organismic evolution as well as to assess systematic issues throughout the tree of life. The number, size, location, and activity of the 35S rDNA cistrons in plant karyotypes have been used as conventional cytogenetic landmarks. Their scrutiny has been useful to infer patterns of chromosomal evolution and the data have been used as a proxy for assessing species discrimination, population differentiation and evolutionary relationships. The correct interpretation of rDNA markers in plant taxonomy and evolution is not free of drawbacks given the complexities derived from the lability of the genetic architecture, the diverse patterns of molecular change, and the fate and evolutionary dynamics of the rDNA units in hybrids and polyploid species. In addition, the terminology used by independent authors is somewhat vague, which often complicates comparisons. To date, no efforts have been reported addressing the potential problems and limitations involved in generating, utilizing, and interpreting the data from the 35S rDNA in cytogenetics. This review discusses the main technical and conceptual limitations of these rDNA markers obtained by cytological and karyological experimental work, in order to clarify biological and evolutionary inferences postulated in a systematic and phylogenetic context. Also, we provide clarification for some ambiguity and misconceptions in terminology usually found in published work that may help to improve the usage of the 35S ribosomal world in plant evolution.
Collapse
|
4
|
Báez M, Souza G, Guerra M. Does the chromosomal position of 35S rDNA sites influence their transcription? A survey on Nothoscordum species (Amaryllidaceae). Genet Mol Biol 2020; 43:e20180194. [PMID: 31469154 PMCID: PMC7197985 DOI: 10.1590/1678-4685-gmb-2018-0194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/21/2019] [Indexed: 11/22/2022] Open
Abstract
35S ribosomal DNA (rDNA) sites are the regions where the ribosomal genes 18S, 5.8S and 25S, responsible for the formation of the nucleoli, are found. The fact that rDNA sites have non-random distribution on chromosomes suggests that their positions may influence their transcription. To identify if the preferentially transcribed rDNA sites occupy specific position, six species (nine cytotypes) of the genus Nothoscordum were analyzed using two different techniques to impregnate the nucleolar organizer regions (NORs) with silver nitrate. Both techniques strongly stained NORs, but one of them also stained the proximal region of all chromosomes, suggesting the existence of another group of argentophilic proteins in this region. In species with rDNA sites in acrocentric and metacentric chromosomes, sites located on the short arms of the acrocentric chromosomes were preferentially activated. On the other hand, in species with rDNA sites restricted to the short arms of the acrocentrics, all of them were activated, whereas in those species with sites restricted to the terminal region of metacentric chromosomes, the frequency of active sites was always lower than expected. This indicate that, at least in Nothoscordum, the transcription of an rDNA site is influenced by its chromosomal position, and may explain, at least partially, the strongly non-random distribution of these sites in plant and animal chromosomes.
Collapse
Affiliation(s)
- Mariana Báez
- Universidade Federal de Pernambuco, Departamento de Botânica, Laboratório de Citogenética e Evolução de Plantas, Recife, PE, Brazil
| | - Gustavo Souza
- Universidade Federal de Pernambuco, Departamento de Botânica, Laboratório de Citogenética e Evolução de Plantas, Recife, PE, Brazil
| | - Marcelo Guerra
- Universidade Federal de Pernambuco, Departamento de Botânica, Laboratório de Citogenética e Evolução de Plantas, Recife, PE, Brazil
| |
Collapse
|
5
|
Badaeva ED, Surzhikov SA, Agafonov AV. Molecular-cytogenetic analysis of diploid wheatgrass Thinopyrum bessarabicum (Savul. and Rayss) A. Löve. COMPARATIVE CYTOGENETICS 2019; 13:389-402. [PMID: 31844506 PMCID: PMC6904353 DOI: 10.3897/compcytogen.v13i4.36879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Thinopyrum bessarabicum (T. Săvulescu & T. Rayss, 1923) A. Löve, 1980 is diploid (2n=2x=14, JJ or EbEb), perennial self-fertilizing rhizomatous maritime beach grass, which is phylogenetically close to another diploid wheatgrass species, Agropyron elongatum (N. Host, 1797) P. de Beauvois, 1812. The detailed karyotype of Th. bessarabicum was constructed based on FISH with six DNA probes representing 5S and 45S rRNA gene families and four tandem repeats. We found that the combination of pAesp_SAT86 (= pTa-713) probe with pSc119.2 or pAs1/ pTa-535 allows the precise identification of all J-genome chromosomes. Comparison of our data with the results of other authors showed that karyotypically Th. bessarabicum is distinct from A. elongatum. On the other hand, differences between the J-genome chromosomes of Th. bessarabicum and the chromosomes of hexaploid Th. intermedium (N. Host, 1797) M. Barkworth & D.R. Dewey, 1985 and decaploid Th. ponticum (J. Podpěra, 1902) Z.-W. Liu & R.-C. Wang, 1993 in the distribution of rDNA loci and hybridization patterns of pSc119.2 and pAs1 probes could be an indicative of (1) this diploid species was probably not involved in the origin of these polyploids or (2) it could has contributed the J-genome to Th. intermedium and Th. ponticum, but it was substantially modified over the course of speciation.
