1
|
Velastegui E, Quezada J, Guerrero K, Altamirano C, Martinez JA, Berrios J, Fickers P. Is heterogeneity in large-scale bioreactors a real problem in recombinant protein synthesis by Pichia pastoris? Appl Microbiol Biotechnol 2023; 107:2223-2233. [PMID: 36843194 DOI: 10.1007/s00253-023-12434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/28/2023]
Abstract
Culture medium heterogeneity is inherent in industrial bioreactors. The loss of mixing efficiency in a large-scale bioreactor yields to the formation of concentration gradients. Consequently, cells face oscillatory culture conditions that may deeply affect their metabolism. Herein, cell response to transient perturbations, namely high methanol concentration combined with hypoxia, has been investigated using a two stirred-tank reactor compartiments (STR-STR) scale-down system and a Pichia pastoris strain expressing the gene encoding enhanced green fluorescent protein (eGFP) under the control of the alcohol oxidase 1 (AOX1) promoter. Cell residence times under transient stressing conditions were calculated based on the typical hydraulic circulation times of bioreactors of tens and hundreds cubic metres. A significant increase in methanol and oxygen uptake rates was observed as the cell residence time was increased. Stressful culture conditions impaired biomass formation and triggered cell flocculation. More importantly, both expression levels of genes under the control of pAOX1 promoter and eGFP specific fluorescence were higher in those oscillatory culture conditions, suggesting that those a priori unfavourable culture conditions in fact benefit to recombinant protein productivity. Flocculent cells were also identified as the most productive as compared to ovoid cells. KEY POINTS: • Transient hypoxia and high methanol trigger high level of recombinant protein synthesis • In Pichia pastoris, pAOX1 induction is higher in flocculent cells • Medium heterogeneity leads to morphological diversification.
Collapse
Affiliation(s)
- Edgar Velastegui
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av Brasil 2085, Valparaiso, 2340000, Chile
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro Bio Tech, University of Liege, Gembloux, Belgium
| | - Johan Quezada
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av Brasil 2085, Valparaiso, 2340000, Chile
| | - Karlo Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av Brasil 2085, Valparaiso, 2340000, Chile
| | - Claudia Altamirano
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av Brasil 2085, Valparaiso, 2340000, Chile
| | - Juan Andres Martinez
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro Bio Tech, University of Liege, Gembloux, Belgium
| | - Julio Berrios
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av Brasil 2085, Valparaiso, 2340000, Chile.
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro Bio Tech, University of Liege, Gembloux, Belgium
| |
Collapse
|
2
|
Askri H, Akrouti I, Rourou S, Kallèl H. Production, purification, and characterization of recombinant rabies virus glycoprotein expressed in PichiaPink™ yeast. BIOTECHNOLOGY REPORTS 2022; 35:e00736. [PMID: 35646619 PMCID: PMC9130087 DOI: 10.1016/j.btre.2022.e00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022]
Abstract
The rabies virus glycoprotein was produced in the Pichia pastoris production strains PichiaPink™ . Different carbon sources were found able to support the RABV-G expression under the control of the constitutive GAP promoter. Culture parameters such as oxygen supply, pH or growth rate can affect the yield and the quality of the produced RABV-G. The purified RABV-G was found correctly glycosylated and able to mediate trimeric oligomerization.
