1
|
Alshehri YM, Al-Majed AA, Attwa MW, Bakheit AH. Lodenafil. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2022; 47:113-147. [PMID: 35396013 DOI: 10.1016/bs.podrm.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lodenafil is a class of drugs called an inhibitor of PDE5 which also include a wide range of other erectile medicines, such as sildenafil, tadalafil and vardenafil. It is part of a new generation of PDE5 inhibitors that includes udenafil and avanafil. Lodenafil is a prodrug manufactured in the form of lodenafil carbonate, the carbonate dimer that divides in the body into two active drug lodenafil molecules. The oral bioavailability of this formulation is higher than that of the parent drug. This article discusses, by a critical comprehensive review of the literature on lodenafil in terms of its description, names, formulae, elemental composition, appearance, and therapeutic uses. The article also discusses the methods for preparation of lodenafil, its physical-chemical properties, analytical methods for its determination, pharmacological-toxicological properties, and dosing information.
Collapse
Affiliation(s)
- Yahya M Alshehri
- College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulrahman A Al-Majed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia; Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| |
Collapse
|
2
|
Ouyang S, Chen W, Gaofeng Z, Changcheng L, Guoping T, Minyan Z, Yang L, Min Y, Luo J. Cyanidin‑3‑O‑β‑glucoside protects against pulmonary artery hypertension induced by monocrotaline via the TGF‑β1/p38 MAPK/CREB signaling pathway. Mol Med Rep 2021; 23:338. [PMID: 33760143 PMCID: PMC7974420 DOI: 10.3892/mmr.2021.11977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary artery hypertension (PAH) is a disease with high morbidity and mortality. Cyanidin‑3‑O‑β‑glucoside (Cy‑3‑g), a classical anthocyanin, has a variety of biological effects. The present study evaluated whether Cy‑3‑g attenuated PAH, and explored the potential mechanism of action. Rats were injected with monocrotaline (MCT; 60 mg per kg of body weight) and then treated with Cy‑3‑g (200 or 400 mg per kg of body weight) for 4 weeks. Protein expression was determined in vitro in transforming growth factor‑β1 (TGF‑β1)‑mediated human pulmonary arterial smooth muscle cells (SMCs). The results indicated that Cy‑3‑g significantly inhibited the mean pulmonary artery pressure, right ventricular systolic pressure and right ventricular hypertrophy index, as well as vascular remodeling induced by MCT in PAH rats. Further experiments showed that Cy‑3‑g suppressed the expression of pro‑-inflammatory factors and enhanced the levels of anti‑inflammatory factors. Cy‑3‑g blocked oxidative stress and improved vascular endothelial injury. Cy‑3‑g also reduced the proliferation of SMCs. Furthermore, the MCT‑ and TGF‑β1‑induced increase in TGF‑β1, phosphorylated (p)‑p38 mitogen‑activated protein kinase (MAPK) and p‑cAMP‑response element binding protein (CREB) expression was blocked by Cy‑3‑g treatment in vivo and in vitro. These results indicated that Cy‑3‑g could prevent vascular remodeling in PAH via inhibition of the TGF‑β1/p38 MAPK/CREB axis.
Collapse
Affiliation(s)
- Shao Ouyang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zeng Gaofeng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lei Changcheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tian Guoping
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhu Minyan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Liu Yang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yang Min
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jiahao Luo
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
3
|
Vieira MC, Monte FBDM, Eduardo Dematte B, Montagnoli TL, Montes GC, da Silva JS, Mendez-Otero R, Trachez MM, Sudo RT, Zapata-Sudo G. Antinociceptive Effect of Lodenafil Carbonate in Rodent Models of Inflammatory Pain and Spinal Nerve Ligation-Induced Neuropathic Pain. J Pain Res 2021; 14:857-866. [PMID: 33833563 PMCID: PMC8020462 DOI: 10.2147/jpr.s295265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction New therapeutic alternatives for pain relief include the use of phosphodiesterase-5 (PDE5) inhibitors, which could prevent the transmission of painful stimuli by neuron hyperpolarization via nitric oxide (NO)/cyclic 3',5'-guanosine monophosphate (cGMP) pathway. The present work investigated the antinociceptive activity of a new PDE5 inhibitor, lodenafil carbonate, in inflammatory and neuropathic pain models. Methods and Results Although no effect was detected on neurogenic phase of formalin test in mice, oral administration of lodenafil carbonate dose-dependently reduced reactivity in the inflammatory phase (200.6 ± 39.1 to 81.9 ± 18.8 s at 10 μmol/kg, p= 0.0172) and this effect was totally blocked by NO synthase inhibitor, L-Nω-nitroarginine methyl ester (L-NAME). Lodenafil carbonate (10 μmol/kg p.o.) significantly reduced nociceptive response as demonstrated by increased paw withdrawal latency to thermal stimulus (from 6.8 ± 0.7 to 10.6 ± 1.3 s, p= 0.0006) and paw withdrawal threshold to compressive force (from 188.0 ± 14.0 to 252.5 ± 5.3 g, p<0.0001) in carrageenan-induced paw inflammation model. In a spinal nerve ligation-induced neuropathic pain, oral lodenafil carbonate (10 μmol/kg) also reversed thermal hyperalgesia and mechanical allodynia by increasing paw withdrawal latency from 17.9 ± 1.5 to 22.8 ± 1.9 s (p= 0.0062) and paw withdrawal threshold from 26.0 ± 2.8 to 41.4 ± 2.9 g (p= 0.0196). These effects were reinforced by the reduced GFAP (3.4 ± 0.5 to 1.4 ± 0.3%, p= 0.0253) and TNF-alpha (1.1 ± 0.1 to 0.4 ± 0.1%, p= 0.0111) stained area densities as detected by immunofluorescence in ipsilateral dorsal horns. Conclusion Lodenafil carbonate demonstrates important analgesic activity by promoting presynaptic hyperpolarization and preventing neuroplastic changes, which may perpetuate chronic pain, thus representing a potential treatment for neuropathic pain.
Collapse
Affiliation(s)
- Marcio Carneiro Vieira
- Programa de Pós-graduação em Ciências Cirúrgicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Fernanda Bezerra de Mello Monte
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Bruno Eduardo Dematte
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Tadeu Lima Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Guilherme Carneiro Montes
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jaqueline Soares da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio De Janeiro, 21941-902, Brazil
| | - Margarete Manhães Trachez
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Roberto Takashi Sudo
- Programa de Pós-graduação em Ciências Cirúrgicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pós-graduação em Ciências Cirúrgicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
4
|
The soluble guanylate cyclase stimulator, 1-nitro-2-phenylethane, reverses monocrotaline-induced pulmonary arterial hypertension in rats. Life Sci 2021; 275:119334. [PMID: 33711391 DOI: 10.1016/j.lfs.2021.119334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
AIMS We examined the effects of treatment with 1-nitro-2-phenylethane (NP), a novel soluble guanylate cyclase stimulator, on monocrotaline (MCT)-induced PAH in rats. MAIN METHODS At day 0, male adult rats were injected with a single subcutaneous (s.c.) dose of monocrotaline (60 mg/kg). Control (CNT) rats received an equal volume of monocrotaline's vehicle only (s.c.). Four weeks later, MCT-treated rats were treated orally for 14 days with NP (50 mg/kg/day) (MCT-NP group) or its vehicle (Tween 2%) (MCT-V group). At the end of the treatment period and before invasive hemodynamic study, rats of all experimental groups were examined by echocardiography. KEY FINDINGS With respect to CNT rats, MCT-V rats showed significant; (1) increases in pulmonary artery (PA) diameter, RV free wall thickness and end-diastolic RV area, and increase of Fulton index; (2) decreases in maximum pulmonary flow velocity, PA acceleration time (PAAT), PAAT/time of ejection ratio, and velocity-time integral; (3) increases in estimated mean pulmonary arterial pressure; (4) reduction of maximal relaxation to acetylcholine in aortic rings, and (5) increases in wall thickness of pulmonary arterioles. All these measured parameters were significantly reduced or even abolished by oral treatment with NP. SIGNIFICANCE NP reversed endothelial dysfunction and pulmonary vascular remodeling, which in turn reduced ventricular hypertrophy. NP reduced pulmonary artery stiffness, normalized the pulmonary artery diameter and alleviated RV enlargement. Thus, NP may represent a new therapeutic or a complementary approach to treatment of PAH.
