1
|
Haseeb MT, Muhammad G, Hussain MA, Bukhari SNA, Sheikh FA. Flaxseed (Linum usitatissimum) mucilage: A versatile stimuli-responsive functional biomaterial for pharmaceuticals and healthcare. Int J Biol Macromol 2024; 278:134817. [PMID: 39154696 DOI: 10.1016/j.ijbiomac.2024.134817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The present review is novel as it discusses the main findings of researchers on the topic and their implications, as well as highlights the emerging research in this particular area and its future prospective. The seeds of Flax (Linum usitatissimum) extrude mucilage (FSM) that has a diverse and wide range of applications, especially in the food industry and as a pharmaceutical ingredient. FSM has been blended with several food and dairy products to improve gelling ability, optical properties, taste, and user compliance. The FSM is recognized as a foaming, encapsulating, emulsifying, suspending, film-forming, and gelling agent for several pharmaceutical preparations and healthcare materials. Owing to stimuli (pH) -responsive swelling-deswelling characteristics, high swelling indices at different physiological pHs of the human body, and biocompatibility, FSM is considered a smart material for intelligent, targeted, and controlled drug delivery applications through conventional and advanced drug delivery systems. FSM has been modified through carboxymethylation, acetylation, copolymerization, and electrostatic complexation to get the desired properties for pharma, food, and healthcare products. The present review is therefore devoted to the isolation techniques, structural characterization, highly valuable properties for food and pharmaceutical industries, preclinical and clinical trials, pharmacological aspects, biomedical attributes, and patents of FSM.
Collapse
Affiliation(s)
| | - Gulzar Muhammad
- Department of Chemistry, GC University, Lahore 54000, Pakistan
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Fatima Akbar Sheikh
- College of Pharmacy, Niazi Medical and Dental College, Sargodha 40100, Pakistan
| |
Collapse
|
2
|
Khan S, Madni A, Shah H, Jan N, Shafiq A, Basit A, Rai N, Ali A, Khan MM. Folate decorated lipid chitosan hybrid nanoparticles of 5-fluorouracil for enhanced anticancer efficacy against colon cancer. Int J Biol Macromol 2022; 222:497-508. [PMID: 36174854 DOI: 10.1016/j.ijbiomac.2022.09.196] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
The study aimed to develop folate decorated lipid chitosan hybrid nanoparticles for targeted delivery of 5-fluorouracil in colon cancer by utilizing the overexpressed folate receptors on the surface of HT-29 and HCT 116 cancer cell lines. The developed formulations were prepared by the ionic gelation method with slight modifications. The developed formulations exhibited spherical morphology, smaller particle size (158 to 225 nm), zeta potential (32.24 to 35.95 mV), PDI (0.19 to 0.35), and high encapsulation efficiency (85.3 % to 94.2 %) with optimal physicochemical characteristics. The in vitro release showed a biphasic release pattern with an initial burst release followed by a sustained release for 48 h. Moreover, the in vitro cell line study revealed that FA-CLPN-2 exhibited an enhanced cellular uptake and greater cytotoxic effect in HT-29 and HCT 116 cell lines compared to non-targeted CLPN-2 and free drug solution due to the folate receptor facilitated endocytosis process. The in vivo toxicity study revealed the safety and biocompatibility of the developed formulations in biological systems. The stability study demonstrates the stability of the developed formulations. Overall, these results suggest that the folate decorated lipid chitosan hybrid nanoparticles could be used as a potential delivery system for tumor-targeted therapy with reduced side effects.
