1
|
Wijaya AJ, Anžel A, Richard H, Hattab G. Current state and future prospects of Horizontal Gene Transfer detection. NAR Genom Bioinform 2025; 7:lqaf005. [PMID: 39935761 PMCID: PMC11811736 DOI: 10.1093/nargab/lqaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/26/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Artificial intelligence (AI) has been shown to be beneficial in a wide range of bioinformatics applications. Horizontal Gene Transfer (HGT) is a driving force of evolutionary changes in prokaryotes. It is widely recognized that it contributes to the emergence of antimicrobial resistance (AMR), which poses a particularly serious threat to public health. Many computational approaches have been developed to study and detect HGT. However, the application of AI in this field has not been investigated. In this work, we conducted a review to provide information on the current trend of existing computational approaches for detecting HGT and to decipher the use of AI in this field. Here, we show a growing interest in HGT detection, characterized by a surge in the number of computational approaches, including AI-based approaches, in recent years. We organize existing computational approaches into a hierarchical structure of computational groups based on their computational methods and show how each computational group evolved. We make recommendations and discuss the challenges of HGT detection in general and the adoption of AI in particular. Moreover, we provide future directions for the field of HGT detection.
Collapse
Affiliation(s)
- Andre Jatmiko Wijaya
- Center for Artificial Intelligent in Public Health Research (ZKI-PH), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität, Arnimallee 14, 14195 Berlin, Germany
- Genome Competence Center (MF1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Aleksandar Anžel
- Center for Artificial Intelligent in Public Health Research (ZKI-PH), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Hugues Richard
- Genome Competence Center (MF1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Georges Hattab
- Center for Artificial Intelligent in Public Health Research (ZKI-PH), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
2
|
hgtseq: A Standard Pipeline to Study Horizontal Gene Transfer. Int J Mol Sci 2022; 23:ijms232314512. [PMID: 36498841 PMCID: PMC9738810 DOI: 10.3390/ijms232314512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer (HGT) is well described in prokaryotes: it plays a crucial role in evolution, and has functional consequences in insects and plants. However, less is known about HGT in humans. Studies have reported bacterial integrations in cancer patients, and microbial sequences have been detected in data from well-known human sequencing projects. Few of the existing tools for investigating HGT are highly automated. Thanks to the adoption of Nextflow for life sciences workflows, and to the standards and best practices curated by communities such as nf-core, fully automated, portable, and scalable pipelines can now be developed. Here we present nf-core/hgtseq to facilitate the analysis of HGT from sequencing data in different organisms. We showcase its performance by analysing six exome datasets from five mammals. Hgtseq can be run seamlessly in any computing environment and accepts data generated by existing exome and whole-genome sequencing projects; this will enable researchers to expand their analyses into this area. Fundamental questions are still open about the mechanisms and the extent or role of horizontal gene transfer: by releasing hgtseq we provide a standardised tool which will enable a systematic investigation of this phenomenon, thus paving the way for a better understanding of HGT.
Collapse
|
3
|
Firrao G, Scortichini M, Pagliari L. Orthology-Based Estimate of the Contribution of Horizontal Gene Transfer from Distantly Related Bacteria to the Intraspecific Diversity and Differentiation of Xylella fastidiosa. Pathogens 2021; 10:46. [PMID: 33430372 PMCID: PMC7828034 DOI: 10.3390/pathogens10010046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Xylella fastidiosa is a xylem-limited bacterium phylogenetically related to the xanthomonads, with an unusually large and diversified range of plant hosts. To ascertain the origin of its peculiarities, its pan-genome was scanned to identify the genes that are not coherent with its phylogenetic position within the order Xanthomonadales. The results of the analysis revealed that a large fraction of the genes of the Xylella pan-genome have no ortholog or close paralog in the order Xanthomonadales. For a significant part of the genes, the closest homologue was found in bacteria belonging to distantly related taxonomic groups, most frequently in the Betaproteobacteria. Other species, such as Xanthomonas vasicola and Xanthomonas albilineans which were investigated for comparison, did not show a similar genetic contribution from distant branches of the prokaryotic tree of life. This finding indicates that the process of acquisition of DNA from the environment is still a relevant component of Xylella fastidiosa evolution. Although the ability of Xylella fastidiosa strains to recombine among themselves is well known, the results of the pan-genome analyses stressed the additional relevance of environmental DNA in shaping their genomes, with potential consequences on their phytopathological features.
