1
|
Béraud E, Collignon A, Franceschi C, Olive D, Lombardo D, Mas E. Investigation of a new tumor-associated glycosylated antigen as target for dendritic cell vaccination in pancreatic cancer. Oncoimmunology 2021; 1:56-61. [PMID: 22720212 PMCID: PMC3376954 DOI: 10.4161/onci.1.1.18459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycoproteins, as valuable targets for dendritic cell (DC)-vaccination in cancers, remain an open question. Glycosylated structures, which are aberrantly modified during cancerisation, impact positively or negatively on glycoprotein immunogenicity. Here is presented an oncofetal glycovariant of bile-salt-dependent-lipase, expressed on human tumoral pancreas and efficiently processed by DC's, inducing T-lymphocyte activation.
Collapse
Affiliation(s)
- Evelyne Béraud
- INSERM; Marseille, France; Aix-Marseille Univ ; Centre de Recherche en Oncologie biologique et Oncopharmacologie; Marseille, France
| | | | | | | | | | | |
Collapse
|
2
|
El Jellas K, Johansson BB, Fjeld K, Antonopoulos A, Immervoll H, Choi MH, Hoem D, Lowe ME, Lombardo D, Njølstad PR, Dell A, Mas E, Haslam SM, Molven A. The mucinous domain of pancreatic carboxyl-ester lipase (CEL) contains core 1/core 2 O-glycans that can be modified by ABO blood group determinants. J Biol Chem 2018; 293:19476-19491. [PMID: 30315106 DOI: 10.1074/jbc.ra118.001934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Carboxyl-ester lipase (CEL) is a pancreatic fat-digesting enzyme associated with human disease. Rare mutations in the CEL gene cause a syndrome of pancreatic exocrine and endocrine dysfunction denoted MODY8, whereas a recombined CEL allele increases the risk for chronic pancreatitis. Moreover, CEL has been linked to pancreatic ductal adenocarcinoma (PDAC) through a postulated oncofetal CEL variant termed feto-acinar pancreatic protein (FAPP). The monoclonal antibody mAb16D10 was previously reported to detect a glycotope in the highly O-glycosylated, mucin-like C terminus of CEL/FAPP. We here assessed the expression of human CEL in malignant pancreatic lesions and cell lines. CEL was not detectably expressed in neoplastic cells, implying that FAPP is unlikely to be a glycoisoform of CEL in pancreatic cancer. Testing of the mAb16D10 antibody in glycan microarrays then demonstrated that it recognized structures containing terminal GalNAc-α1,3(Fuc-α1,2)Gal (blood group A antigen) and also repeated protein sequences containing GalNAc residues linked to Ser/Thr (Tn antigen), findings that were supported by immunostainings of human pancreatic tissue. To examine whether the CEL glycoprotein might be modified by blood group antigens, we used high-sensitivity MALDI-TOF MS to characterize the released O-glycan pool of CEL immunoprecipitated from human pancreatic juice. We found that the O-glycome of CEL consisted mainly of core 1/core 2 structures with a composition depending on the subject's FUT2 and ABO gene polymorphisms. Thus, among digestive enzymes secreted by the pancreas, CEL is a glycoprotein with some unique characteristics, supporting the view that it could serve additional biological functions to its cholesteryl esterase activity in the duodenum.