Collapse
Affiliation(s)
- Ekaterina D. Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences. Gubkina str. 3, Moscow 117333, RussiaEngelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences. Vavilova str. 34, Moscow 117334, RussiaN.I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences. Vavilova str. 34, Moscow 117334, RussiaN.I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Alexander V. Agafonov
- Central Siberian Botanical Garden, Russian Academy of Sciences, Siberian Branch, Zolotodolinskaya st., 101, Novosibirsk 630090, RussiaCentral Siberian Botanical Garden, Russian Academy of SciencesNovosibirskRussia
| |
Collapse
|
6
|
Paštová L, Belyayev A, Mahelka V. Molecular cytogenetic characterisation of Elytrigia ×mucronata, a natural hybrid of E. intermedia and E. repens (Triticeae, Poaceae). BMC PLANT BIOLOGY 2019; 19:230. [PMID: 31151385 PMCID: PMC6544950 DOI: 10.1186/s12870-019-1806-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 04/26/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Interspecific hybridisation resulting in polyploidy is one of the major driving forces in plant evolution. Here, we present data from the molecular cytogenetic analysis of three cytotypes of Elytrigia ×mucronata using sequential fluorescence (5S rDNA, 18S rDNA and pSc119.2 probes) and genomic in situ hybridisation (four genomic probes of diploid taxa, i.e., Aegilops, Dasypyrum, Hordeum and Pseudoroegneria). RESULTS The concurrent presence of Hordeum (descended from E. repens) and Dasypyrum + Aegilops (descended from E. intermedia) chromosome sets in all cytotypes of E. ×mucronata confirmed the assumed hybrid origin of the analysed plants. The following different genomic constitutions were observed for E. ×mucronata. Hexaploid plants exhibited three chromosome sets from Pseudoroegneria and one chromosome set each from Aegilops, Hordeum and Dasypyrum. Heptaploid plants harboured the six chromosome sets of the hexaploid plants and an additional Pseudoroegneria chromosome set. Nonaploid cytotypes differed in their genomic constitutions, reflecting different origins through the fusion of reduced and unreduced gametes. The hybridisation patterns of repetitive sequences (5S rDNA, 18S rDNA, and pSc119.2) in E. ×mucronata varied between and within cytotypes. Chromosome alterations that were not identified in the parental species were found in both heptaploid and some nonaploid plants. CONCLUSIONS The results confirmed that both homoploid hybridisation and heteroploid hybridisation that lead to the coexistence of four different haplomes within single hybrid genomes occur in Elytrigia allopolyploids. The chromosomal alterations observed in both heptaploid and some nonaploid plants indicated that genome restructuring occurs during and/or after the hybrids arose. Moreover, a specific chromosomal translocation detected in one of the nonaploids indicated that it was not a primary hybrid. Therefore, at least some of the hybrids are fertile. Hybridisation in Triticeae allopolyploids clearly and significantly contributes to genomic diversity. Different combinations of parental haplomes coupled with chromosomal alterations may result in the establishment of unique lineages, thus providing raw material for selection.
