1
|
Florescu LI, Moldoveanu M, Parpală L, Pacioglu O. The plankton assemblages as potential bioindicators in the environmental conditions of Danube Delta. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00899-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Zervou SK, Kaloudis T, Gkelis S, Hiskia A, Mazur-Marzec H. Anabaenopeptins from Cyanobacteria in Freshwater Bodies of Greece. Toxins (Basel) 2021; 14:4. [PMID: 35050981 PMCID: PMC8781842 DOI: 10.3390/toxins14010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanobacteria are photosynthetic microorganisms that are able to produce a large number of secondary metabolites. In freshwaters, under favorable conditions, they can rapidly multiply, forming blooms, and can release their toxic/bioactive metabolites in water. Among them, anabaenopeptins (APs) are a less studied class of cyclic bioactive cyanopeptides. The occurrence and structural variety of APs in cyanobacterial blooms and cultured strains from Greek freshwaters were investigated. Cyanobacterial extracts were analyzed with LC-qTRAP MS/MS using information-dependent acquisition in enhanced ion product mode in order to obtain the fragmentation mass spectra of APs. Thirteen APs were detected, and their possible structures were annotated based on the elucidation of fragmentation spectra, including three novel ones. APs were present in the majority of bloom samples (91%) collected from nine Greek lakes during different time periods. A large variety of APs was observed, with up to eight congeners co-occurring in the same sample. AP F (87%), Oscillamide Y (87%) and AP B (65%) were the most frequently detected congeners. Thirty cyanobacterial strain cultures were also analyzed. APs were only detected in one strain (Microcystis ichtyoblabe). The results contribute to a better understanding of APs produced by freshwater cyanobacteria and expand the range of structurally characterized APs.
Collapse
Affiliation(s)
- Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Triantafyllos Kaloudis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
| |
Collapse
|
3
|
Anabaenopeptins: What We Know So Far. Toxins (Basel) 2021; 13:toxins13080522. [PMID: 34437393 PMCID: PMC8402340 DOI: 10.3390/toxins13080522] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are microorganisms with photosynthetic mechanisms capable of colonizing several distinct environments worldwide. They can produce a vast spectrum of bioactive compounds with different properties, resulting in an improved adaptative capacity. Their richness in secondary metabolites is related to their unique and diverse metabolic apparatus, such as Non-Ribosomal Peptide Synthetases (NRPSs). One important class of peptides produced by the non-ribosomal pathway is anabaenopeptins. These cyclic hexapeptides demonstrated inhibitory activity towards phosphatases and proteases, which could be related to their toxicity and adaptiveness against zooplankters and crustaceans. Thus, this review aims to identify key features related to anabaenopeptins, including the diversity of their structure, occurrence, the biosynthetic steps for their production, ecological roles, and biotechnological applications.
Collapse
|
4
|
Sieber S, Grendelmeier SM, Harris LA, Mitchell DA, Gademann K. Microviridin 1777: A Toxic Chymotrypsin Inhibitor Discovered by a Metabologenomic Approach. JOURNAL OF NATURAL PRODUCTS 2020; 83:438-446. [PMID: 31989826 PMCID: PMC7050427 DOI: 10.1021/acs.jnatprod.9b00986] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The toxicity of the cyanobacterium Microcystis aeruginosa EAWAG 127a was evaluated against the sensitive grazer Thamnocephalus platyurus, and the extract possessed strong activity. To investigate the compounds responsible for cytotoxicity, a series of peptides from this cyanobacterium were studied using a combined genomic and molecular networking approach. The results led to the isolation, structure elucidation, and biological evaluation of microviridin 1777, which represents the most potent chymotrypsin inhibitor characterized from this family of peptides to date. Furthermore, the biosynthetic gene clusters of microviridin, anabaenopeptin, aeruginosin, and piricyclamide were located in the producing organism, and six additional natural products were identified by tandem mass spectrometry analyses. These results highlight the potential of modern techniques for the identification of natural products, demonstrate the ecological role of protease inhibitors produced by cyanobacteria, and raise ramifications concerning the presence of novel, yet uncharacterized, toxin families in cyanobacteria beyond microcystin.