Collapse
Affiliation(s)
- Khadija El Jellas
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway.,KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Bente B Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,Center for Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Aristotelis Antonopoulos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Heike Immervoll
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Pathology, Ålesund Hospital, N-6017 Ålesund, Norway
| | - Man H Choi
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Dag Hoem
- Department of Gastrointestinal Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Mark E Lowe
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Dominique Lombardo
- INSERM, CRO2, Center for Research in Biological Oncology and Oncopharmacology, Aix-Marseille University, 13284 Marseille Cedex 07, France
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Eric Mas
- INSERM, CRO2, Center for Research in Biological Oncology and Oncopharmacology, Aix-Marseille University, 13284 Marseille Cedex 07, France
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Anders Molven
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway, .,Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway.,KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
3
|
Lombardo D, Silvy F, Crenon I, Martinez E, Collignon A, Beraud E, Mas E. Pancreatic adenocarcinoma, chronic pancreatitis, and MODY-8 diabetes: is bile salt-dependent lipase (or carboxyl ester lipase) at the crossroads of pancreatic pathologies? Oncotarget 2018; 9:12513-12533. [PMID: 29552330 PMCID: PMC5844766 DOI: 10.18632/oncotarget.23619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Pancreatic adenocarcinomas and diabetes mellitus are responsible for the deaths of around two million people each year worldwide. Patients with chronic pancreatitis do not die directly of this disease, except where the pathology is hereditary. Much current literature supports the involvement of bile salt-dependent lipase (BSDL), also known as carboxyl ester lipase (CEL), in the pathophysiology of these pancreatic diseases. The purpose of this review is to shed light on connections between chronic pancreatitis, diabetes, and pancreatic adenocarcinomas by gaining an insight into BSDL and its variants. This enzyme is normally secreted by the exocrine pancreas, and is diverted within the intestinal lumen to participate in the hydrolysis of dietary lipids. However, BSDL is also expressed by other cells and tissues, where it participates in lipid homeostasis. Variants of BSDL resulting from germline and/or somatic mutations (nucleotide insertion/deletion or nonallelic homologous recombination) are expressed in the pancreas of patients with pancreatic pathologies such as chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We discuss the possible link between the expression of BSDL variants and these dramatic pancreatic pathologies, putting forward the suggestion that BSDL and its variants are implicated in the cell lipid metabolism/reprogramming that leads to the dyslipidemia observed in chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We also propose potential strategies for translation to therapeutic applications.
Collapse
Affiliation(s)
- Dominique Lombardo
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Françoise Silvy
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Isabelle Crenon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Emmanuelle Martinez
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Aurélie Collignon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Evelyne Beraud
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Eric Mas
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| |
Collapse
|
4
|
Yoon S, Armstrong B, Habib N, Rossi JJ. Blind SELEX Approach Identifies RNA Aptamers That Regulate EMT and Inhibit Metastasis. Mol Cancer Res 2017; 15:811-820. [PMID: 28396463 DOI: 10.1158/1541-7786.mcr-16-0462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/17/2017] [Accepted: 04/04/2017] [Indexed: 01/13/2023]
Abstract
Identifying targets that are exposed on the plasma membrane of tumor cells, but expressed internally in normal cells, is a fundamental issue for improving the specificity and efficacy of anticancer therpeutics. Using blind cell Systemic Evolution of Ligands by EXponetial enrichment (SELEX), which is untargeted SELEX, we have identified an aptamer, P15, which specifically bound to the human pancreatic adenocarcinoma cells. To identify the aptamer binding plasma membrane protein, liquid chromatography tandem mass spectrometry (LC-MS/MS) was used. The results of this unbiased proteomic mass spectrometry approach identified the target of P15 as the intermediate filament vimentin, biomarker of epithelial-mesenchymal transition (EMT), which is an intracellular protein but is specifically expressed on the plasma membrane of cancer cells. As EMT plays a pivotal role to transit cancer cells to invasive cells, tumor cell metastasis assays were performed in vitro P15-treated pancreatic cancer cells showed the significant inhibition of tumor metastasis. To investigate the downstream effects of P15, EMT-related gene expression analysis was performed to identify differently expressed genes (DEG). Among five DEGs, P15-treated cells showed the downregulated expression of matrix metallopeptidase 3 (MMP3), which is involved in cancer invasion. These results, for the first time, demonstrate that P15 binding to cell surface vimentin inhibits the tumor cell invasion and is associated with reduced MMP3 expression. Thus, suggesting that P15 has potential as an anti-metastatic therapy in pancreatic cancer.Implications: This study reveals that anti-vimentin RNA aptamers selected via blind-SELEX inhibit the tumor cell metastasis. Mol Cancer Res; 15(7); 811-20. ©2017 AACR.
