1
|
Wang C, Han X, Ma X, Jiang W, Wang J, Li S, Guo H, Tian W, Chen H. Spinal cord perfusion is associated with microstructural damage in cervical spondylotic myelopathy patients who underwent cervical laminoplasty. Eur Radiol 2024; 34:1349-1357. [PMID: 37581664 DOI: 10.1007/s00330-023-10011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/01/2023] [Accepted: 06/08/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES To investigate the association between spinal cord perfusion and microstructural damage in CSM patients who underwent cervical laminoplasty using MR dynamic susceptibility contrast (DSC), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) techniques. METHODS A follow-up cohort study was conducted with 53 consecutively recruited CSM patients who had undergone cervical laminoplasty 12-14 months after the surgery from April 2016 to December 2016. Twenty-one aged-matched healthy volunteers were recruited as controls. For each patient, decompressed spinal cord levels were imaged on a 3.0-T MRI scanner by diffusion and DSC sequences to quantify the degrees of microstructural damage and perfusion conditions, respectively. The diffusion data were analyzed by DTI and NODDI models to produce diffusion metrics. Classic indicator dilution model was used to quantify the DSC metrics. Mann-Whitney U test was performed for comparison of diffusion metrics between patients and healthy controls. Pearson correlation was used to explore the associations between the metrics of spinal cord perfusion and microstructural damage. RESULTS DTI metrics, neurite density, and isotropic volume fraction had significant differences between postoperative patients and healthy controls. Pearson correlation test showed that SCBV was significantly positively correlated with RD, MD, and ODI, and negatively correlated with FA and NDI. SCBF was found to be significantly positively correlated with RD and MD, and negatively correlated with FA. CONCLUSIONS Increased spinal cord perfusion quantified by DSC is associated with microstructural damage assessed by diffusion MRI in CSM patients who underwent cervical laminoplasty. CLINICAL RELEVANCE STATEMENT This study found that the spinal cord perfusion is associated with microstructural damage in postoperative cervical spondylotic myelopathy patients, indicating that high perfusion may play a role in the pathophysiological process of cervical spondylotic myelopathy and deserves more attention. KEY POINTS • Spinal cord microstructural damage can be persistent despite the compression had been relieved 12-14 months after the cervical laminoplasty in cervical spondylotic myelopathy (CSM) patients. • Spinal cord perfusion is associated with microstructural damage in CSM patients after the cervical laminoplasty. • Inflammation in the decompressed spinal cord may be a cause of increased perfusion and is associated with microstructural damage during the recovery period of CSM.
Collapse
Affiliation(s)
- Chunyao Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiao Han
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China
| | - Xiaodong Ma
- Center for Magnetic Resonance Research, Radiology, Medical School of the University of Minnesota, Minnesota, USA
| | - Wen Jiang
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jinchao Wang
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Sisi Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Tian
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Nanda G, Jain P, Suman A, Mahajan H. Role of diffusion tensor imaging and tractography in spinal cord injury. J Clin Orthop Trauma 2022; 33:101997. [PMID: 36118562 PMCID: PMC9475303 DOI: 10.1016/j.jcot.2022.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Spinal cord injuries pose grave medical and socioeconomic burdens warranting measures for early diagnosis, triaging, prognostication and therapeutics. Imaging has since long played a pivotal role in this regard, with continuing research and technological advancements opening newer frontiers. One such advanced Magnetic resonance (MR) technique is Diffusion tensor imaging (DTI) which assesses cord microstructure by tracking the movement of water molecules in biological tissues. DTI utilizes the principle of anisotropy exhibited by the normal compact white matter (WM) tracts of the cord, in which direction-dependent water molecular motion is seen along the axonal axis. Disruption of this complex structure in response to injury alters the movement of these molecules, interrupting anisotropy and thereby DTI metrics. Evaluation of DTI images can be done both by quantitative indices, of which fractional anisotropy (FA) and mean diffusivity (MD) are the most commonly used and by qualitative fiber tracking (tractography) methods in which three-dimensional WM tracts are reconstructed by algorithmic post-processing. Reduced FA is consistently seen at injury sites as a direct consequence of disturbance of anisotropy. Diffusivity values are however more variable with both high and low values recorded across studies. 3D tractography images allow visual assessment of cord integrity, morphology, and orientation. Significant correlation is found between DTI parameters and various spinal injury scores. Furthermore, DTI also helps in accurate lesion mapping and in assessing cord changes distant from injury epicenter providing a holistic evaluation. From its inception, consistent progress in the understanding and application of DTI has effectuated its clinical utility and impact. Incorporation into day-to-day diagnostics is however still challenging, due to suboptimal image acquisition, difficult post-processing, and lack of standardized protocols & image interpretation guidelines. Further research with technical validation, development of normative and disease data sets, and histological confirmation will help establish this novel technique in routine diagnostics.