Collapse
Affiliation(s)
- Simon Sieber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH 8057, Switzerland
| | - Simone M. Grendelmeier
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH 8057, Switzerland
| | - Lonnie A. Harris
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH 8057, Switzerland
| |
Collapse
|
5
|
Zhang JY, Guan R, Zhang HJ, Li H, Xiao P, Yu GL, Du L, Cao DM, Zhu BC, Li RH, Lu ZH. Complete genome sequence and genomic characterization of Microcystis panniformis FACHB 1757 by third-generation sequencing. Stand Genomic Sci 2016; 11:11. [PMID: 26823957 PMCID: PMC4730716 DOI: 10.1186/s40793-016-0130-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/05/2016] [Indexed: 11/10/2022] Open
Abstract
The cyanobacterial genus Microcystis is well known as the main group that forms harmful blooms in water. A strain of Microcystis, M. panniformis FACHB1757, was isolated from Meiliang Bay of Lake Taihu in August 2011. The whole genome was sequenced using PacBio RS II sequencer with 48-fold coverage. The complete genome sequence with no gaps contained a 5,686,839 bp chromosome and a 38,683 bp plasmid, which coded for 6,519 and 49 proteins, respectively. Comparison with strains of M. aeruginosa and some other water bloom-forming cyanobacterial species revealed large-scale structure rearrangement and length variation at the genome level along with 36 genomic islands annotated genome-wide, which demonstrates high plasticity of the M. panniformis FACHB1757 genome and reveals that Microcystis has a flexible genome evolution.
Collapse
Affiliation(s)
- Jun-Yi Zhang
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 China.,Wuxi Environmental Monitoring Center, Wuxi, 214121 China
| | - Rui Guan
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Hu-Jun Zhang
- Wuxi Environmental Monitoring Center, Wuxi, 214121 China
| | - Hua Li
- Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072 China
| | - Peng Xiao
- Shenzhen Key Laboratory for Marine Bio-resource and Eco-environment, College of Life Sciences, Shenzhen University, Shenzhen, 518060 China
| | - Gong-Liang Yu
- Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072 China
| | - Lei Du
- Nextomics Biosciences Co., Ltd., Wuhan, Hubei 430072 China
| | - De-Min Cao
- Nextomics Biosciences Co., Ltd., Wuhan, Hubei 430072 China
| | - Bing-Chuan Zhu
- Wuxi Environmental Monitoring Center, Wuxi, 214121 China
| | - Ren-Hui Li
- Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072 China
| | - Zu-Hong Lu
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096 China.,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
6
|
Rangel M, Martins JCG, Garcia AN, Conserva GAA, Costa-Neves A, Sant'Anna CL, de Carvalho LR. Analysis of the toxicity and histopathology induced by the oral administration of Pseudanabaena galeata and Geitlerinema splendidum (cyanobacteria) extracts to mice. Mar Drugs 2014; 12:508-24. [PMID: 24451192 PMCID: PMC3917284 DOI: 10.3390/md12010508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/30/2013] [Accepted: 12/30/2013] [Indexed: 11/17/2022] Open
Abstract
Cyanobacteria are common members of the freshwater microbiota in lakes and drinking water reservoirs, and are responsible for several cases of human intoxications in Brazil. Pseudanabaena galeata and Geitlerinema splendidum are examples of the toxic species that are very frequently found in reservoirs in Sao Paulo, which is the most densely populated area in Brazil. In the search for toxic strains collected from water reservoirs and maintained in the Cyanobacterial Culture Collection (CCIBt) of the Institute of Botany of Brazil, the acetic acid extracts (AE) of P. galeata CCIBt 3082 and G. splendidum CCIBt 3223 were analyzed by planar chromatography, which indicated the absence of cyanotoxins. Animal tests were then carried out, and both extracts were found to induce toxic effects in mice when administered intraperitoneally. The present study aimed to investigate whether the oral ingestion of the above mentioned cyanobacteria extracts would also induce toxic effects in mice. Necropsy and histopathological studies were conducted using tissue samples from the animals, which were euthanized one week after the administration of the extracts. The AE of P. galeata did not cause death but did induce transient symptoms, including eyebrow ptosis, straub tail, and pain. The euthanized animals presented hemorrhage in the liver, whereas the histological analysis showed disorganization of the hepatic parenchyma, necrosis, hyperemia, and proximity of the centrilobular vein in the liver. In addition, alterations in the convoluted tubules of the kidneys were observed, and the lungs were unaffected. The AE of G. splendidum caused only one death, and induced transient symptoms, such as dyspnea, paralysis, and pain, in the other mice. The necropsy of the euthanized mice showed hemorrhage in the lungs and liver. The lungs presented hemorrhagic focuses, alveolar collapse, and granulomatous foci. The liver presented hemorrhagic and enlarged sinusoids, hyperemia, proximity of the centrilobular vein, and disorganization of the hepatic parenchyma. Some areas also exhibited an inflammatory infiltrate and calcified tissue inside blood vessels. Necrosis and rupture of the convoluted tubule cells were observed in the kidneys. Further analysis of the both extracts indicated the lack of hemolytic activity, and the presence of two unknown anti-AChE substances in the AE of G. splendidum. Thus, P. galeata and G. splendidum are producers of novel toxins that affect mammals when administered orally.