Collapse
Affiliation(s)
- Sorah Yoon
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California
| | | | - Nagy Habib
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California. .,Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
5
|
Collignon A, Perles-Barbacaru AT, Robert S, Silvy F, Martinez E, Crenon I, Germain S, Garcia S, Viola A, Lombardo D, Mas E, Béraud E. A pancreatic tumor-specific biomarker characterized in humans and mice as an immunogenic onco-glycoprotein is efficient in dendritic cell vaccination. Oncotarget 2016; 6:23462-79. [PMID: 26405163 PMCID: PMC4695130 DOI: 10.18632/oncotarget.4359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/30/2015] [Indexed: 01/01/2023] Open
Abstract
Oncofetal fucose-rich glycovariants of the pathological bile salt-dependent lipase (pBSDL) appear during human pancreatic oncogenesis and are detected by themonoclonal antibody J28 (mAbJ28). We aimed to identify murine counterparts onpancreatic ductal adenocarcinoma (PDAC) cells and tissue and investigate the potential of dendritic cells (DC) loaded with this unique pancreatic tumor antigen to promote immunotherapy in preclinical trials. Pathological BSDLs purified from pancreatic juices of patients with PDAC were cleaved to generate glycosylated C-terminal moieties (C-ter) containing mAbJ28-reactive glycoepitopes. Immunoreactivity of the murine PDAC line Panc02 and tumor tissue to mAbJ28 was detected by immunohistochemistry and flow cytometry. C-ter-J28+ immunization promoted Th1-dominated immune responses. In vitro C-ter-J28+-loaded DCskewed CD3+ T-cells toward Th1 polarization. C-ter-J28+-DC-vaccinations selectively enhanced cell immunoreactivity to Panc02, as demonstrated by CD4+- and CD8+-T-cell activation, increased percentages of CD4+- and CD8+-T-cells and NK1.1+ cells expressing granzyme B, and T-cell cytotoxicity. Prophylactic and therapeutic C-ter-J28+-DC-vaccinations reduced ectopic Panc02-tumor growth, provided long-lasting protection from Panc02-tumor development in 100% of micebut not from melanoma, and attenuated progression of orthotopic tumors as revealed by MRI. Thusmurine DC loaded with pancreatic tumor-specific glycoepitope C-ter-J28+ induce efficient anticancer adaptive immunity and represent a potential adjuvant therapy for patients afflicted with PDAC.
Collapse
Affiliation(s)
- Aurélie Collignon
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Adriana Teodora Perles-Barbacaru
- Aix-Marseille UniversiteÌ, CNRS, CRMBM, Centre de ReÌsonance MagneÌtique Biologique et MeÌdicale, UMR 7339, Marseille, France
| | - Stéphane Robert
- Aix-Marseille Université, VRCM, Vascular Research Center of Marseilles, Marseille, France.,Inserm, UMR_S_1076, Marseille, France
| | - Françoise Silvy
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Emmanuelle Martinez
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Isabelle Crenon
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Sébastien Germain
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Stéphane Garcia
- APHM, Hôpital Nord, Laboratoire d'Anatomie-Pathologie, Marseille, France.,Aix-Marseille Université, Marseille, France
| | - Angèle Viola
- Aix-Marseille UniversiteÌ, CNRS, CRMBM, Centre de ReÌsonance MagneÌtique Biologique et MeÌdicale, UMR 7339, Marseille, France
| | - Dominique Lombardo
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Eric Mas
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Evelyne Béraud
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| |
Collapse
|
6
|
Beloribi S, Ristorcelli E, Breuzard G, Silvy F, Bertrand-Michel J, Beraud E, Verine A, Lombardo D. Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 cells. PLoS One 2012; 7:e47480. [PMID: 23094054 PMCID: PMC3477155 DOI: 10.1371/journal.pone.0047480] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 09/17/2012] [Indexed: 01/23/2023] Open