Collapse
Affiliation(s)
- Ladislava Paštová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Charles University, Benátská 2, 128 01 Prague, Czech Republic
| | - Alexander Belyayev
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
| | - Václav Mahelka
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
| |
Collapse
|
7
|
Kroupin PY, Kuznetsova VM, Nikitina EA, Martirosyan YT, Karlov GI, Divashuk MG. Development of new cytogenetic markers for Thinopyrum ponticum (Podp.) Z.-W. Liu & R.-C. Wang. COMPARATIVE CYTOGENETICS 2019; 13:231-243. [PMID: 31440353 PMCID: PMC6702164 DOI: 10.3897/compcytogen.v13i3.36112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/22/2019] [Indexed: 05/19/2023]
Abstract
Thinopyrum ponticum (Podpěra, 1902) Z.-W. Liu & R.-C.Wang, 1993 is an important polyploid wild perennial Triticeae species that is widely used as a source of valuable genes for wheat but its genomic constitution has long been debated. For its chromosome identification, only a limited set of FISH probes has been used. The development of new cytogenetic markers for Th. ponticum chromosomes is of great importance both for cytogenetic characterization of wheat-wheatgrass hybrids and for fundamental comparative studies of phylogenetic relationships between species. Here, we report on the development of five cytogenetic markers for Th. ponticum based on repetitive satellite DNA of which sequences were selected from the whole genome sequence of Aegilops tauschii Cosson, 1849. Using real-time quantitative PCR we estimated the abundance of the found repeats: P720 and P427 had the highest abundance and P132, P332 and P170 had lower quantity in Th. ponticum genome. Using fluorescence in situ hybridization (FISH) we localized five repeats to different regions of the chromosomes of Th. ponticum. Using reprobing multicolor FISH we colocalized the probes between each other. The distribution of these found repeats in the Triticeae genomes and its usability as cytogenetic markers for chromosomes of Th. ponticum are discussed.
Collapse
Affiliation(s)
- Pavel Yu Kroupin
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia All-Russia Research Institute of Agricultural Biotechnology Moscow Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia Russian State Agrarian University-Moscow Timiryazev Agricultural Academ Moscow Russia
| | - Victoria M Kuznetsova
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia All-Russia Research Institute of Agricultural Biotechnology Moscow Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia Russian State Agrarian University-Moscow Timiryazev Agricultural Academ Moscow Russia
| | - Ekaterina A Nikitina
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia All-Russia Research Institute of Agricultural Biotechnology Moscow Russia
| | - Yury Ts Martirosyan
- Group of Aeroponic Plant Growing Technologies, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia Russian State Agrarian University-Moscow Timiryazev Agricultural Acade Moscow Russia
| | - Gennady I Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia All-Russia Research Institute of Agricultural Biotechnology Moscow Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia Russian State Agrarian University-Moscow Timiryazev Agricultural Academ Moscow Russia
| | - Mikhail G Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya str. 42, Moscow 127550, Russia All-Russia Research Institute of Agricultural Biotechnology Moscow Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya str. 49, Moscow 127550, Russia Russian State Agrarian University-Moscow Timiryazev Agricultural Academ Moscow Russia
| |
Collapse
|
8
|
Said M, Hřibová E, Danilova TV, Karafiátová M, Čížková J, Friebe B, Doležel J, Gill BS, Vrána J. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2213-2227. [PMID: 30069594 PMCID: PMC6154037 DOI: 10.1007/s00122-018-3148-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/23/2018] [Indexed: 05/04/2023]
Abstract
Fluorescence in situ hybridization with probes for 45 cDNAs and five tandem repeats revealed homoeologous relationships of Agropyron cristatum with wheat. The results will contribute to alien gene introgression in wheat improvement. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat and a promising source of novel genes for wheat improvement. To date, identification of A. cristatum chromosomes has not been possible, and its molecular karyotype has not been available. Furthermore, homoeologous relationship between the genomes of A. cristatum and wheat has not been determined. To develop chromosome-specific landmarks, A. cristatum genomic DNA was sequenced, and new tandem repeats were discovered. Their distribution on mitotic chromosomes was studied by fluorescence in situ hybridization (FISH), which revealed specific patterns for five repeats in addition to 5S and 45S ribosomal DNA and rye subtelomeric repeats pSc119.2 and pSc200. FISH with one tandem repeat together with 45S rDNA enabled identification of all A. cristatum chromosomes. To analyze the structure and cross-species homoeology of A. cristatum chromosomes with wheat, probes for 45 mapped wheat cDNAs covering all seven chromosome groups were localized by FISH. Thirty-four cDNAs hybridized to homoeologous chromosomes of A. cristatum, nine hybridized to homoeologous and non-homoeologous chromosomes, and two hybridized to unique positions on non-homoeologous chromosomes. FISH using single-gene probes revealed that the wheat-A. cristatum collinearity was distorted, and important structural rearrangements were observed for chromosomes 2P, 4P, 5P, 6P and 7P. Chromosomal inversions were found for pericentric region of 4P and whole chromosome arm 6PL. Furthermore, reciprocal translocations between 2PS and 4PL were detected. These results provide new insights into the genome evolution within Triticeae and will facilitate the use of crested wheatgrass in alien gene introgression into wheat.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Eva Hřibová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Tatiana V Danilova
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Bernd Friebe
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Bikram S Gill
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic.