The commonly used host for industrial production of recombinant proteins Pichia pastoris, has been used in this work to produce the rabies virus glycoprotein (RABV-G). To allow a constitutive expression and the secretion of the expressed recombinant RABV-G, the PichiaPink™ commercialized expression vectors were modified to contain the constitutive GAP promoter and the α secretion signal sequences. Recombinant PichiaPink™ strains co-expressing the RABV-G and the protein chaperone PDI, have been then generated and screened for the best producer clone. The influence of seven carbon sources on the expression of the RABV-G, has been studied under different culture conditions in shake flask culture. An incubation temperature of 30°C under an agitation rate of 250 rpm in a filling volume of 10:1 flask/culture volume ratio were the optimal conditions for the RABV-G production in shake flask for all screened carbon sources. A bioreactor Fed batch culture has been then carried using glycerol and glucose as they were good carbon sources for cell growth and RABV-G production in shake flask scale. Cells were grown on glycerol during the batch phase then fed with glycerol or glucose defined solutions, a final RABV-G concentration of 2.7 µg/l was obtained with a specific product yield (YP/X) of 0.032 and 0.06 µg/g(DCW) respectively. The use of semi-defined feeding solution enhanced the production and the YP/X to 12.9 µg/l and 0.135 µg/g(DCW) respectively. However, the high cell density favored by these carbon sources resulted in oxygen limitation which influenced the glycosylation pattern of the secreted RABV-G. Alternatively, the use of sucrose as substrate for RABV-G production in large scale culture, resulted in less biomass production and a YP/X of 0.310 µg/g(DCW) was obtained. A cation exchange chromatography was then used for RABV-G purification as one step method. The purified protein was correctly folded and glycosylated and able to adopt trimeric conformation. The knowledges gained through this work offer a valuable insight into the bioprocess design of RABV-G production in Pichia pastoris to obtain a correctly folded protein which can be used during an immunization proposal for subunit Rabies vaccine development.
Collapse
|
3
|
Liu Z, Yu K, Wu S, Weng X, Luo S, Zeng M, Wang X, Hu X. Comparative lipidomics of methanol induced Pichia pastoris cells at different culture phases uncovers the diversity and variability of lipids. Enzyme Microb Technol 2022; 160:110090. [DOI: 10.1016/j.enzmictec.2022.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022]
|
4
|
Lin NX, He RZ, Xu Y, Yu XW. Oxidative stress tolerance contributes to heterologous protein production in Pichia pastoris. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:160. [PMID: 34284814 PMCID: PMC8290557 DOI: 10.1186/s13068-021-02013-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/12/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Pichia pastoris (syn. Komagataella phaffii) is an important yeast system for heterologous protein expression. A robust P. pastoris mutant with oxidative and thermal stress cross-tolerance was acquired in our previous study. The robust mutant can express a 2.5-fold higher level of lipase than its wild type (WT) under methanol induction conditions. RESULTS In this study, we found that the robust mutant not only can express a high level of lipase, but also can express a high level of other heterogeneous proteins (e.g., green fluorescence protein) under methanol induction conditions. Additionally, the intracellular reactive oxygen species (ROS) levels in the robust mutant were lower than that in the WT under methanol induction conditions. To figure out the difference of cellular response to methanol between the WT and the robust mutant, RNA-seq was detected and compared. The results of RNA-seq showed that the expression levels of genes related to antioxidant, MAPK pathway, ergosterol synthesis pathway, transcription factors, and the peroxisome pathway were upregulated in the robust mutant compared to the WT. The upregulation of these key pathways can improve the oxidative stress tolerance of strains and efficiently eliminate cellular ROS. Hence, we inferred that the high heterologous protein expression efficiency in the robust mutant may be due to its enhanced oxidative stress tolerance. Promisingly, we have indeed increased the expression level of lipase up to 1.6-fold by overexpressing antioxidant genes in P. pastoris. CONCLUSIONS This study demonstrated the impact of methanol on the expression levels of genes in P. pastoris and emphasized the contribution of oxidative stress tolerance on heterologous protein expression in P. pastoris. Our results shed light on the understanding of protein expression mechanism in P. pastoris and provided an idea for the rational construction of robust yeast with high expression ability.
Collapse
Affiliation(s)
- Nai-Xin Lin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Rui-Zhen He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
5
|
Zepeda AB, Figueroa CA, Pessoa A, Farías JG. Free fatty acids reduce metabolic stress and favor a stable production of heterologous proteins in Pichia pastoris. Braz J Microbiol 2018; 49:856-864. [PMID: 29705163 PMCID: PMC6175731 DOI: 10.1016/j.bjm.2018.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 02/19/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
The growth of yeasts in culture media can be affected by many factors. For example, methanol can be metabolized by other pathways to produce ethanol, which acts as an inhibitor of the heterologous protein production pathway; oxygen concentration can generate aerobic or anaerobic environments and affects the fermentation rate; and temperature affects the central carbon metabolism and stress response protein folding. The main goal of this study was determine the implication of free fatty acids on the production of heterologous proteins in different culture conditions in cultures of Pichia pastoris. We evaluated cell viability using propidium iodide by flow cytometry and thiobarbituric acid reactive substances to measure cell membrane damage. The results indicate that the use of low temperatures and low methanol concentrations favors the decrease in lipid peroxidation in the transition phase from glycerol to methanol. In addition, a temperature of 14 °C + 1%M provided the most stable viability. By contrast, the temperature of 18 °C + 1.5%M favored the production of a higher antibody fragment concentration. In summary, these results demonstrate that the decrease in lipid peroxidation is related to an increased production of free fatty acids.