Collapse
Affiliation(s)
- Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Center of Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston 02115, MA, USA
| | - Nasrullah Jan
- Akson College of Pharmacy, Mirpur University of Science and Technology (MUST), Mirpur 10250, AJ&K, Pakistan
| | - Afifa Shafiq
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Nadia Rai
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ahsan Ali
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Center of Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston 02115, MA, USA
| | - Muhammad Muzamil Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
3
|
Mueed A, Shibli S, Jahangir M, Jabbar S, Deng Z. A comprehensive review of flaxseed ( Linum usitatissimum L.): health-affecting compounds, mechanism of toxicity, detoxification, anticancer and potential risk. Crit Rev Food Sci Nutr 2022; 63:11081-11104. [PMID: 35833457 DOI: 10.1080/10408398.2022.2092718] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Flaxseed consumption (Linum usitatissimum L.) has increased due to its potential health benefits, such as protection against inflammation, diabetes, cancer, and cardiovascular diseases. However, flaxseeds also contains various anti-nutritive and toxic compounds such as cyanogenic glycosides, and phytic acids etc. In this case, the long-term consumption of flaxseed may pose health risks due to these non-nutritional substances, which may be life threatening if consumed in high doses, although if appropriately utilized these may prevent/treat various diseases by preventing/inhibiting and or reversing the toxicity induced by other compounds. Therefore, it is necessary to remove or suppress the harmful and anti-nutritive effects of flaxseeds before these are utilized for large-scale as food for human consumption. Interestingly, the toxic compounds of flaxseed also undergoes biochemical detoxification in the body, transforming into less toxic or inactive forms like α-ketoglutarate cyanohydrin etc. However, such detoxification is also a challenge for the development, scalability, and real-time quantification of these bioactive substances. This review focuses on the health affecting composition of flaxseed, along with health benefits and potential toxicity of its components, detoxification methods and mechanisms with evidence supported by animal and human studies.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Sahar Shibli
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Muhammad Jahangir
- Department of Food Science & Technology, The University of Haripur, Haripur, Khyber-Pakhtunkhwa, Pakistan
| | - Saqib Jabbar
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Aslam M, Barkat K, Malik NS, Alqahtani MS, Anjum I, Khalid I, Tulain UR, Gohar N, Zafar H, Paiva-Santos AC, Raza F. pH Sensitive Pluronic Acid/Agarose-Hydrogels as Controlled Drug Delivery Carriers: Design, Characterization and Toxicity Evaluation. Pharmaceutics 2022; 14:1218. [PMID: 35745795 PMCID: PMC9229590 DOI: 10.3390/pharmaceutics14061218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
The objective of this study was to fabricate and evaluate a pH sensitive cross-linked polymeric network through the free radical polymerization technique for the model drug, cyclophosphamide, used in the treatment of non-Hodgkin's lymphoma. The Hydrogels were prepared using a polymeric blend of agarose, Pluronic acid, glutaraldehyde, and methacrylic acid. The prepared hydrogels were characterized for drug loading (%), swelling pattern, release behavior, the ingredient's compatibility, structural evaluation, thermal integrity, and toxicity evaluation in rabbits. The new polymer formation was evident from FTIR findings. The percentage loaded into the hydrogels was in the range of 58.65-75.32%. The developed hydrogels showed significant differences in swelling dynamics and drug release behavior in simulated intestinal fluid (SIF) when compared with simulated gastric fluid (SGF). The drug release was persistent and performed in a controlled manner for up to 24 h. A toxicity study was conducted on white albino rabbits. The developed hydrogels did not show any signs of ocular, skin, or oral toxicity; therefore, these hydrogels can be regarded as safe and potential carriers for controlled drug delivery in biomedical applications.
Collapse
Affiliation(s)
- Mariam Aslam
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (M.A.); (I.A.)
| | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (M.A.); (I.A.)
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan; (N.S.M.); (N.G.)
| | - Mohammed S. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Irfan Anjum
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (M.A.); (I.A.)
| | - Ikrima Khalid
- Faculty of Pharmaceutical Sciences, GC University, Faisalabad 38000, Pakistan;
| | - Ume Ruqia Tulain
- Faculty of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Nitasha Gohar
- Faculty of Pharmacy, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan; (N.S.M.); (N.G.)
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai 200240, China;
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Faisal Raza
- Faculty of Pharmacy, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan; (N.S.M.); (N.G.)
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai 200240, China;
| |
Collapse
|
5
|
Sumaira, Tulain UR, Erum A, Hussain MA, Sidra, Malik NS, Rashid A, Kausar R, Gohar N, Shahid N, Siddiqui M. Fabrication, Characterization and Toxicity Evaluation of Chemically Cross linked Polymeric Network for Sustained Delivery of Metoprolol Tartrate. Des Monomers Polym 2021; 24:351-361. [PMID: 34912178 PMCID: PMC8667954 DOI: 10.1080/15685551.2021.2003995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/03/2021] [Indexed: 11/06/2022] Open
Abstract
Natural mucilages are auspicious biodegradable polymeric materials. The aim of the present research work was to elucidate the characteristics of quince mucilage-based polymeric network for sustained delivery of metprolol tartrate and its toxicity evaluation. Mucilage was extracted by hot water extraction, and characterization of quince mucilage was accomplished by using Fourier transform infrared (FTIR) spectroscopy. Different batches of quince mucilage polymeric network were prepared by free radical polymerization by utilizing varying ratios of quince mucilage, acrylamide and crosslinker. Degree of swelling depends on concentration of mucilage, monomer and also on crosslinking density of polymeric network. FTIR illustrates proficient grafting, and morphological (scanning electron microscopy) analysis signified porous design. Hence, quince mucilage-based design was encouraging for sustained delivery of metprolol tartrate and acute toxicity evaluation proved that mucilage-based network was safe for oral drug delivery system.