| |
Collapse
|
9
|
Li D, Li T, Wu Y, Zhang X, Zhu W, Wang Y, Zeng J, Xu L, Fan X, Sha L, Zhang H, Zhou Y, Kang H. FISH-Based Markers Enable Identification of Chromosomes Derived From Tetraploid Thinopyrum elongatum in Hybrid Lines. FRONTIERS IN PLANT SCIENCE 2018; 9:526. [PMID: 29765383 PMCID: PMC5938340 DOI: 10.3389/fpls.2018.00526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 05/19/2023]
Abstract
Tetraploid Thinopyrum elongatum, which has superior abiotic stress tolerance characteristics, and exhibits resistance to stripe rust, powdery mildew, and Fusarium head blight, is a wild relative of wheat and a promising source of novel genes for wheat improvement. Currently, a high-resolution Fluorescence in situ hybridization (FISH) karyotype of tetraploid Th. elongatum is not available. To develop chromosome-specific FISH-based markers, the hexaploid Trititrigia 8801 and two accessions of tetraploid Th. elongatum were characterized by different repetitive sequences probes. We found that all E-genome chromosomes could be unambiguously identified using a combination of pSc119.2, pTa535, pTa71, and pTa713 repeats, and the E-genome chromosomes of the wild accessions and the partial amphiploid failed to exhibit any significant variation in the probe hybridization patterns. To verify the validation of these markers, the chromosome constitution of eight wheat- Th. elongatum hybrid derivatives were analyzed. We revealed that these probes could quickly detect wheat and tetraploid Th. elongatum chromosomes in hybrid lines. K16-712-1-2 was a 1E (1D) chromosome substitution line, K16-681-4 was a 2E disomic chromosome addition line, K16-562-3 was a 3E, 4E (3D, 4D) chromosome substitution line, K15-1033-8-2 contained one 4E, two 5E, and one 4ES⋅1DL Robertsonian translocation chromosome, and four other lines carried monosomic 4E, 5E, 6E, and 7E chromosome, respectively. Furthermore, the E-genome specific molecular markers analysis corresponded perfectly with the FISH results. The developed FISH markers will facilitate rapid identification of tetraploid Th. elongatum chromosomes in wheat improvement programs and allow appropriate alien chromosome transfer.
Collapse
Affiliation(s)
- Daiyan Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tinghui Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Ruban AS, Badaeva ED. Evolution of the S-Genomes in Triticum-Aegilops Alliance: Evidences From Chromosome Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1756. [PMID: 30564254 PMCID: PMC6288319 DOI: 10.3389/fpls.2018.01756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/12/2018] [Indexed: 05/20/2023]
Abstract
Five diploid Aegilops species of the Sitopsis section: Ae. speltoides, Ae. longissima, Ae. sharonensis, Ae. searsii, and Ae. bicornis, two tetraploid species Ae. peregrina (= Ae. variabilis) and Ae. kotschyi (Aegilops section) and hexaploid Ae. vavilovii (Vertebrata section) carry the S-genomes. The B- and G-genomes of polyploid wheat are also the derivatives of the S-genome. Evolution of the S-genome species was studied using Giemsa C-banding and fluorescence in situ hybridization (FISH) with DNA probes representing 5S (pTa794) and 18S-5.8S-26S (pTa71) rDNAs as well as nine tandem repeats: pSc119.2, pAesp_SAT86, Spelt-1, Spelt-52, pAs1, pTa-535, and pTa-s53. To correlate the C-banding and FISH patterns we used the microsatellites (CTT)10 and (GTT)9, which are major components of the C-banding positive heterochromatin in wheat. According to the results obtained, diploid species split into two groups corresponding to Emarginata and Truncata sub-sections, which differ in the C-banding patterns, distribution of rDNA and other repeats. The B- and G-genomes of polyploid wheat are most closely related to the S-genome of Ae. speltoides. The genomes of allopolyploid wheat have been evolved as a result of different species-specific chromosome translocations, sequence amplification, elimination and re-patterning of repetitive DNA sequences. These events occurred independently in different wheat species and in Ae. speltoides . The 5S rDNA locus of chromosome 1S was probably lost in ancient Ae. speltoides prior to formation of Timopheevii wheat, but after the emergence of ancient emmer. Evolution of Emarginata species was associated with an increase of C-banding and (CTT)10-positive heterochromatin, amplification of Spelt-52, re-pattering of the pAesp_SAT86, and a gradual decrease in the amount of the D-genome-specific repeats pAs1, pTa-535, and pTa-s53. The emergence of Ae. peregrina and Ae. kotschyi did not lead to significant changes of the S*-genomes. However, partial elimination of 45S rDNA repeats from 5S* and 6S* chromosomes and alterations of C-banding and FISH-patterns have been detected. Similarity of the Sv-genome of Ae. vavilovii with the Ss genome of diploid Ae. searsii confirmed the origin of this hexaploid. A model of the S-genome evolution is suggested.