Abstract
Exosomes are of increasing interest as alternative mode of cell-to-cell communication. We previously reported that exosomes secreted by human SOJ-6 pancreatic tumor cells induce (glyco)protein ligand-independent cell death and inhibit Notch-1 pathway, this latter being particularly active during carcinogenesis and in cancer stem cells. Therefore, we asked whether exosomal lipids were key-elements for cell death and hypothesized that cholesterol-rich membrane microdomains were privileged sites of exosome interactions with tumor cells. To address these questions and based on the lipid composition of exosomes from SOJ-6 cells (Ristorcelli et al. (2008) FASEB J. 22; 3358-3369) enriched in cholesterol and sphingomyelin (lipids forming liquid-ordered phase, Lo) and depleted in phospholipids (lipids forming liquid-disordered phase, Ld), we designed Synthetic Exosome-Like Nanoparticles (SELN) with ratios Lo/Ld from 3.0 to 6.0 framing that of SOJ-6 cell exosomes. SELN decreased tumor cell survival, the higher the Lo/Ld ratio, the lower the cell survival. This decreased survival was due to activation of cell death with inhibition of Notch pathway. FRET analyses indicated fusions/exchanges of SELN with cell membranes. Fluorescent SELN co-localized with the ganglioside GM1 then with Rab5A, markers of lipid microdomains and of early endosomes, respectively. These interactions occurred at lipid microdomains of plasma and/or endosome membranes where the Notch-1 pathway matures. We thus demonstrated a major role for lipids in interactions between SELN and tumor cells, and in the ensued cell death. To our knowledge this is the first report on such effects of lipidic nanoparticles on tumor cell behavior. This may have implications in tumor progression.
Collapse
Affiliation(s)
- Sadia Beloribi
- Center for Research in Oncobiology and Oncopharmacology (CRO2), Aix-Marseille Université, Marseille, France
- UMR 911, INSERM, Marseille, France
| | - Elodie Ristorcelli
- Center for Research in Oncobiology and Oncopharmacology (CRO2), Aix-Marseille Université, Marseille, France
- UMR 911, INSERM, Marseille, France
| | - Gilles Breuzard
- Center for Research in Oncobiology and Oncopharmacology (CRO2), Aix-Marseille Université, Marseille, France
- UMR 911, INSERM, Marseille, France
| | - Françoise Silvy
- Center for Research in Oncobiology and Oncopharmacology (CRO2), Aix-Marseille Université, Marseille, France
- UMR 911, INSERM, Marseille, France
| | | | - Evelyne Beraud
- Center for Research in Oncobiology and Oncopharmacology (CRO2), Aix-Marseille Université, Marseille, France
- UMR 911, INSERM, Marseille, France
| | - Alain Verine
- Center for Research in Oncobiology and Oncopharmacology (CRO2), Aix-Marseille Université, Marseille, France
- UMR 911, INSERM, Marseille, France
| | - Dominique Lombardo
- Center for Research in Oncobiology and Oncopharmacology (CRO2), Aix-Marseille Université, Marseille, France
- UMR 911, INSERM, Marseille, France
- * E-mail:
| |
Collapse
|
7
|
Crescence L, Beraud E, Sbarra V, Bernard JP, Lombardo D, Mas E. Targeting a novel onco-glycoprotein antigen at tumoral pancreatic cell surface by mAb16D10 induces cell death. THE JOURNAL OF IMMUNOLOGY 2012; 189:3386-96. [PMID: 22956586 DOI: 10.4049/jimmunol.1102647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The mAb16D10 was raised against a pathological onco-glycoform of bile salt-dependent lipase isolated from the pancreatic juice of a patient suffering from a pancreatic adenocarcinoma. We previously showed that mAb16D10 specifically discriminates human pancreatic tumor tissues from other cancer and nontumor tissues. In this