Collapse
Affiliation(s)
- Giuseppe Firrao
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Marco Scortichini
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria-Centro di ricerca per l’Olivicoltura, Frutticoltura e Agrumicoltura, Via di Fioranello, 52, 00134 Rome, Italy;
| | - Laura Pagliari
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| |
Collapse
|
4
|
Watanabe Costa R, Batista MF, Meneghelli I, Vidal RO, Nájera CA, Mendes AC, Andrade-Lima IA, da Silveira JF, Lopes LR, Ferreira LRP, Antoneli F, Bahia D. Comparative Analysis of the Secretome and Interactome of Trypanosoma cruzi and Trypanosoma rangeli Reveals Species Specific Immune Response Modulating Proteins. Front Immunol 2020; 11:1774. [PMID: 32973747 PMCID: PMC7481403 DOI: 10.3389/fimmu.2020.01774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 12/04/2022] Open
Abstract
Chagas disease, a zoonosis caused by the flagellate protozoan Trypanosoma cruzi, is a chronic and systemic parasitic infection that affects ~5–7 million people worldwide, mainly in Latin America. Chagas disease is an emerging public health problem due to the lack of vaccines and effective treatments. According to recent studies, several T. cruzi secreted proteins interact with the human host during cell invasion. Moreover, some comparative studies with T. rangeli, which is non-pathogenic in humans, have been performed to identify proteins directly involved in the pathogenesis of the disease. In this study, we present an integrated analysis of canonical putative secreted proteins (PSPs) from both species. Additionally, we propose an interactome with human host and gene family clusters, and a phylogenetic inference of a selected protein. In total, we identified 322 exclusively PSPs in T. cruzi and 202 in T. rangeli. Among the PSPs identified in T. cruzi, we found several trans-sialidases, mucins, MASPs, proteins with phospholipase 2 domains (PLA2-like), and proteins with Hsp70 domains (Hsp70-like) which have been previously characterized and demonstrated to be related to T. cruzi virulence. PSPs found in T. rangeli were related to protozoan metabolism, specifically carboxylases and phosphatases. Furthermore, we also identified PSPs that may interact with the human immune system, including heat shock and MASP proteins, but in a lower number compared to T. cruzi. Interestingly, we describe a hypothetical hybrid interactome of PSPs which reveals that T. cruzi secreted molecules may be down-regulating IL-17 whilst T. rangeli may enhance the production of IL-15. These results will pave the way for a better understanding of the pathophysiology of Chagas disease and may ultimately lead to the identification of molecular targets, such as key PSPs, that could be used to minimize the health outcomes of Chagas disease by modulating the immune response triggered by T. cruzi infection.
Collapse
Affiliation(s)
- Renata Watanabe Costa
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marina Ferreira Batista
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela Meneghelli
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ramon Oliveira Vidal
- The Berlin Institute for Medical Systems Biology-Max Delbrück Center for Molecular Medicine in the Helmholtz Association in Berlin, Berlin, Germany.,Laboratorio Nacional de Biociências (LNBio), Campinas, São Paulo, Brazil
| | - Carlos Alcides Nájera
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Clara Mendes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Augusta Andrade-Lima
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luciano Rodrigo Lopes
- Departamento de Informática em Saúde, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- RNA Systems Biology Lab (RSBL), Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Antoneli
- Departamento de Informática em Saúde, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Hou F, Ma B, Xin Y, Kuang L, He N. Horizontal transfers of LTR retrotransposons in seven species of Rosales. Genome 2018; 61:587-594. [PMID: 29958091 DOI: 10.1139/gen-2017-0208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Horizontal transposable element transfer (HTT) events have occurred among a large number of species and play important roles in the composition and evolution of eukaryotic genomes. HTTs are also regarded as effective forces in promoting genomic variation and biological innovation. In the present study, HTT events were identified and analyzed in seven sequenced species of Rosales using bioinformatics methods by comparing sequence conservation and Ka/Ks value of reverse transcriptase (RT) with 20 conserved genes, estimating the dating of HTTs, and analyzing the phylogenetic relationships. Seven HTT events involving long terminal repeat (LTR) retrotransposons, two HTTs between Morus notabilis and Ziziphus jujuba, and five between Malus domestica and Pyrus bretschneideri were identified. Further analysis revealed that these LTR retrotransposons had functional structures, and the copy insertion times were lower than the dating of HTTs, particularly in Mn.Zj.1 and Md.Pb.3. Altogether, the results demonstrate that LTR retrotransposons still have potential transposition activity in host genomes. These results indicate that HTT events are another strategy for exchanging genetic material among species and are important for the evolution of genomes.