Collapse
Affiliation(s)
- Alevtina S. Ruban
- Laboratory of Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ekaterina D. Badaeva
- Laboratory of Genetic Basis of Plant Identification, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Ekaterina D. Badaeva
| |
Collapse
|
11
|
Mirzaghaderi G, Abdolmalaki Z, Zohouri M, Moradi Z, Mason AS. Dynamic nucleolar activity in wheat × Aegilops hybrids: evidence of C-genome dominance. PLANT CELL REPORTS 2017; 36:1277-1285. [PMID: 28456843 DOI: 10.1007/s00299-017-2152-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
NOR loci of C-subgenome are dominant in wheat × Aegilops interspecific hybrids, which may have evolutionary implications for wheat group genome dynamics and evolution. After interspecific hybridisation, some genes are often expressed from only one of the progenitor species, shaping subsequent allopolyploid genome evolution processes. A well-known example is nucleolar dominance, i.e. the formation of cell nucleoli from chromosomes of only one parental species. We studied nucleolar organizing regions (NORs) in diploid Aegilops markgrafii (syn: Ae. caudata; CC), Ae. umbellulata (UU), allotetraploids Aegilops cylindrica (CcCcDcDc) and Ae. triuncialis (CtCtUtUt), synthetic interspecific F1 hybrids between these two allotetraploids and bread wheat (Triticum aestivum, AABBDD) and in F3 generation hybrids with genome composition AABBDDCtCtUtUt using silver staining and fluorescence in situ hybridization (FISH). In Ae. markgrafii (CC), NORs of both 1C and 5C or only 5C chromosome pairs were active in different individual cells, while only NORs on 1U chromosomes were active in Ae. umbellulata (UU). Although all 35S rDNA loci of the Ct subgenome (located on 1Ct and 5Ct) were active in Ae. triuncialis, only one pair (occupying either 1Cc or 5Cc) was active in Ae. cylindrica, depending on the genotype studied. These C-genome expression patterns were transmitted to the F1 and F3 generations. Wheat chromosome NOR activity was variable in Ae. triuncialis × T. aestivum F1 seeds, but silenced by the F3 generation. No effect of maternal or paternal cross direction was observed. These results indicate that C-subgenome NOR loci are dominant in wheat × Aegilops interspecific hybrids, which may have evolutionary implications for wheat group genome dynamics and allopolyploid evolution.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran.
| | - Zinat Abdolmalaki
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Mohsen Zohouri
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Zeinab Moradi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | - Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
12
|
Atia MAM, Adawy SS, El-Itriby HA. Date Palm Sex Differentiation Based on Fluorescence In Situ Hybridization (FISH). Methods Mol Biol 2017; 1638:245-256. [PMID: 28755228 DOI: 10.1007/978-1-4939-7159-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In situ hybridization (ISH) is used to visualize defined DNA sequences in cellular preparations by hybridization of complementary probe sequences. Recently, the fluorescence in situ hybridization (FISH) technique has become a powerful and useful tool for the direct detection of specific DNA fragments in the genome. Ribosomal DNA genes (45S and 5S rDNA) are commonly used as markers for the physical mapping of plant chromosomes to analyze genomic organization. Here we describe cytological-based markers to differentiate date palm gender through localization of 45S and 5S rDNA markers on date palm chromosomes using FISH.
Collapse
Affiliation(s)
- Mohamed A M Atia
- Molecular Genetics and Genome Mapping Laboratory (MGGM), Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, 12619, Egypt.