Collapse
Affiliation(s)
| | - Pooja Jain
- Mahajan Imaging, C6/8 SDA, New Delhi, India
| | | | | |
Collapse
|
3
|
Kauthankar AA, Jaseemudheen M. Diffusion Tensor Imaging in Spinal Cord Injury: A Review. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2022. [DOI: 10.1055/s-0042-1751068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractMagnetic resonance diffusion tensor imaging (DTI) is a recent technique that can measure the direction and magnitude of diffusion of water. It is widely being utilized to evaluate several brain and spinal cord pathologies. The objective of this review is to evaluate the importance of the DTI in patients with spinal cord injury (SCI). It aims to review various articles on DTI SCI and includes both animal and human studies. This will help to describe the current status of the clinical applications of DTI and show its potential as a helpful instrument in clinical practice. The PubMed database was searched for articles relating to the application of DTI in SCI. Relevant articles were also used for the review. A variety of DTI parameters have been studied in various articles. The standard parameters are fractional anisotropy (FA) values, apparent diffusion coefficient (ADC) values, radial diffusivity values, and axial diffusivity values, followed by tractography. FA and ADC values are the most commonly used parameters. The findings observed in most of the studies are increased FA and reduced ADC values following injury to the spinal cord. DTI data metrics possess the potential to become a potent clinical tool in patients with SCI. It is helpful for diagnosis, prognosis, treatment planning, as well as to evaluate the recovery. Nonetheless, to overcome the limitations and determine its reliability clinically, more research has to be performed.
Collapse
Affiliation(s)
- Akshada Atchut Kauthankar
- Department of Radio-diagnosis and Imaging, K S Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - M.M Jaseemudheen
- Department of Radio-diagnosis and Imaging, K S Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
4
|
Morales-Guadarrama A, Salgado-Ceballos H, Grijalva I, Morales-Corona J, Hernández-Godínez B, Ibáñez-Contreras A, Ríos C, Diaz-Ruiz A, Cruz GJ, Olayo MG, Sánchez-Torres S, Mondragón-Lozano R, Alvarez-Mejia L, Fabela-Sánchez O, Olayo R. Evolution of Spinal Cord Transection of Rhesus Monkey Implanted with Polymer Synthesized by Plasma Evaluated by Diffusion Tensor Imaging. Polymers (Basel) 2022; 14:polym14050962. [PMID: 35267785 PMCID: PMC8912689 DOI: 10.3390/polym14050962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
In spinal cord injury (SCI) there is damage to the nervous tissue, due to the initial damage and pathophysiological processes that are triggered subsequently. There is no effective therapeutic strategy for motor functional recovery derived from the injury. Several studies have demonstrated neurons growth in cell cultures on polymers synthesized by plasma derived from pyrrole, and the increased recovery of motor function in rats by implanting the polymer in acute states of the SCI in contusion and transection models. In the process of transferring these advances towards humans it is recommended to test in mayor species, such as nonhuman primates, prioritizing the use of non-invasive techniques to evaluate the injury progression with the applied treatments. This work shows the ability of diffusion tensor imaging (DTI) to evaluate the evolution of the SCI in nonhuman primates through the fraction of anisotropy (FA) analysis and the diffusion tensor tractography (DTT) calculus. The injury progression was analysed up to 3 months after the injury day by FA and DTT. The FA recovery and the DTT re-stabilization were observed in the experimental implanted subject with the polymer, in contrast with the non-implanted subject. The parameters derived from DTI are concordant with the histology and the motor functional behaviour.
Collapse
Affiliation(s)
- Axayacatl Morales-Guadarrama
- Centro Nacional de Investigación en Imagenología e Instrumentación Médica, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Axapusco 52750, Mexico; (G.J.C.); (M.G.O.)
| | - Hermelinda Salgado-Ceballos
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico; (H.S.-C.); (I.G.); (S.S.-T.); (L.A.-M.)
- Centro de Investigación del Proyecto CAMINA A.C., CDMX, Mexico City 14050, Mexico;
| | - Israel Grijalva
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico; (H.S.-C.); (I.G.); (S.S.-T.); (L.A.-M.)
- Centro de Investigación del Proyecto CAMINA A.C., CDMX, Mexico City 14050, Mexico;
| | - Juan Morales-Corona
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
| | - Braulio Hernández-Godínez
- Investigación Biomédica Aplicada S.A.S. de C.V., CDMX, Mexico City 14240, Mexico; (B.H.-G.); (A.I.-C.)
| | | | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., CDMX, Mexico City 14269, Mexico; (C.R.); (A.D.-R.)
| | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., CDMX, Mexico City 14269, Mexico; (C.R.); (A.D.-R.)
| | - Guillermo Jesus Cruz
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Axapusco 52750, Mexico; (G.J.C.); (M.G.O.)
| | - María Guadalupe Olayo
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Axapusco 52750, Mexico; (G.J.C.); (M.G.O.)
| | - Stephanie Sánchez-Torres
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico; (H.S.-C.); (I.G.); (S.S.-T.); (L.A.-M.)