Collapse
|
5
|
Therapeutic Benefit of the Association of Lodenafil with Mesenchymal Stem Cells on Hypoxia-induced Pulmonary Hypertension in Rats. Cells 2020; 9:cells9092120. [PMID: 32961896 PMCID: PMC7565793 DOI: 10.3390/cells9092120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by the remodeling of pulmonary arteries, with an increased pulmonary arterial pressure and right ventricle (RV) overload. This work investigated the benefit of the association of human umbilical cord mesenchymal stem cells (hMSCs) with lodenafil, a phosphodiesterase-5 inhibitor, in an animal model of PAH. Male Wistar rats were exposed to hypoxia (10% O2) for three weeks plus a weekly i.p. injection of a vascular endothelial growth factor receptor inhibitor (SU5416, 20 mg/kg, SuHx). After confirmation of PAH, animals received intravenous injection of 5.105 hMSCs or vehicle, followed by oral treatment with lodenafil carbonate (10 mg/kg/day) for 14 days. The ratio between pulmonary artery acceleration time and RV ejection time reduced from 0.42 ± 0.01 (control) to 0.24 ± 0.01 in the SuHx group, which was not altered by lodenafil alone but was recovered to 0.31 ± 0.01 when administered in association with hMSCs. RV afterload was confirmed in the SuHx group with an increased RV systolic pressure (mmHg) of 52.1 ± 8.8 normalized to 29.6 ± 2.2 after treatment with the association. Treatment with hMSCs + lodenafil reversed RV hypertrophy, fibrosis and interstitial cell infiltration in the SuHx group. Combined therapy of lodenafil and hMSCs may be a strategy for PAH treatment.
Collapse
|
6
|
Chang Z, Wang JL, Jing ZC, Ma P, Xu QB, Na JR, Tian J, Ma X, Zhou W, Zhou R. Protective effects of isorhamnetin on pulmonary arterial hypertension: in vivo and in vitro studies. Phytother Res 2020; 34:2730-2744. [PMID: 32452118 DOI: 10.1002/ptr.6714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/15/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a malignant disease with high mortality and closely involves the bone morphogenetic protein (BMP) pathway. Mutations in BMPR2 caused proliferation of pulmonary artery smooth muscle cells (PASMCs) leading to PAH. Isorhamnetin, one of the main naturally occurring flavonoids extracted from Hippophae rhamnoides L, shows antiinflammatory and anti-proliferative properties. Nevertheless, the effects of isorhamnetin on PAH remain unclear. This study aimed to investigate whether isorhamnetin has protective effects against PAH and explore possible mechanisms. An in vivo model of PAH induced by monocrotaline (MCT) was employed, and sildenafil and isorhamnetin were orally administered for 21 consecutive days. An in vitro model induced by TNF-α was employed, and cell proliferation of HPASMCs was detected. Results indicated that isorhamnetin significantly improved hemodynamic, histopathological, and echocardiographic changes in MCT-induced PAH in rats. In vitro, isorhamnetin suppressed TNF-α-induced HPASMCs proliferation. Furthermore, isorhamnetin improved protein expression of BMPR2 and suppressed protein expression of TNF-α and IL-6 in rat lungs. Isorhamnetin improved protein expression of BMPR2 and p-smad1/5 and mRNA expression of Id1 and Id3 in HPASMCs. Isorhamnetin ameliorated MCT-induced PAH in rats and inhibited TNF-α-induced HPASMCs proliferation by a mechanism likely involving the regulation of the BMP signaling pathway.
Collapse
Affiliation(s)
- Zhi Chang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jia-Ling Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhi-Cheng Jing
- Department of Cardiology, Peking Union Medical College Hospital, Key Lab of Pulmonary Vascular Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Ma
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qing-Bing Xu
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jian-Rong Na
- Respiratory and critical care medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jie Tian
- Respiratory and critical care medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xuan Ma
- Respiratory and critical care medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei Zhou
- Respiratory and critical care medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia Characteristic Traditional Chinese Medicine Modernization Engineering Technology Research Center, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
7
|
Chang Z, Zhang P, Zhang M, Jun F, Hu Z, Yang J, Wu Y, Zhou R. Aloperine suppresses human pulmonary vascular smooth muscle cell proliferation via inhibiting inflammatory response. CHINESE J PHYSIOL 2019; 62:157-165. [PMID: 31535631 DOI: 10.4103/cjp.cjp_27_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Abnormal pulmonary arterial vascular smooth muscle cells (PASMCs) proliferation is critical pathological feature of pulmonary vascular remodeling that acts as driving force in the initiation and development of pulmonary arterial hypertension (PAH), ultimately leading to pulmonary hypertension. Aloperine is a main active alkaloid extracted from the traditional Chinese herbal Sophora alopecuroides and possesses outstanding antioxidation and anti-inflammatory effects. Our group found Aloperine has protective effects on monocroline-induced pulmonary hypertension in rats by inhibiting oxidative stress in previous researches. However, the anti-inflammation effects of Aloperine on PAH remain unclear. Therefore, to further explore whether the beneficial role of Aloperine on PAH was connected with its anti-inflammatory effects, we performed experiments in vitro. Aloperine significantly inhibited the proliferation and DNA synthesis of human pulmonary artery smooth muscle cells (HPASMCs) induced by platelet-derived growth factor-BB, blocked progression through G0/G1to S phase of the cell cycle and promoted total ratio of apoptosis. In summary, these results suggested that Aloperine negatively regulated nuclear factor-κB signaling pathway activity to exert protective effects on PAH and suppressed HPASMCs proliferation therefore has a potential value in the treatment of pulmonary hypertension by negatively modulating pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Zhi Chang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Peng Zhang