| | - Sami S Adawy
- Molecular Genetics and Genome Mapping Laboratory (MGGM), Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, 12619, Egypt
| | | |
Collapse
|
13
|
Molecular cytogenetic characterization and stem rust resistance of five wheat-Thinopyrum ponticum partial amphiploids. J Genet Genomics 2014; 41:591-9. [PMID: 25434682 DOI: 10.1016/j.jgg.2014.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/27/2014] [Accepted: 06/09/2014] [Indexed: 11/21/2022]
Abstract
Partial amphiploids created by crossing common wheat (Triticum aestivum L.) and Thinopyrum ponticum (Podp.) Barkworth & D. R. Dewey are important intermediates in wheat breeding because of their resistance to major wheat diseases. In this study, we examined the chromosome compositions of five Xiaoyan-series wheat-Th. ponticum partial amphiploids (Xiaoyan 68, Xiaoyan 693, Xiaoyan 784, Xiaoyan 7430, and Xiaoyan 7631) using GISH, multicolor-GISH, and multicolor-FISH. We found several chromosome changes in these lines. For example, wheat chromosomes 1B and 2B were added in Xiaoyan 68 and Xiaoyan 7430, respectively, while wheat chromosome 6B was eliminated from Xiaoyan 693 and Xiaoyan 7631. Chromosome rearrangements were also detected in these amphiploids, including an interspecific translocation involving chromosome 4D and some intergenomic translocations, such as A-B and A-D translocations, among wheat genomes. Analysis of the Th. ponticum chromosomes in the amphiploids showed that some lines shared the same alien chromosomes. We also evaluated these partial amphiploids for resistance to nine races of stem rust, including TTKSK (commonly known as Ug99). Three lines, Xiaoyan 68, Xiaoyan 784, and Xiaoyan 7430, exhibited excellent resistance to all nine races, and could therefore be valuable sources of stem rust resistance in wheat breeding.
Collapse
|
14
|
Mahelka V, Kopecký D, Baum BR. Contrasting Patterns of Evolution of 45S and 5S rDNA Families Uncover New Aspects in the Genome Constitution of the Agronomically Important Grass Thinopyrum intermedium (Triticeae). Mol Biol Evol 2013; 30:2065-86. [DOI: 10.1093/molbev/mst106] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
15
|
Barros e Silva A, dos Santos Soares Filho W, Guerra M. Linked 5S and 45S rDNA Sites Are Highly Conserved through the Subfamily Aurantioideae (Rutaceae). Cytogenet Genome Res 2013; 140:62-9. [DOI: 10.1159/000350695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
|
16
|
Tomas P, González G, Schrauf G, Poggio L. Chromosomal characterization in native populations of Elymus scabrifolius from Argentina through classical and molecular cytogenetics (FISH–GISH). Genome 2012; 55:591-8. [DOI: 10.1139/g2012-046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The karyotype of Elymus scabrifolius (Döll) J.H. Hunz. (2n = 4x = 28) was investigated by DAPI staining and in situ hybridization. All the accessions studied presented a symmetric and uniform karyotype constituted by 9m+2m–sm+3sm. DAPI stain showed 1–7 conspicuous bands in all the chromosomes and polymorphisms between accessions. FISH experiments carried out with 45S rDNA as probe (pTa71) showed strong hybridization signals on the metacentric SAT-chromosome pair 8; the submetacentric SAT-chromosome pair 13 presented weaker hybridization. FISH using pSc119.2 clone as probe identified five chromosome pairs. Then, the combination of chromosome morphology, DAPI-staining, and FISH enabled the accurate identification of each chromosome pair in E. scabrifolius. Genomic in situ hybridization (GISH) experiments using Hordeum DNA as probe on mitotic metaphases confirmed unequivocally the presence of the H genome in E. scabrifolius, allowing us to observe six uniformly labeled chromosome pairs and two chromosome pairs with only one arm labeled. The remaining six chromosome pairs were weakly labeled. The rehybridization of FISH slides with Hordeum DNA as probe allow us to assign the genomic provenance of most of the chromosomes in the studied accessions. Moreover, intergenomic rearrangement was detected between genome H and the still unknown progenitor genome.
