1
|
Bester D, Blignaut M, Huisamen B. ATM facilitates autophagy and protects against oxidative stress and apoptosis in response to ER stress in vitro. Biochem Biophys Res Commun 2024; 732:150422. [PMID: 39033549 DOI: 10.1016/j.bbrc.2024.150422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The endoplasmic reticulum (ER) responds to cellular stress by initiating an unfolded protein response (UPR) that mitigates misfolded protein accumulation by promoting protein degradation pathways. Chronic ER stress leads to UPR-mediated apoptosis and is a common underlying feature of various diseases, highlighting the modulators of the UPR as attractive targets for therapeutic intervention. Ataxia-telangiectasia mutated protein kinase (ATM) is a stress-responsive kinase that initiates autophagy in response to reactive oxygen species (ROS), and ATM deficiency is associated with increased ER stress markers in vitro. However, whether ATM participates in the UPR remains unclear. In this in vitro study, a novel role for ATM in the ER stress response is described using the well-characterized HEK293 cells treated with the common ER stress-inducing agent, tunicamycin, with and without the potent ATM inhibitor, KU-60019. We show for the first time that ATM is activated in a time-dependent manner downstream of UPR initiation in response to tunicamycin treatment. Furthermore, we demonstrate that ATM is required for p62-bound protein cargo degradation through the autophagy pathway in response to ER stress. Lastly, our data suggest a protective role for ATM in ER stress-mediated oxidative stress and mitochondrial apoptosis. Taken together, we highlight ATM as a potential novel drug target in ER stress-related diseases.
Collapse
Affiliation(s)
- Danélle Bester
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa.
| | - Marguerite Blignaut
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa.
| | - Barbara Huisamen
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa.
| |
Collapse
|
2
|
Subramanian GN, Yeo AJ, Gatei MH, Coman DJ, Lavin MF. Metabolic Stress and Mitochondrial Dysfunction in Ataxia-Telangiectasia. Antioxidants (Basel) 2022; 11:653. [PMID: 35453338 PMCID: PMC9032508 DOI: 10.3390/antiox11040653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The ataxia-telangiectasia mutated (ATM) protein kinase is, as the name implies, mutated in the human genetic disorder ataxia-telangiectasia (A-T). This protein has its "finger in many pies", being responsible for the phosphorylation of many thousands of proteins in different signaling pathways in its role in protecting the cell against a variety of different forms of stress that threaten to perturb cellular homeostasis. The classical role of ATM is the protection against DNA damage, but it is evident that it also plays a key role in maintaining cell homeostasis in the face of oxidative and other forms of non-DNA damaging stress. The presence of ATM is not only in the nucleus to cope with damage to DNA, but also in association with other organelles in the cytoplasm, which suggests a greater protective role. This review attempts to address this greater role of ATM in protecting the cell against both external and endogenous damage.
Collapse
Affiliation(s)
| | - Abrey Jie Yeo
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD 4029, Australia
| | - Magtouf Hnaidi Gatei
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD 4029, Australia
| | - David John Coman
- Queensland Children's Hospital, Brisbane, QLD 4101, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Martin Francis Lavin
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD 4029, Australia
| |
Collapse
|
3
|
Atlas D. Emerging therapeutic opportunities of novel thiol-amides, NAC-amide (AD4/NACA) and thioredoxin mimetics (TXM-Peptides) for neurodegenerative-related disorders. Free Radic Biol Med 2021; 176:120-141. [PMID: 34481041 DOI: 10.1016/j.freeradbiomed.2021.08.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022]
Abstract
Understanding neurodegenerative diseases have challenged scientists for decades. It has become apparent that a decrease in life span is often correlated with the development of neurodegenerative disorders. Oxidative stress and the subsequent inflammatory damages appear to contribute to the different molecular and biochemical mechanisms associated with neurodegeneration. In this review, I examine the protective properties of novel amino acid based compounds, comprising the AD series (AD1-AD7) in particular N-acetylcysteine amide, AD4, also called NACA, and the series of thioredoxin mimetic (TXM) peptides, TXM-CB3-TXM-CB16. Designed to cross the blood-brain-barrier (BBB) and permeate the cell membrane, these antioxidant/anti-inflammatory compounds may enable effective treatment of neurodegenerative related disorders. The review addresses the molecular mechanism of cellular protection exhibited by these new reagents, focusing on the reversal of oxidative stress, mitochondrial stress, inflammatory damages, and prevention of premature cell death. In addition, it will cover the outlook of the clinical prospects of AD4/NACA and the thioredoxin-mimetic peptides, which are currently in development.
Collapse
Affiliation(s)
- Daphne Atlas
- Professor of Neurochemistry, Dept. of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
4
|
Suliman M, Schmidtke MW, Greenberg ML. The Role of the UPR Pathway in the Pathophysiology and Treatment of Bipolar Disorder. Front Cell Neurosci 2021; 15:735622. [PMID: 34531727 PMCID: PMC8439382 DOI: 10.3389/fncel.2021.735622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Bipolar disorder (BD) is a mood disorder that affects millions worldwide and is associated with severe mood swings between mania and depression. The mood stabilizers valproate (VPA) and lithium (Li) are among the main drugs that are used to treat BD patients. However, these drugs are not effective for all patients and cause serious side effects. Therefore, better drugs are needed to treat BD patients. The main barrier to developing new drugs is the lack of knowledge about the therapeutic mechanism of currently available drugs. Several hypotheses have been proposed for the mechanism of action of mood stabilizers. However, it is still not known how they act to alleviate both mania and depression. The pathology of BD is characterized by mitochondrial dysfunction, oxidative stress, and abnormalities in calcium signaling. A deficiency in the unfolded protein response (UPR) pathway may be a shared mechanism that leads to these cellular dysfunctions. This is supported by reported abnormalities in the UPR pathway in lymphoblasts from BD patients. Additionally, studies have demonstrated that mood stabilizers alter the expression of several UPR target genes in mouse and human neuronal cells. In this review, we outline a new perspective wherein mood stabilizers exert their therapeutic mechanism by activating the UPR. Furthermore, we discuss UPR abnormalities in BD patients and suggest future research directions to resolve discrepancies in the literature.