Collapse
Affiliation(s)
- Fei Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Youchao Xin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Lulu Kuang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
6
|
Flórez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, Kaltenpoth M. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat Commun 2018; 9:2478. [PMID: 29946103 PMCID: PMC6018673 DOI: 10.1038/s41467-018-04955-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Microbial symbionts are often a source of chemical novelty and can contribute to host defense against antagonists. However, the ecological relevance of chemical mediators remains unclear for most systems. Lagria beetles live in symbiosis with multiple strains of Burkholderia bacteria that protect their offspring against pathogens. Here, we describe the antifungal polyketide lagriamide, and provide evidence supporting that it is produced by an uncultured symbiont, Burkholderia gladioli Lv-StB, which is dominant in field-collected Lagria villosa. Interestingly, lagriamide is structurally similar to bistramides, defensive compounds found in marine tunicates. We identify a gene cluster that is probably involved in lagriamide biosynthesis, provide evidence for horizontal acquisition of these genes, and show that the naturally occurring symbiont strains on the egg are protective in the soil environment. Our findings highlight the potential of microbial symbionts and horizontal gene transfer as influential sources of ecological innovation.
Collapse
Affiliation(s)
- Laura V Flórez
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany.
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany.
| | - Ian J Miller
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705-2222, USA
| | - Andre Rodrigues
- Department of Biochemistry and Microbiology, UNESP-São Paulo State University, Av. 24A, n. 1515-Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Jason C Kwan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI, 53705-2222, USA
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
- Natural Product Chemistry, Friedrich Schiller University, 07743, Jena, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany
| |
Collapse
|
7
|
Wallau GL, Vieira C, Loreto ÉLS. Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome. Mob DNA 2018; 9:6. [PMID: 29422954 PMCID: PMC5791352 DOI: 10.1186/s13100-018-0112-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Background All living species contain genetic information that was once shared by their common ancestor. DNA is being inherited through generations by vertical transmission (VT) from parents to offspring and from ancestor to descendant species. This process was considered the sole pathway by which biological entities exchange inheritable information. However, Horizontal Transfer (HT), the exchange of genetic information by other means than parents to offspring, was discovered in prokaryotes along with strong evidence showing that it is a very important process by which prokaryotes acquire new genes. Main body For some time now, it has been a scientific consensus that HT events were rare and non-relevant for evolution of eukaryotic species, but there is growing evidence supporting that HT is an important and frequent phenomenon in eukaryotes as well. Conclusion Here, we will discuss the latest findings regarding HT among eukaryotes, mainly HT of transposons (HTT), establishing HTT once and for all as an important phenomenon that should be taken into consideration to fully understand eukaryotes genome evolution. In addition, we will discuss the latest development methods to detect such events in a broader scale and highlight the new approaches which should be pursued by researchers to fill the knowledge gaps regarding HTT among eukaryotes.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- 1Entomology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE Brazil
| | - Cristina Vieira
- 2Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, F-69622 Villeurbanne, France
| | - Élgion Lúcio Silva Loreto
- 3Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS Brazil
| |
Collapse
|
8
|
Fischer MJC, Rustenhloz C, Leh-Louis V, Perrière G. Molecular and functional evolution of the fungal diterpene synthase genes. BMC Microbiol 2015; 15:221. [PMID: 26483054 PMCID: PMC4617483 DOI: 10.1186/s12866-015-0564-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/12/2015] [Indexed: 11/24/2022] Open
Abstract
Background Terpenes represent one of the largest and most diversified families of natural compounds and are used in numerous industrial applications. Terpene synthase (TPS) genes originated in bacteria as diterpene synthase (di-TPS) genes. They are also found in plant and fungal genomes. The recent availability of a large number of fungal genomes represents an opportunity to investigate how genes involved in diterpene synthesis were acquired by fungi, and to assess the consequences of this process on the fungal metabolism. Results In order to investigate the origin of fungal di-TPS, we implemented a search for potential fungal di-TPS genes and identified their presence in several unrelated Ascomycota and Basidiomycota species. The fungal di-TPS phylogenetic tree is function-related but is not associated with the phylogeny based on housekeeping genes. The lack of agreement between fungal and di-TPS-based phylogenies suggests the presence of Horizontal Gene Transfer (HGTs) events. Further evidence for HGT was provided by conservation of synteny of di-TPS and neighbouring genes in distantly related fungi. Conclusions The results obtained here suggest that fungal di-TPSs originated from an ancient HGT event of a single di-TPS gene from a plant to a fungus in Ascomycota. In fungi, these di-TPSs allowed for the formation of clusters consisting in di-TPS, GGPPS and P450 genes to create functional clusters that were transferred between fungal species, producing diterpenes acting as hormones or toxins, thus affecting fungal development and pathogenicity. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0564-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marc J C Fischer
- Université de Strasbourg, INRA, Inst Natl Recherche Agron, Métab Second Vigne, Unit Mixte Recherche Santé Vigne & Qual Vins, 28 rue de Herrlisheim, F-68021, Colmar, France.
| | - Camille Rustenhloz
- Université de Strasbourg, INRA, Inst Natl Recherche Agron, Métab Second Vigne, Unit Mixte Recherche Santé Vigne & Qual Vins, 28 rue de Herrlisheim, F-68021, Colmar, France.