Collapse
Affiliation(s)
- P.A. Tomas
- Cátedra de Genética – Fac. Cs. Agrarias – Univ. Nacional del Litoral – R.P. Kreder 2805 (3080) Esperanza (Santa Fe), Argentina
| | - G.E. González
- Dpto. Ecología, Genética y Evolución – Fac. Cs. Exactas y Naturales – Univ. de Buenos Aires – Ciudad Universitaria, Pabellón II, Lab. 62, 4° Piso (1400) Ciudad Autónoma de Buenos Aires, Argentina
| | - G.E. Schrauf
- Cátedra de Genética – Fac. de Agronomía – Univ. de Buenos Aires – San Martín 4457 (1457) Ciudad Autónoma de Buenos Aires, Argentina
| | - L. Poggio
- Dpto. Ecología, Genética y Evolución – Fac. Cs. Exactas y Naturales – Univ. de Buenos Aires – Ciudad Universitaria, Pabellón II, Lab. 62, 4° Piso (1400) Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
17
|
Linc G, Sepsi A, Molnár-Láng M. A FISH Karyotype to Study Chromosome Polymorphisms for the Elytrigia elongata E Genome. Cytogenet Genome Res 2012; 136:138-44. [DOI: 10.1159/000334835] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 11/19/2022] Open
|
18
|
|
19
|
Arterburn M, Kleinhofs A, Murray T, Jones S. Polymorphic nuclear gene sequences indicate a novel genome donor in the polyploid genus Thinopyrum. Hereditas 2011; 148:8-27. [DOI: 10.1111/j.1601-5223.2010.02084.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Sepsi A, Molnár I, Szalay D, Molnár-Láng M. Characterization of a leaf rust-resistant wheat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:825-34. [PMID: 18224300 DOI: 10.1007/s00122-008-0716-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 01/08/2008] [Indexed: 05/19/2023]
Abstract
In situ hybridization (multicolor GISH and FISH) was used to characterize the genomic composition of the wheat-Thinopyrum ponticum partial amphiploid BE-1. The amphiploid is a high-protein line having resistance to leaf rust (Puccinia recondita f. sp. tritici) and powdery mildew (Blumeria graminis f. sp. tritici) and has in total 56 chromosomes per cell. Multicolor GISH using J, A and D genomic probes showed 16 chromosomes originating from Thinopyrum ponticum and 14 A genome, 14 B genome and 12 D genome chromosomes. Six of the Th. ponticum chromosomes carried segments different from the J genome in their centromeric regions. It was demonstrated that these alien chromosome segments did not originate from the A, B or D genomes of wheat, so the translocation chromosomes were considered to be J(s) type chromosomes carrying segments similar to the S genome near the centromeres. Rearrangements between the A and D genomes of wheat were detected. FISH using Afa family, pSc119.2 and pTa71 probes allowed the identification of all the wheat chromosomes present and the determination of the chromosomes involved in the translocations. The 4A and 7A chromosomes were identified as being involved in intergenomic translocations. The replaced wheat chromosome was identified as 7D. The localization of these repetitive DNA clones on the Th. ponticum chromosomes of the amphiploid was described in the present study. On the basis of their multicolor FISH patterns, the alien chromosomes could be arranged in eight pairs and could also be differentiated unequivocally from each other.
Collapse
Affiliation(s)
- A Sepsi
- Agricultural Research Institute of the Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | | | | | | |
Collapse
|
21
|
Zheng Q, Li B, Mu S, Zhou H, Li Z. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome 2007; 49:1109-14. [PMID: 17110991 DOI: 10.1139/g06-073] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The original blue-grained wheat, Blue 58, was a substitution line derived from hybridization between common wheat (Triticum aestivum L., 2n=6x=42, ABD) and tall wheatgrass (Thinopyrum ponticum Liu & Wang=Agropyron elongatum, 2n=10x=70, StStEeEbEx), in which one pair of 4D chromosomes was replaced by a pair of alien 4Ag chromosomes (unknown group 4 chromosome from A. ponticum). Blue aleurone might be a useful cytological marker in chromosome engineering and wheat breeding. Cytogenetic analysis showed that blue aleurone was controlled by chromosome 4Ag. GISH analysis proved that the 4Ag was a recombination chromosome; its centromeric and pericentromeric regions were from an E-genome chromosome, but the distal regions of its two arms were from an St-genome chromosome. On its short arm, there was a major pAs1 hybridization band, which was very close to the centromere. GISH and FISH analysis in a set of translocation lines with different seed colors revealed that the gene(s) controlling the blue pigment was located on the long arm of 4Ag. It was physically mapped to the 0.71-0.80 regions (distance measured from the centromere of 4Ag). The blue color is a consequence of dosage of this small chromosome region derived from the St genome. We speculate that the blue-grained gene(s) could activate the anthocyanin biosynthetic pathway of wheat.