study, we report that mAb16D10 inhibited the proliferation of only human pancreatic tumor cells expressing 16D10 plasma membrane Ag. Interaction of mAb16D10 with its cognate surface Ag on pancreatic cells promoted cell death by activation of the p53- and caspase-dependent apoptotic pathway, and silencing of p53 decreased cell death. The decreased proliferation was also partly due to cell cycle arrest in G1/S phase, mAb16D10 triggering of glycogen synthase kinase-3β (GSK-3β) activation, degradation of β-catenin, and decreased expression of cyclin D1. GSK-3β positively affected p53 expression in pancreatic tumor cells after mAb16D10 binding. Inhibition of GSK-3β activity reversed the effects induced by mAb16D10 in SOJ-6 cells, supporting the pivotal role of GSK-3β signaling in the mechanisms of action induced by mAb16D10. Also, mAb16D10 cell treatment led to membrane overexpression of E-cadherin. Both E-cadherin and tumor Ag were localized in membrane lipid cholesterol-rich microdomains and are thought to belong to signaling platforms involved in the induction of cell cycle arrest and cell death. Overall, this study reveals that mAb16D10 holds great potential to prevent pancreatic tumor proliferation by apoptotic cell death, thus promising therapeutic prospects for treatment of pancreatic adenocarcinoma, a highly lethal disease.
Collapse
Affiliation(s)
- Lydie Crescence
- Aix-Marseille Université, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, F-13005, Marseille, France
| | | | | | | | | | | |
Collapse
|
8
|
Franceschi C, Collignon A, Isnardon D, Benkoel L, Vérine A, Silvy F, Bernard JP, Lombardo D, Beraud E, Olive D, Mas E. A novel tumor-associated pancreatic glycoprotein is internalized by human dendritic cells and induces their maturation. THE JOURNAL OF IMMUNOLOGY 2011; 186:4067-77. [PMID: 21346236 DOI: 10.4049/jimmunol.1000408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aberrant glycosylation or overexpression of cell-surface glycosylated tumor-associated Ags (TAA) distinguish neoplastic from normal cells. Interactions of TAA MUC1 and HER2/neu with dendritic cells (DC) preclude efficient processing, which impairs immune responses. It is thus important to define the mechanisms of interactions between DC and glycosylated TAA and their trafficking and processing for further T cell activation. In this work, we study interactions between DC and the oncofetal fucose-rich glycovariants of bile salt-dependent lipase (BSDL), expressed in pancreatic cancer tissues and referred to as pathological BSDL carrying the fucosylated J28 glycotope (pBSDL-J28) because it is characterized by the mAb J28. The expression of pBSDL-J28 was assessed by immunohistochemistry and quantified by confocal microscopy. Nontumoral pancreatic tissues and cells do not express pBSDL-J28. Using multidisciplinary approaches and functional studies, we provide the first evidence, to our knowledge, that this tumoral glycoprotein is rapidly internalized by human DC through macropinocytosis and endocytosis via mannose receptors and then transported to late endosomes for processing. Interestingly, pBSDL-J28 per se induced DC maturation with increased expression of costimulatory and CD83 molecules associated with cytokine secretion (IL-8 and IL-6). Surprisingly, DC retained their full ability to internalize Ags, making this maturation atypical. Finally, the allogeneic pBSDL-J28-treated DC stimulated lymphocyte proliferation. Besides, pulsing DC with pBSDL-J28 C-terminal glycopolypeptide and maturation with CD40L triggered CD4(+) and CD8(+) T cell proliferation. Therefore, interactions of pBSDL-J28, expressed on tumoral pancreatic tissue, with DC may lead to adequate Ag trafficking and processing and result in T cell activation.
