1
|
de Araújo WM, Tanaka MN, Lima PHS, de Moraes CF, Leve F, Bastos LG, Rocha MR, Robbs BK, Viola JPB, Morgado-Diaz JA. TGF-β acts as a dual regulator of COX-2/PGE 2 tumor promotion depending of its cross-interaction with H-Ras and Wnt/β-catenin pathways in colorectal cancer cells. Cell Biol Int 2021; 45:662-673. [PMID: 33300198 DOI: 10.1002/cbin.11519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 01/10/2023]
Abstract
Transforming growth factor-β (TGF-β) plays a dual role acting as tumor promoter or suppressor. Along with cyclooxygenase-2 (COX-2) and oncogenic Ras, this multifunctional cytokine is deregulated in colorectal cancer. Despite their individual abilities to promote tumor growth and invasion, the mechanisms of cross regulation between these pathways is still unclear. Here, we investigate the effects of TGF-β, Ras oncogene and COX-2 in the colorectal cancer context. We used colon adenocarcinoma cell line HT-29 and Ras-transformed IEC-6 cells, both treated with prostaglandin E2 (PGE2 ), TGF-β or a combined treatment with these agents. We demonstrated that PGE2 alters the subcellular localization of E-cadherin and β-catenin and enhanced the tumorigenic potential in HT-29 cells. This effect was inhibited by TGF-β, indicating a tumor suppressor role. Conversely, in Ras-transformed IEC-6 cells, TGF-β induced COX-2 expression and increased invasiveness, acting as a tumor promoter. In IEC-6 Ras-transformed cells, TGF-β increased nuclear β-catenin and Wnt/β-catenin activation, opposite to what was seen in the PGE2 and TGF-β joint treatment in HT-29 cells. Together, our findings show that TGF-β increases COX-2 levels and induces invasiveness cooperating with Ras in a Wnt/β-catenin activation-dependent manner. This shows TGF-β dual regulation over COX-2/PGE2 tumor promotion depending on the H-Ras and Wnt/β-catenin pathways activation status in intestinal cancer cells.
Collapse
Affiliation(s)
- Wallace M de Araújo
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| | - Marcelo N Tanaka
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| | - Pedro H S Lima
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| | - Cassio F de Moraes
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| | - Fernanda Leve
- Tissue Bioengineering Laboratory (Labio), Division of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality & Technology (Inmetro), Duque de Caxias, Brazil
| | - Lilian G Bastos
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| | - Murilo R Rocha
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| | - Bruno K Robbs
- Basic Science Department, Campus Universitário de Nova Friburgo, Universidade Federal Fluminense, UFF, Rio de Janeiro, RJ, Brazil
| | - João P B Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Jose A Morgado-Diaz
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Mor A, Aizman E, Kloog Y. Celecoxib enhances the anti-inflammatory effects of farnesylthiosalicylic acid on T cells independent of prostaglandin E(2) production. Inflammation 2013; 35:1706-14. [PMID: 22688643 DOI: 10.1007/s10753-012-9488-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Celecoxib (Celebrex(®)), a non-steroidal anti-inflammatory drug and selective cyclooxygenase-2 inhibitor, is widely used to treat arthritis and other inflammatory disorders. Awareness of its anti-proliferative properties has prompted another indication for its use, in preventing colon polyps in high-risk populations. Farnesylthiosalicylic acid (FTS; Salirasib(®)), designed to inhibit oncogenic Ras and currently under evaluation in phase I/II and II clinical trials, was recently shown by our group to exert anti-inflammatory effects on both lymphocytes and mast cells. Here we examined whether celecoxib combined with FTS would enhance this anti-inflammatory activity. While each drug separately inhibited Ras activation in these cells, their combination yielded more marked inhibition as well as further inhibition of ERK phosphorylation, lymphocyte adhesion, and interleukin-2 secretion. The inhibitory effects, moreover, were independent of prostaglandin E(2) secretion. These data point to the promising potential of combined treatment with celecoxib and FTS for inflammatory disorders involving lymphocytes.
Collapse
Affiliation(s)
- Adam Mor
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, 450 E 29th Street, New York, NY 10016, USA.
| | | | | |
Collapse
|
3
|
Nah SS, Won HJ, Ha E, Kang I, Cho HY, Hur SJ, Lee SH, Baik HH. Epidermal growth factor increases prostaglandin E2 production via ERK1/2 MAPK and NF-κB pathway in fibroblast like synoviocytes from patients with rheumatoid arthritis. Rheumatol Int 2009; 30:443-9. [DOI: 10.1007/s00296-009-0976-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 05/20/2009] [Indexed: 11/24/2022]
|
4
|
Tani T, Ayuzawa R, Takagi T, Kanehira T, Maurya DK, Tamura M. Angiotensin II bi-directionally regulates cyclooxygenase-2 expression in intestinal epithelial cells. Mol Cell Biochem 2008; 315:185-93. [PMID: 18543083 DOI: 10.1007/s11010-008-9806-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 05/23/2008] [Indexed: 12/19/2022]
Abstract
We previously demonstrated that angiotensin II (Ang II) receptor signaling is involved in azoxymethane-induced mouse colon tumorigenesis. In order to clarify the role of Ang II in COX-2 expression in the intestinal epithelium, the receptor subtype-specific effect on COX-2 expression in a rat intestinal epithelial cell line (RIE-1) has been investigated. Ang II dose- and time-dependently increased the expression of COX-2, but not COX-1 mRNA and protein. This stimulation was completely blocked by the AT(1) receptor antagonist but not the AT(2) receptor antagonist. Ang II and lipopolysaccharide (LPS) additively induced COX-2 protein in RIE-1 cells, whereas the LPS-induced COX-2 expression was significantly attenuated by low concentrations of Ang II or the AT(2) agonistic peptide CGP-42112A only in AT(2) over-expressed cells. These data indicate that Ang II bi-directionally regulates COX-2 expression via both AT(1) and AT(2) receptors. Control of COX-2 expression through Ang II signaling may have significance in cytokine-induced COX-2 induction and colon tumorigenesis.