Collapse
Affiliation(s)
- Qi Zheng
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
22
|
Clarindo WR, Carvalho CR. A High Quality Chromosome Preparation from Cell Suspension Aggregates Culture of Coffea canephora. CYTOLOGIA 2006. [DOI: 10.1508/cytologia.71.243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Wellington Ronildo Clarindo
- Laboratory of Cytogenetics and Cytometry, Departamento de Biologia Geral, Universidade Federal de Viçosa, Brazil
| | - Carlos Roberto Carvalho
- Laboratory of Cytogenetics and Cytometry, Departamento de Biologia Geral, Universidade Federal de Viçosa, Brazil
| |
Collapse
|
23
|
de Almeida PM, Carvalho CR, Clarindo WR. Classical and Molecular Cytogenetic Tools to Resolve the Bixa Karyotypes. CYTOLOGIA 2006. [DOI: 10.1508/cytologia.71.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Pedro Marcos de Almeida
- Laboratory of Cytogenetics and Cytometry, Departamento de Biologia Geral, Universidade Federal de Viçosa, Brazil
| | - Carlos Roberto Carvalho
- Laboratory of Cytogenetics and Cytometry, Departamento de Biologia Geral, Universidade Federal de Viçosa, Brazil
| | - Wellington Ronildo Clarindo
- Laboratory of Cytogenetics and Cytometry, Departamento de Biologia Geral, Universidade Federal de Viçosa, Brazil
| |
Collapse
|
24
|
Cabral JS, Felix LP, Guerra M. Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae). Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000400015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
VAIO MAGDALENA, SPERANZA PABLO, VALLS JOSÉFRANCISCO, GUERRA MARCELO, MAZZELLA CRISTINA. Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae). ANNALS OF BOTANY 2005; 96:191-200. [PMID: 15911540 PMCID: PMC4246868 DOI: 10.1093/aob/mci168] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS The Quadrifaria group of Paspalum (Poaceae, Paniceae) comprises species native to the subtropical and temperate regions of South America. The purpose of this research was to characterize the I genomes in five species of this group and to establish phylogenetic relationships among them. METHODS Prometaphase chromatin condensation patterns, the physical location of 5S and 45S rDNA sites by fluorescence in situ hybridization (FISH), and sequences of five chloroplast non-coding regions were analysed. KEY RESULTS The condensation patterns observed were highly conserved among diploid and tetraploid accessions studied and not influenced by the dyes used or by the FISH procedure, allowing the identification of almost all the chromosome pairs that carried the rDNA signals. The FISH analysis of 5S rDNA sites showed the same localization and a correspondence between the number of sites and ploidy level. In contrast, the distribution of 45S rDNA sites was variable. Two general patterns were observed with respect to the location of the 45S rDNA. The species and cytotypes Paspalum haumanii 2x, P. intermedium 2x, P. quadrifarium 4x and P. exaltatum 4x showed proximal sites on chromosome 8 and two to four distal sites in other chromosomes, while P. quarinii 4x and P. quadrifarium 2x showed only distal sites located on a variable number of small chromosomes and on the long arm of chromosome 1. The single most-parsimonious tree found from the phylogenetic analysis showed the Quadrifaria species partitioned in two clades, one of them includes P. haumanii 2x and P. intermedium 2x together with P. quadrifarium 4x and P. exaltatum 4x, while the other contains P. quadrifarium 2x and P. quarinii 4x. CONCLUSIONS The subdivision found with FISH is consistent with the clades recovered with cpDNA data and both analyses suggest that the Quadrifaria group, as presently defined, is not monophyletic and its species belong in at least two clades.
Collapse
Affiliation(s)
- MAGDALENA VAIO
- Laboratory of Genetics, Department of Plant Biology, Facultad de Agronomía, Universidad de la República, Av. E. Garzón 780 CP12900, Montevideo, Uruguay
| | - PABLO SPERANZA
- Laboratory of Genetics, Department of Plant Biology, Facultad de Agronomía, Universidad de la República, Av. E. Garzón 780 CP12900, Montevideo, Uruguay
- Florida Museum of Natural History, Dickinson Hall, University of Florida, Gainsville, FL 32611-7800, USA
| | - JOSÉ FRANCISCO VALLS
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília DF 70770-900, Brazil
| | - MARCELO GUERRA
- Department of Botany, CCB, Federal University of Pernambuco, Rua Nelson Chaves s/n, 50670-420, Recife, Pernambuco, Brazil
| | - CRISTINA MAZZELLA
- Laboratory of Genetics, Department of Plant Biology, Facultad de Agronomía, Universidad de la República, Av. E. Garzón 780 CP12900, Montevideo, Uruguay
- For correspondence. E-mail
| |
Collapse
|
26
|
Brasileiro-Vidal AC, Cuadrado A, Brammer SP, Benko-Iseppon AM, Guerra M. Molecular cytogenetic characterization of parental genomes in the partial amphidiploid Triticum aestivum x Thinopyrum ponticum. Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|