Collapse
Affiliation(s)
- Cécile Franceschi
- INSERM Unité Mixte de Recherche 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, F-13005 Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fontbonne H, Brisson L, Vérine A, Puigserver A, Lombardo D, Ajandouz EH. Human bile salt-dependent lipase efficiency on medium-chain acyl-containing substrates: control by sodium taurocholate. J Biochem 2010; 149:145-51. [PMID: 21081507 DOI: 10.1093/jb/mvq132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bile salt-dependent lipase was purified to homogeneity from lyophilized human milk and used to screen the influence of the acyl chain length (2-16 carbon atoms) on the kinetic constants k(cat) and K(m) of the hydrolysis of para-nitrophenyl (pnp) ester substrates in the presence or absence of sodium taurocholate (NaTC: 0.02-20 mM). The highest k(cat) value (∼3,500 s(-1)) was obtained with pnpC(8) as substrate, whereas the lowest K(m) (<10 µM) was that recorded with pnpC(10). In the absence of NaTC, the maximal catalytic efficiency (k(cat)/K(m)) was obtained with pnpC(8), while in the presence of NaTC k(cat)/K(m) was maximal with pnpC(8), pnpC(10) or pnpC(12). The bile salt activated the enzyme in two successive saturation phases occurring at a micromolar and a millimolar concentration range, respectively. The present data emphasize the suitability of this enzyme for the hydrolysis of medium-chain acyl-containing substrates and throw additional light on how BSDL is activated by NaTC.
Collapse
Affiliation(s)
- Hervé Fontbonne
- BiosCiences-ISM2, UMR 6263, CNRS-Université Paul Cézanne-Aix Marseille III, Case 342, Faculté des Sciences et Techniques de Saint Jérôme, Marseille, France
| | | | | | | | | | | |
Collapse
|
10
|
Chames P, Kerfelec B, Baty D. Therapeutic antibodies for the treatment of pancreatic cancer. ScientificWorldJournal 2010; 10:1107-20. [PMID: 20563534 PMCID: PMC2925140 DOI: 10.1100/tsw.2010.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer is a devastating disease with the worst mortality rate and an overall 5-year survival rate lower than 5%. In the U.S., this disease is the fourth leading cause of death and represents 6% of all cancer-related deaths. Gemcitabine, the current standard first-line treatment, offers marginal benefits to patients in terms of symptom control and prolongation of life. Since 1996, about 20 randomized phase III trials have been performed to improve the efficacy of gemcitabine, with little success regarding a significant improvement in survival outcomes. The need for novel therapeutic strategies, such as target therapy, is obvious. Monoclonal antibodies have finally come of age as therapeutics and several molecules are now approved for cancer therapies. This review aims to give a general view on the clinical results obtained so far by antibodies for the treatment of pancreatic cancer and describes the most promising avenues toward a significant improvement in the treatment of this frustrating disease.
Collapse
|
11
|
Thomas GM, Panicot-Dubois L, Lacroix R, Dignat-George F, Lombardo D, Dubois C. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. ACTA ACUST UNITED AC 2009; 206:1913-27. [PMID: 19667060 PMCID: PMC2737159 DOI: 10.1084/jem.20082297] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent publications have demonstrated the presence of tissue factor (TF)–bearing microparticles (MPs) in the blood of patients suffering from cancer. However, whether these MPs are involved in thrombosis remains unknown. We show that pancreatic and lung cancer cells produce MPs that express active TF and P-selectin glycoprotein ligand 1 (PSGL-1). Cancer cell–derived MPs aggregate platelets via a TF-dependent pathway. In vivo, cancer cell–derived MPs, but not their parent cells, infused into a living mouse accumulate at the site of injury and reduce tail bleeding time and the time to occlusion of venules and arterioles. This thrombotic state is also observed in mice developing tumors. In such mice, the amount of circulating platelet-, endothelial cell–, and cancer cell–derived MPs is increased. Endogenous cancer cell–derived MPs shed from the growing tumor are able to accumulate at the site of injury. Infusion of a blocking P-selectin antibody abolishes the thrombotic state observed after injection of MPs or in mice developing a tumor. Collectively, our results indicate that cancer cell–derived MPs bearing PSGL-1 and TF play a key role in thrombus formation in vivo. Targeting these MPs could be of clinical interest in the prevention of thrombosis and to limit formation of metastasis in cancer patients.