| | - Véronique Leh-Louis
- Université de Strasbourg, CNRS, FRE 2326, Institut de Biologie Moléculaire et Cellulaire du CNRS, UPR 9002, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Guy Perrière
- Universite Claude Bernard - Lyon 1, 43 bd. du 11 Novembre 1918, Laboratoire de Biometrie et Biologie Evolutive, UMR CNRS 5558, F-69622, Villeurbanne, France.
| |
Collapse
|
9
|
Dias ES, Hatt C, Hamon S, Hamon P, Rigoreau M, Crouzillat D, Carareto CMA, de Kochko A, Guyot R. Large distribution and high sequence identity of a Copia-type retrotransposon in angiosperm families. PLANT MOLECULAR BIOLOGY 2015; 89:83-97. [PMID: 26245353 DOI: 10.1007/s11103-015-0352-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
Retrotransposons are the main component of plant genomes. Recent studies have revealed the complexity of their evolutionary dynamics. Here, we have identified Copia25 in Coffea canephora, a new plant retrotransposon belonging to the Ty1-Copia superfamily. In the Coffea genomes analyzed, Copia25 is present in relatively low copy numbers and transcribed. Similarity sequence searches and PCR analyses show that this retrotransposon with LTRs (Long Terminal Repeats) is widely distributed among the Rubiaceae family and that it is also present in other distantly related species belonging to Asterids, Rosids and monocots. A particular situation is the high sequence identity found between the Copia25 sequences of Musa, a monocot, and Ixora, a dicot species (Rubiaceae). Our results reveal the complexity of the evolutionary dynamics of the ancient element Copia25 in angiosperm, involving several processes including sequence conservation, rapid turnover, stochastic losses and horizontal transfer.
Collapse
Affiliation(s)
- Elaine Silva Dias
- IRD UMR DIADE, EVODYN, BP 64501, 34394, Montpellier Cedex 5, France.
- Department of Biology, UNESP-Univ. Estadual Paulista, São José do Rio Preto, Araraquara, SP, Brazil.
| | - Clémence Hatt
- IRD UMR DIADE, EVODYN, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Serge Hamon
- IRD UMR DIADE, EVODYN, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Perla Hamon
- IRD UMR DIADE, EVODYN, BP 64501, 34394, Montpellier Cedex 5, France.
| | - Michel Rigoreau
- Nestlé R&D Tours, 101 AV. G. Eiffel, Notre Dame d'Oé, BP 49716, 37097, Tours, Cedex 2, France.
| | - Dominique Crouzillat
- Nestlé R&D Tours, 101 AV. G. Eiffel, Notre Dame d'Oé, BP 49716, 37097, Tours, Cedex 2, France.
| | | | | | - Romain Guyot
- Institut de Recherche pour le Développement (IRD), UMR IPME, BP 64501, 34394, Montpellier Cedex 5, France.
| |
Collapse
|
10
|
Modolo L, Picard F, Lerat E. A new genome-wide method to track horizontally transferred sequences: application to Drosophila. Genome Biol Evol 2015; 6:416-32. [PMID: 24497602 PMCID: PMC3942030 DOI: 10.1093/gbe/evu026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Because of methodological breakthroughs and the availability of an increasing amount of whole-genome sequence data, horizontal transfers (HTs) in eukaryotes have received much attention recently. Contrary to similar analyses in prokaryotes, most studies in eukaryotes usually investigate particular sequences corresponding to transposable elements (TEs), neglecting the other components of the genome. We present a new methodological framework for the genome-wide detection of all putative horizontally transferred sequences between two species that requires no prior knowledge of the transferred sequences. This method provides a broader picture of HTs in eukaryotes by fully exploiting complete-genome sequence data. In contrast to previous genome-wide approaches, we used a well-defined statistical framework to control for the number of false positives in the results, and we propose two new validation procedures to control for confounding factors. The first validation procedure relies on a comparative analysis with other species of the phylogeny to validate HTs for the nonrepeated sequences detected, whereas the second one built upon the study of the dynamics of the detected TEs. We applied our method to two closely related Drosophila species, Drosophila melanogaster and D. simulans, in which we discovered 10 new HTs in addition to all the HTs previously detected in different studies, which underscores our method’s high sensitivity and specificity. Our results favor the hypothesis of multiple independent HTs of TEs while unraveling a small portion of the network of HTs in the Drosophila phylogeny.
Collapse
Affiliation(s)
- Laurent Modolo
- Université de Lyon, France, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, VIlleurbanne, France
| | | | | |
Collapse
|
11
|
Affiliation(s)
- A. Stencel
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| | - B. Crespi
- Department of Biological Sciences; Simon Fraser University; Burnaby British Columbia V5A 1S6 Canada
| |
Collapse
|