Collapse
Affiliation(s)
- Sumaira
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | | | - Alia Erum
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | | | - Sidra
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Ayesha Rashid
- Department of Pharmacy, Women University Multan, Multan, Pakistan
| | - Rizwana Kausar
- Ilm College of Pharmaceutical Sciences, Sargodha, Pakistan
| | - Nitasha Gohar
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Nariman Shahid
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Mahwish Siddiqui
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
6
|
Malik NS, Ahmad M, Alqahtani MS, Mahmood A, Barkat K, Khan MT, Tulain UR, Rashid A. β-cyclodextrin chitosan-based hydrogels with tunable pH-responsive properties for controlled release of acyclovir: design, characterization, safety, and pharmacokinetic evaluation. Drug Deliv 2021; 28:1093-1108. [PMID: 34114907 PMCID: PMC8205001 DOI: 10.1080/10717544.2021.1921074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
In this work, series of pH-responsive hydrogels (FMA1-FMA9) were synthesized, characterized, and evaluated as potential carrier for oral delivery of an antiviral drug, acyclovir (ACV). Different proportions of β-cyclodextrin (β-CD), chitosan (CS), methacrylic acid (MAA) and N' N'-methylenebis-acrylamide (MBA) were used to fabricate hydrogels via free radical polymerization technique. Fourier transform infrared spectroscopy confirmed fabrication of new polymeric network, with successful incorporation of ACV. Scanning electron microscopy (SEM) indicated presence of slightly porous structure. Thermal analysis indicated enhanced thermal stability of polymeric network. Swelling studies were carried out at 37 °C in simulated gastric and intestinal fluids. The drug release data was found best fit to zero-order kinetics. The preliminary investigation of developed hydrogels showed a pH-dependent swelling behavior and drug release pattern. Acute oral toxicity study indicated no significant changes in behavioral, clinical, or histopathological parameters of Wistar rats. Pharmacokinetic study indicated that developed hydrogels caused a significant increase in oral bioavailability of ACV in rabbit plasma as compared to oral suspension when both were administered at a single oral dose of 20 mg kg-1 bodyweight. Hence, developed hydrogel formulation could be used as potential candidate for controlled drug delivery of an antiviral drug acyclovir.
Collapse
Affiliation(s)
- Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Mohammed S. Alqahtani
- Department of Pharmaceutics, Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Muhammad Tariq Khan
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Ayesha Rashid
- Department of Pharmacy, The Women University, Multan, Pakistan
| |
Collapse
|
7
|
Sadaquat H, Akhtar M, Nazir M, Ahmad R, Alvi Z, Akhtar N. Biodegradable and biocompatible polymeric nanoparticles for enhanced solubility and safe oral delivery of docetaxel: In vivo toxicity evaluation. Int J Pharm 2021; 598:120363. [PMID: 33556487 DOI: 10.1016/j.ijpharm.2021.120363] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Docetaxel (DTX) is a chemotherapeutic drug with poor hydrophilicity and permeability. Its lipophilic properties decrease its absorption in systemic circulation which hinders its therapeutic efficacy & safety. Cyclodextrins (CDs) with their unique structural properties enhance solubility of chemotherapeutic drugs. The study was designed to formulate docetaxel-cyclodextrins inclusion complexes for enhancement of solubility with sulfobutyl ether β-cyclodextrin (SBE7-β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and β-cyclodextrin (β-CD). Further, by using ionic gelation method polymeric nanoparticles of docetaxel-cyclodextrins were prepared with sodium tri poly phosphate (STPP) and chitosan (CS). Optimization is performed by varying CS and STPP mass ratios. Nanoparticles were analyzed for their physicochemical properties, drug-excipient compatibility, thermal stability and oral toxicity. CDs enhanced the solubility of DTX. Nanoparticles were found within 144.8 ± 65.19 - 372.0 ± 126.9 nm diameters with polydispersity ranging 0.117-0.375. The particles were found round & circular in shape with smooth and non-porous surface. Increased quantity of drug release was observed from DTX-CDs loaded nanoparticles than pure drug loaded nanoparticles. Oral toxicity in rabbits revealed biochemical, histopathological profile with no toxic effect on cellular structure of animals.