- General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Min Zhang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Feng Jun
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Zhiqiang Hu
- General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yuhua Wu
- General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, PR China
| |
Collapse
|
8
|
Sun XZ, Li SY, Tian XY, Hong Z, Li JX. Effect of Rho kinase inhibitor fasudil on the expression ET-1 and NO in rats with hypoxic pulmonary hypertension. Clin Hemorheol Microcirc 2019; 71:3-8. [PMID: 29660902 DOI: 10.3233/ch-160232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xing-Zhen Sun
- Department of Pediatrics, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Shu-Yan Li
- Department of Ophthalmology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Xiang-Yang Tian
- Department of Neurology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Ze Hong
- Department of Pediatrics, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Jia-Xin Li
- Department of Pediatrics, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| |
Collapse
|
9
|
3-Bromopyruvate reverses hypoxia-induced pulmonary arterial hypertension through inhibiting glycolysis: In vitro and in vivo studies. Int J Cardiol 2018; 266:236-241. [DOI: 10.1016/j.ijcard.2018.03.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 02/12/2018] [Accepted: 03/21/2018] [Indexed: 01/14/2023]
|
10
|
Yang JM, Zhou R, Zhang M, Tan HR, Yu JQ. Betaine Attenuates Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats via Inhibiting Inflammatory Response. Molecules 2018; 23:molecules23061274. [PMID: 29861433 PMCID: PMC6100216 DOI: 10.3390/molecules23061274] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance, leading to right ventricular failure and death. Recent studies have suggested that chronic inflammatory processes are involved in the pathogenesis of PAH. Several studies have demonstrated that betaine possesses outstanding anti-inflammatory effects. However, whether betaine exerts protective effects on PAH by inhibiting inflammatory responses in the lungs needs to be explored. To test our hypothesis, we aimed to investigate the effects of betaine on monocrotaline-induced PAH in rats and attempted to further clarify the possible mechanisms. Methods: PAH was induced by monocrotaline (50 mg/kg) and oral administration of betaine (100, 200, and 400 mg/kg/day). The mean pulmonary arterial pressure, right ventricular systolic pressure, and right ventricle hypertrophy index were used to evaluate the development of PAH. Hematoxylin and eosin staining and Masson staining were performed to measure the extents of vascular remodeling and proliferation in fibrous tissue. Monocyte chemoattractant protein-1 (MCP-1) and endothelin-1 (ET-1) were also detected by immunohistochemical staining. Nuclear factor-κB (NF-κB), tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) were assessed by Western blot. Results: This study showed that betaine improved the abnormalities in right ventricular systolic pressure, mean pulmonary arterial pressure, right ventricle hypertrophy index, and pulmonary arterial remodeling induced by monocrotaline compared with the PAH group. The levels of MCP-1 and ET-1 also decreased. Western blot indicated that the protein expression levels of NF-κB, TNF-α, and IL-1β significantly decreased (p < 0.01). Conclusion: Our study demonstrated that betaine attenuated PAH through its anti-inflammatory effects. Hence, the present data may offer novel targets and promising pharmacological perspectives for treating monocrotaline-induced PAH.
Collapse
Affiliation(s)
- Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Ru Zhou
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, China.
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Min Zhang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Huan-Ran Tan
- Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
11
|
Protective effects of aloperine on monocrotaline-induced pulmonary hypertension in rats. Biomed Pharmacother 2017; 89:632-641. [DOI: 10.1016/j.biopha.2017.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 01/10/2023] Open
|
12
|
Voznesensky I, DeLay KJ, Hellstrom WJG. Advances in pharmacotherapy for erectile dysfunction and associated cardiac impact. Expert Opin Pharmacother 2016; 17:2281-2289. [DOI: 10.1080/14656566.2016.1241766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Souza R. Bringing the JBP and its readers closer together. J Bras Pneumol 2015. [PMCID: PMC4541754 DOI: 10.1590/s1806-37132015000300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|