Collapse
Affiliation(s)
- Grace M Thomas
- Institut National de Santé et de Recherche Médicale (INSERM) UMR911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, 13385 Marseille, France
| | | | | | | | | | | |
Collapse
|
12
|
Benkoël L, Bernard JP, Payan-Defais MJ, Crescence L, Franceschi C, Delmas M, Ouaissi M, Sastre B, Sahel J, Benoliel AM, Bongrand P, Silvy F, Gauthier L, Romagné F, Lombardo D, Mas E. Monoclonal antibody 16D10 to the COOH-terminal domain of the feto-acinar pancreatic protein targets pancreatic neoplastic tissues. Mol Cancer Ther 2009; 8:282-91. [DOI: 10.1158/1535-7163.mct-08-0471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Panicot-Dubois L, Thomas GM, Furie BC, Furie B, Lombardo D, Dubois C. Bile salt-dependent lipase interacts with platelet CXCR4 and modulates thrombus formation in mice and humans. J Clin Invest 2008; 117:3708-19. [PMID: 18037996 DOI: 10.1172/jci32655] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 09/19/2007] [Indexed: 01/19/2023] Open
Abstract
Bile salt-dependent lipase (BSDL) is an enzyme involved in the duodenal hydrolysis and absorption of cholesteryl esters. Although some BSDL is transported to blood, the role of circulating BSDL is unknown. Here, we demonstrate that BSDL is stored in platelets and released upon platelet activation. Because BSDL contains a region that is structurally homologous to the V3 loop of HIV-1, which binds to CXC chemokine receptor 4 (CXCR4), we hypothesized that BSDL might bind to CXCR4 present on platelets. In human platelets in vitro, both BSDL and a peptide corresponding to its V3-like loop induced calcium mobilization and enhanced thrombin-mediated platelet aggregation, spreading, and activated alpha(IIb)beta(3) levels. These effects were abolished by CXCR4 inhibition. BSDL also increased the production of prostacyclin by human endothelial cells. In a mouse thrombosis model, BSDL accumulated at sites of vessel wall injury. When CXCR4 was antagonized, the accumulation of BSDL was inhibited and thrombus size was reduced. In BSDL(-/-) mice, calcium mobilization in platelets and thrombus formation were attenuated and tail bleeding times were increased in comparison with those of wild-type mice. We conclude that BSDL plays a role in optimal platelet activation and thrombus formation by interacting with CXCR4 on platelets.
Collapse
Affiliation(s)
- Laurence Panicot-Dubois
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Sabbah EN, Kadouche J, Ellison D, Finucane C, Decaudin D, Mather SJ. In vitro and in vivo comparison of DTPA- and DOTA-conjugated antiferritin monoclonal antibody for imaging and therapy of pancreatic cancer. Nucl Med Biol 2007; 34:293-304. [PMID: 17383579 DOI: 10.1016/j.nucmedbio.2007.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 12/26/2006] [Accepted: 01/05/2007] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer has a very poor prognosis with a less than 5% survival rate at 5 years. Neither external beam radiation nor chemotherapy, alone or in combination, have given encouraging results so far. A possible solution might come from the use of targeted therapy such as radioimmunotherapy. We present here the results obtained from the preclinical development of a new monoclonal antiferritin antibody (Ab), AMB8LK. Ferritin is overexpressed in pancreatic cancer and could thus be used as a target for the delivery of radioactivity at the tumour sites. The AMB8LK Ab was conjugated to three chelating agents: the 2-(4-isothiocyanatobenzyl)-diethylenetriamine pentaacetic acid (PSCN-Bz-DTPA), the (R)-2-amino-3-(4-isothiocyanatophenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-pentaacetic acid (p5CN-Bz-CHX-A"-DTPA) and the 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (pSCN-Bz-DOTA). Radiolabelling of the three immunoconjugates with indium 111 and yttrium 90 as well as in vitro stability and immunoreactivity against pure ferritin and cells expressing ferritin were analysed. In vivo biodistribution studies were conducted on normal and on human pancreatic adenocarcinoma CAPAN-1 tumour bearing mice. These experiments demonstrated good radiolabelling (>95%), stability and immunoreactivity of the three compounds. In the biodistribution studies, differences between the three immunoconjugates were apparent in the rate of blood clearance and in tumour, liver and bone uptake. A very good pancreatic adenocarcinoma tumour targeting was observed especially with the Bz-DTPA-AMB8LK: 20% of the injected dose of the indium-labelled compound 3 days after injection; 15% of the injected dose 5 days after that of the yttrium-labelled Ab. Altogether, these results in animal models suggest that (90)Y-Bz-DTPA-AMB8LK is a good candidate for further therapeutic efficacy studies.