Collapse
Affiliation(s)
- Andrea B Zepeda
- Universidad de La Frontera, Facultad de Ingeniería, Ciencias y Administración, Departamento de Ingeniería Química, Temuco, Chile; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, SP, Brazil
| | - Carolina A Figueroa
- Universidad de La Frontera, Facultad de Ingeniería, Ciencias y Administración, Departamento de Ingeniería Química, Temuco, Chile; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, SP, Brazil
| | - Adalberto Pessoa
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, SP, Brazil
| | - Jorge G Farías
- Universidad de La Frontera, Facultad de Ingeniería, Ciencias y Administración, Departamento de Ingeniería Química, Temuco, Chile.
| |
Collapse
|
6
|
Insights into the prevalence and underlying causes of clonal variation through transcriptomic analysis in Pichia pastoris. Appl Microbiol Biotechnol 2017; 101:5045-5058. [PMID: 28534062 PMCID: PMC5486821 DOI: 10.1007/s00253-017-8317-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 04/04/2017] [Accepted: 04/29/2017] [Indexed: 02/02/2023]
Abstract
Clonal variation, wherein a range of specific productivities of secreted proteins are observed from supposedly identical transformants, is an accepted aspect of working with Pichia pastoris. It means that a significant number of transformants need to be tested to obtain a representative sample, and in commercial protein production, companies regularly screen thousands of transformants to select for the highest secretor. Here, we have undertaken a detailed investigation of this phenomenon by characterising clones transformed with the human serum albumin gene. The titers of nine clones, each containing a single copy of the human serum albumin gene (identified by qPCR), were measured and the clones grouped into three categories, namely, high-, mid- and low-level secretors. Transcriptomic analysis, using microarrays, showed that no regulatory patterns consistently correlated with titer, suggesting that the causes of clonal variation are varied. However, a number of physiological changes appeared to underlie the differences in titer, suggesting there is more than one biochemical signature for a high-secreting strain. An anomalous low-secreting strain displaying high transcript levels that appeared to be nutritionally starved further emphasises the complicated nature of clonal variation.
Collapse
|
7
|
Cultivation of Pichia pastoris carrying the scFv anti LDL (-) antibody fragment. Effect of preculture carbon source. Braz J Microbiol 2017; 48:419-426. [PMID: 28237678 PMCID: PMC5498413 DOI: 10.1016/j.bjm.2016.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 12/27/2022] Open
Abstract
Antibodies and antibody fragments are nowadays among the most important biotechnological products, and Pichia pastoris is one of the most important vectors to produce them as well as other recombinant proteins. The conditions to effectively cultivate a P. pastoris strain previously genetically modified to produce the single-chain variable fragment anti low density lipoprotein (−) under the control of the alcohol oxidase promoter have been investigated in this study. In particular, it was evaluated if, and eventually how, the carbon source (glucose or glycerol) used in the preculture preceding cryopreservation in 20% glycerol influences both cell and antibody fragment productions either in flasks or in bioreactor. Although in flasks the volumetric productivity of the antibody fragment secreted by cells precultured, cryopreserved and reactivated in glycerol was 42.9% higher compared with cells precultured in glucose, the use of glycerol in bioreactor led to a remarkable shortening of the lag phase, thereby increasing it by no less than thrice compared to flasks. These results are quite promising in comparison with those reported in the literature for possible future industrial applications of this cultivation, taking into account that the overall process time was reduced by around 8 h.
Collapse
|