- Centro de Investigación del Proyecto CAMINA A.C., CDMX, Mexico City 14050, Mexico;
| | - Rodrigo Mondragón-Lozano
- Centro de Investigación del Proyecto CAMINA A.C., CDMX, Mexico City 14050, Mexico;
- Catedrático CONACyT-Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico
| | - Laura Alvarez-Mejia
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, CDMX, Mexico City 06720, Mexico; (H.S.-C.); (I.G.); (S.S.-T.); (L.A.-M.)
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., CDMX, Mexico City 14269, Mexico; (C.R.); (A.D.-R.)
| | - Omar Fabela-Sánchez
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
- Departamento de Química Macromoléculas y Nanomateriales, Centro de Investigación en Química Aplicada, Saltillo 25294, Mexico
| | - Roberto Olayo
- Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City 09340, Mexico;
- Correspondence:
| |
Collapse
|
5
|
Buyanova IS, Arsalidou M. Cerebral White Matter Myelination and Relations to Age, Gender, and Cognition: A Selective Review. Front Hum Neurosci 2021; 15:662031. [PMID: 34295229 PMCID: PMC8290169 DOI: 10.3389/fnhum.2021.662031] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
White matter makes up about fifty percent of the human brain. Maturation of white matter accompanies biological development and undergoes the most dramatic changes during childhood and adolescence. Despite the advances in neuroimaging techniques, controversy concerning spatial, and temporal patterns of myelination, as well as the degree to which the microstructural characteristics of white matter can vary in a healthy brain as a function of age, gender and cognitive abilities still exists. In a selective review we describe methods of assessing myelination and evaluate effects of age and gender in nine major fiber tracts, highlighting their role in higher-order cognitive functions. Our findings suggests that myelination indices vary by age, fiber tract, and hemisphere. Effects of gender were also identified, although some attribute differences to methodological factors or social and learning opportunities. Findings point to further directions of research that will improve our understanding of the complex myelination-behavior relation across development that may have implications for educational and clinical practice.
Collapse
Affiliation(s)
- Irina S. Buyanova
- Neuropsy Lab, HSE University, Moscow, Russia
- Center for Language and Brain, HSE University, Moscow, Russia
| | - Marie Arsalidou
- Neuropsy Lab, HSE University, Moscow, Russia
- Cognitive Centre, Sirius University of Science and Technology, Sochi, Russia
- Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
6
|
Rodrigues PV, Tostes K, Bosque BP, de Godoy JVP, Amorim Neto DP, Dias CSB, Fonseca MDC. Illuminating the Brain With X-Rays: Contributions and Future Perspectives of High-Resolution Microtomography to Neuroscience. Front Neurosci 2021; 15:627994. [PMID: 33815039 PMCID: PMC8010130 DOI: 10.3389/fnins.2021.627994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
The assessment of three-dimensional (3D) brain cytoarchitecture at a cellular resolution remains a great challenge in the field of neuroscience and constant development of imaging techniques has become crucial, particularly when it comes to offering direct and clear obtention of data from macro to nano scales. Magnetic resonance imaging (MRI) and electron or optical microscopy, although valuable, still face some issues such as the lack of contrast and extensive sample preparation protocols. In this context, x-ray microtomography (μCT) has become a promising non-destructive tool for imaging a broad range of samples, from dense materials to soft biological specimens. It is a new supplemental method to be explored for deciphering the cytoarchitecture and connectivity of the brain. This review aims to bring together published works using x-ray μCT in neurobiology in order to discuss the achievements made so far and the future of this technique for neuroscience.
Collapse
Affiliation(s)
- Paulla Vieira Rodrigues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Katiane Tostes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Dionisio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Carlos Sato Baraldi Dias
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
7
|
Chowdhary AS, Durai B, Mohanty J. MRI EVALUATION OF SPINAL CORD TUMOURS WITH HISTOPATHOLOGICAL CORRELATION. ACTA ACUST UNITED AC 2017. [DOI: 10.18410/jebmh/2017/1206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Influence of Tumor Location and Other Variables on Predictive Value of Intraoperative myogenic Motor-Evoked Potentials in Spinal Cord Tumor Surgery. World Neurosurg 2016; 92:264-272. [DOI: 10.1016/j.wneu.2016.04.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022]
|