Collapse
Affiliation(s)
- Tatsuo Tani
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
5
|
Misra S, Obeid LM, Hannun YA, Minamisawa S, Berger FG, Markwald RR, Toole BP, Ghatak S. Hyaluronan constitutively regulates activation of COX-2-mediated cell survival activity in intestinal epithelial and colon carcinoma cells. J Biol Chem 2008; 283:14335-44. [PMID: 18326857 PMCID: PMC2386915 DOI: 10.1074/jbc.m703811200] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 12/21/2007] [Indexed: 01/12/2023] Open
Abstract
Hyaluronan is a major component of the pericellular matrix surrounding tumor cells, including colon carcinomas. Elevated cycooxygenase-2 levels have been implicated in several malignant properties of colon cancer. We now show for the first time a strong link between hyaluronan-CD44 interaction and cyclooxygenase-2 in colon cancer cells. First, we have shown that increased expression of hyaluronan synthase-2 induces malignant cell properties, including increased proliferation, anchorage-independent growth, and epithelial-mesenchymal transition in HIEC6 cells. Second, constitutive hyaluronan-CD44 interaction stimulates a signaling pathway involving ErbB2, phosphoinositide 3-kinase/AKT, beta-catenin, and cyclooxygenase-2/prostaglandin E(2) in HCA7 colon carcinoma cells. Third, the HA/CD44-activated ErbB2 --> phosphoinositide 3-kinase/AKT --> beta-catenin pathway stimulates cell survival/cell proliferation through COX-2 induction in hyaluronan-overexpressing HIEC6 cells and in HCA7 cells. Fourth, perturbation of hyaluronan-CD44 interaction by hyaluronan oligomers or CD44-silencing RNA decreases cyclooxygenase-2 expression and enzyme activity, and inhibition of cyclooxygenase-2 decreases hyaluronan production suggesting the possibility of an amplifying positive feedback loop between hyaluronan and cyclooxygenase-2. We conclude that hyaluronan is an important endogenous regulator of colon cancer cell survival properties and that cyclooxygenase-2 is a major mediator of these hyaluronan-induced effects. Defining hyaluronan-dependent cyclooxygenase-2/prostaglandin E(2)-associated signaling pathways will provide a platform for developing novel therapeutic approaches for colon cancer.
Collapse
Affiliation(s)
- Suniti Misra
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Neoplasia: An Anniversary of Progress. Neoplasia 2007. [DOI: 10.1593/neo.07968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Repasky GA, Zhou Y, Morita S, Der CJ. Ras-mediated intestinal epithelial cell transformation requires cyclooxygenase-2-induced prostaglandin E2 signaling. Mol Carcinog 2007; 46:958-70. [PMID: 17477350 DOI: 10.1002/mc.20333] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ras-mediated transformation is associated with upregulation of cyclooxygenase-2 (COX-2), which in turn promotes prostaglandin E2 (PGE2) synthesis and secretion. Although recent studies have identified molecular mechanisms by which Ras mediates upregulation of COX-2, conflicting observations have been made. Furthermore, while COX-2 upregulation has been shown to be important for Ras transformation, the signaling pathways initiated by PGE2-stimulation of EP family of heterotrimeric G protein-coupled receptors (GPCR) and contribution of PGE2 signaling to Ras-mediated transformation are issues that remain unresolved. In this study, we first determined that Raf effector pathway activation of the extracellular-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) cascade alone was sufficient and necessary for COX-2 and PGE2 upregulation. However, Raf-independent regulation of the c-jun N-terminal kinase (JNK) and p38 MAPK cascades is also involved in COX-2 and PGE2 upregulation, with the JNK and p38 pathways exhibiting opposing roles in COX-2 and PGE2 upregulation. Furthermore, in contrast to previous studies, we found that an epidermal growth factor (EGF) receptor autocrine growth mechanism, another Raf-independent signaling mechanism, was necessary for COX-2 and PGE2 upregulation. Second, we determined that inhibition of EP1/2 receptor function blocked growth transformation by Ras, demonstrating that PGE2 upregulation is a key transforming function of COX-2. Finally, we found that PGE2 stimulated the activation of Ras and ERK, but not Akt, and reduced matrix deprivation-induced apoptosis, in untransformed epithelial cells. In summary, our studies define additional, multiple signaling mechanisms that promote COX-2 and PGE2 expression and show that COX-2-stimulated PGE2-EP receptor signaling is required for growth and survival transformation by Ras.
Collapse
Affiliation(s)
- Gretchen A Repasky
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
8
|
Rehemtulla A, Ross BD. A review of the past, present, and future directions of neoplasia. Neoplasia 2006; 7:1039-46. [PMID: 16354585 PMCID: PMC1501177 DOI: 10.1593/neo.05793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|