Collapse
|
15
|
Sadoulet MO, Franceschi C, Aubert M, Silvy F, Bernard JP, Lombardo D, Mas E. Glycoengineering of alphaGal xenoantigen on recombinant peptide bearing the J28 pancreatic oncofetal glycotope. Glycobiology 2007; 17:620-30. [PMID: 17374617 DOI: 10.1093/glycob/cwm028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In human pancreatic adenocarcinoma, alterations of glycosylation processes leads to the expression of tumor-associated carbohydrate antigens, representing potential targets for cancer immunotherapy. Among these pancreatic tumor-associated carbohydrate antigens, the J28 glycotope located within the O-glycosylated mucin-like C-terminal domain of the fetoacinar pancreatic protein (FAPP) and expressed at the surface of human tumoral tissues, can be a good target for anticancer therapeutic vaccines. However, the oncodevelopmental self character of the J28 glycotope associated with the low immunogenicity of tumor-associated carbohydrate antigens may be a major obstacle to effective anti-tumor vaccine therapy. In this study, we have investigated a method to increase the immunogenicity of the recombinant pancreatic oncofetal J28 glycotope by glycoengineering Galalpha1,3Galss1,4GlcNAc-R (alphaGal epitope) which may be recognized by natural anti-alphaGal antibody present in humans. For this purpose, we have developed a stable Chinese hamster ovary cell clone expressing the alphaGal epitope by transfecting the cDNA encoding the alpha1,3galactosyltransferase. These cells have been previously equipped to produce the recombinant O-glycosylated C-terminal domain of FAPP carrying the J28 glycotope. As a consequence, the C-terminal domain of FAPP produced by these cells carries the alphaGal epitope on oligosaccharide structures associated with the J28 glycotope. Furthermore, we show that this recombinant "alpha1,3galactosyl and J28 glycotope" may not only be targeted by human natural anti-alphaGal antibodies but also by the mAbJ28, suggesting that the J28 glycotope remains accessible to the immune system as vaccinating agent. This approach may be used for many identified tumor-associated carbohydrate antigens which can be glycoengineered to carry a alphaGal epitope to increase their immunogenicity and to develop therapeutic vaccines.
Collapse
MESH Headings
- Adenocarcinoma/chemistry
- Adenocarcinoma/enzymology
- Adenocarcinoma/immunology
- Animals
- Antibodies, Monoclonal/immunology
- Antigens, Heterophile/chemistry
- Antigens, Heterophile/genetics
- Antigens, Heterophile/immunology
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/immunology
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- CHO Cells
- Clone Cells
- Cricetinae
- Cricetulus
- DNA, Complementary
- Epitopes/chemistry
- Epitopes/immunology
- Galactosyltransferases/genetics
- Galactosyltransferases/immunology
- Glycoproteins/chemistry
- Humans
- Pancreatic Neoplasms/chemistry
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/immunology
- Protein Engineering
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Transfection
Collapse
Affiliation(s)
- Marie-Odile Sadoulet
- INSERM UMR-777, Faculté de Médecine-Timone, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|