Collapse
Affiliation(s)
- Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan.
| | | | - Rabbiya Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
8
|
Sheikh FA, Hussain MA, Ashraf MU, Haseeb MT, Farid-ul-Haq M. Linseed hydrogel based floating drug delivery system for fluoroquinolone antibiotics: Design, in vitro drug release and in vivo real-time floating detection. Saudi Pharm J 2020; 28:538-549. [PMID: 32435134 PMCID: PMC7229334 DOI: 10.1016/j.jsps.2020.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/11/2020] [Indexed: 11/25/2022] Open
Abstract
Herein, we designed a novel gastroretentive drug delivery system as floating matrix tablets based on a polysaccharide material from linseeds (Linum usitatissimum L.) for fluoroquinolone antibiotics. A number of formulations were designed with a combination of linseed hydrogel (LSH) and different excipients to obtain a desired sustained release profile of moxifloxacin. The drug release study was performed basically at pH 1.2. However, the tablet may pass through the stomach to intestine due to certain reasons then it also offered sustained drug release at intestinal pH 4.5, 6.8 and 7.4, as well. Results indicated that sustained moxifloxacin release was directly proportional to the concentration of LSH and the release of drug followed non-Fickian diffusion. SEM of the tablets indicated porous nature of LSH with elongated channels which contributed to the swelling of the tablet and then facilitated the discharge of moxifloxacin from the core of the tablet. In vivo X-ray study was performed to assess disintegration and real-time floating of tablet that confirmed its presence for 6 h in the stomach. These findings indicated that LSH can be used to develop novel gastroretentive sustained release drug delivery systems with the double advantage of sustained drug release at all pH of GIT.
Collapse
Affiliation(s)
| | | | - Muhammad Umer Ashraf
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore, 54600, Pakistan
| | | | | |
Collapse
|
9
|
Ahsan F, Mahmood T, Siddiqui MH, Usmani S, Bagga P, Shamim A, Srivastav RK. Diligent profiling of preclinical safety of the silk protein sericin. J Basic Clin Physiol Pharmacol 2020; 32:/j/jbcpp.ahead-of-print/jbcpp-2019-0272/jbcpp-2019-0272.xml. [PMID: 32134734 DOI: 10.1515/jbcpp-2019-0272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sericin is a widely used protein in the pharmaceutical industry derived from the silkworm, Bombyx mori, and used for the treatment of various diseases and pathological conditions. It is the main ingredient of the Unani preparation khameera abresham. The study was conducted to evaluate the preclinical toxicity of the silk protein sericin in mice. METHODS In the acute toxicity study, sericin was administered once orally to different groups of animals at doses of 500, 1000, and 2000 mg/kg. Animals were observed for 14 days. In the sub-acute toxicity study, sericin was administered in mice for 4 weeks in the toxic group at doses of 500, 1000, and 2000 mg/kg, while in the recovery group it was administered for 4 weeks at doses of 500 and 2000 mg/kg followed by 2 weeks of distilled water administration. RESULTS In the acute toxicity study, the observed parameters showed no significant difference, and no mortality was reported. In the sub-acute toxicity study, there were no toxicological effects in any of the estimated parameters, while histopathological analysis showed inflammation in vital organs at the dose of 2000 mg/kg. CONCLUSIONS Results of our acute toxicity study suggest that sericin is safe at all administered doses, while the sub-acute study suggests that the NOAEL (no-observed-adverse-effect level) of sericin is below 2000 mg/kg, at which it can be considered safe.
Collapse
Affiliation(s)
- Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Tarique Mahmood
- Faculty of Pharmacy, Integral University, Lucknow, India, Phone: +91 9918681701
| | | | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Arshiya Shamim
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Ritesh Kumar Srivastav
- Department of Pharmacy, Kamla Nehru Institute of Technology and Management, Sultanpur, India
| |
Collapse
|
10
|
Lestari SR, Rifai M. The effect of single-bulb garlic oil extract toward the hematology and histopathology of the liver and kidney in mice. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000218027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|