Collapse
Affiliation(s)
- Marisa Rangel
- Immunopathology Laboratory, Butantan Institute, Av. Vital Brasil, 1500, Sao Paulo SP 05503-900, Brazil.
| | - Joyce C G Martins
- Immunopathology Laboratory, Butantan Institute, Av. Vital Brasil, 1500, Sao Paulo SP 05503-900, Brazil.
| | - Angélica Nunes Garcia
- Phycology Section, Institute of Botany, Av. Miguel Stéfano, 3687, Sao Paulo SP 04301-902, Brazil.
| | - Geanne A A Conserva
- Phycology Section, Institute of Botany, Av. Miguel Stéfano, 3687, Sao Paulo SP 04301-902, Brazil.
| | - Adriana Costa-Neves
- Department of Genetics, Butantan Institute, Av. Vital Brasil, 1500, Sao Paulo SP 05503-900, Brazil.
| | - Célia Leite Sant'Anna
- Phycology Section, Institute of Botany, Av. Miguel Stéfano, 3687, Sao Paulo SP 04301-902, Brazil.
| | - Luciana Retz de Carvalho
- Phycology Section, Institute of Botany, Av. Miguel Stéfano, 3687, Sao Paulo SP 04301-902, Brazil.
| |
Collapse
|
7
|
Cylindrospermopsin and saxitoxin synthetase genes in Cylindrospermopsis raciborskii strains from Brazilian freshwater. PLoS One 2013; 8:e74238. [PMID: 24015317 PMCID: PMC3756036 DOI: 10.1371/journal.pone.0074238] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
The Cylindrospermopsis raciborskii population from Brazilian freshwater is known to produce saxitoxin derivatives (STX), while cylindrospermopsin (CYN), which is commonly detected in isolates from Australia and Asia continents, has thus far not been detected in South American strains. However, during the investigation for the presence of cyrA, cyrB, cyrC and cyrJ CYN synthetase genes in the genomes of four laboratory-cultured C. raciborskii Brazilian strains, the almost complete cyrA gene sequences were obtained for all strains, while cyrB and cyrC gene fragments were observed in two strains. These nucleotide sequences were translated into amino acids, and the predicted protein functions and domains confirmed their identity as CYN synthetase genes. Attempts to PCR amplify cyrJ gene fragments from the four strains were unsuccessful. Phylogenetic analysis grouped the nucleotide sequences together with their homologues found in known CYN synthetase clusters of C. raciborskii strains with high bootstrap support. In addition, fragments of sxtA, sxtB and sxtI genes involved in STX production were also obtained. Extensive LC-MS analyses were unable to detect CYN in the cultured strains, whereas the production of STX and its analogues was confirmed in CENA302, CENA305 and T3. To our knowledge, this is the first study reporting the presence of cyr genes in South American strains of C. raciborskii and the presence of sxt and cyr genes in a single C. raciborskii strain. This discovery suggests a shift in the type of cyanotoxin production over time of South American strains of C. raciborskii and contributes to the reconstruction of the evolutionary history and diversification of cyanobacterial toxins.
Collapse
|