Collapse
Affiliation(s)
- Mahmoud Suliman
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
5
|
Wei Z, Weng S, Wang L, Mao Z. Mechanism of Astragalus polysaccharides in attenuating insulin resistance in Rats with type 2 diabetes mellitus via the regulation of liver microRNA‑203a‑3p. Mol Med Rep 2017; 17:1617-1624. [PMID: 29257218 PMCID: PMC5780102 DOI: 10.3892/mmr.2017.8084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
Insulin resistance (IR) is a common feature of type 2 diabetes mellitus (T2DM). Astragalus polysaccharides (APS) is a natural medicine that is used to treat T2DM. However, the mechanism by which APS regulates micro (mi)RNA in the treatment of IR has not been investigated. The purpose of the present study was to investigate differential miRNA expression between normal, T2DM model and APS treatment rats, as well as changes in miRNA and its downstream gene expression levels after APS treatment in T2DM Goto Kakizaki (GK) rats. Results suggested that miRNA (miR)-203a-3p expression level was significantly decreased in the liver of T2DM GK rats. Furthermore, it was identified that glucose-regulated protein (GRP)78 was the target gene of miR-203a-3p. GRP78 mRNA and protein expression levels of GRP78, CAAT-enhancer-binding protein homologous protein (CHOP), phosphorylated-c-Jun N-terminal kinase (pJNK)1, and caspase-12 were significantly increased in the liver of T2DM GK rats. Furthermore, miR-203a-3p was upregulated following APS treatment, and the protein expression levels of GRP78, CHOP, pJNK1 and caspase-12 were significantly decreased. In addition, miR-203a-3p overexpression in IR cells decreased the protein expression levels of these factors and anti-miR-203a-3p produced the opposite result. These findings provided evidence that miR-203a-3p may have a functional role in endoplasmic reticulum stress (ERS) signaling in the liver of T2DM GK rats. In addition, APS attenuated IR in T2DM, likely through upregulating or maintaining the miR-203a-3p expression levels, decreasing GRP78 mRNA and protein expression levels and regulating the protein expression of the ERS signaling pathway.
Collapse
Affiliation(s)
- Zitai Wei
- Department of Chemistry of Traditional Chinese Medicine, Medical College, Quzhou College of Technology, Quzhou, Zhejiang 324000, P.R. China
| | - Siying Weng
- Department of Endocrinology, Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chineses Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Lei Wang
- Department of Clinical Foundation of Chinese Medicine, College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhujun Mao
- Department of Clinical Foundation of Chinese Medicine, College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
6
|
N-acetylcysteine amide (AD4) reduces cocaine-induced reinstatement. Psychopharmacology (Berl) 2016; 233:3437-48. [PMID: 27469021 DOI: 10.1007/s00213-016-4388-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE Chronic exposure to drugs of abuse changes glutamatergic transmission in human addicts and animal models. N-acetylcysteine (NAC) is a cysteine prodrug that indirectly activates cysteine-glutamate antiporters. In the extrasynaptic space, NAC restores basal glutamate levels during drug abstinence and normalizes increased glutamatergic tone in rats during reinstatement to drugs of abuse. In initial clinical trials, repeated NAC administration seems to be promising for reduced craving in cocaine addicts. OBJECTIVE In this study, NAC-amide, called AD4 or NACA, was examined in intravenous cocaine self-administration and extinction/reinstatement procedures in rats. We investigated the behavioral effects of AD4 in the olfactory bulbectomized (OBX) rats, considered an animal model of depression. Finally, we tested rats injected with AD4 or NAC during 10-daily extinction training sessions to examine subsequent cocaine seeking. RESULTS AD4 (25-75 mg kg(-1)) given acutely did not alter the rewarding effects of cocaine in OBX rats and sham-operated controls. However, at 6.25-50 mg kg(-1), AD4 decreased dose-dependently cocaine seeking and relapse triggered by cocaine priming or drug-associated conditioned cues in both phenotypes. Furthermore, repeated treatment with AD4 (25 mg kg(-1)) or NAC (100 mg kg(-1)) during daily extinction trials reduced reinstatement of drug-seeking behavior in sham-operated controls. In the OBX rats only, AD4 effectively blocked cocaine-seeking behavior. CONCLUSIONS Our results demonstrate that AD4 is effective at blocking cocaine-seeking behavior, highlighting its potential clinical use toward cocaine use disorder.
Collapse
|
7
|
Baratz-Goldstein R, Deselms H, Heim LR, Khomski L, Hoffer BJ, Atlas D, Pick CG. Thioredoxin-Mimetic-Peptides Protect Cognitive Function after Mild Traumatic Brain Injury (mTBI). PLoS One 2016; 11:e0157064. [PMID: 27285176 PMCID: PMC4902227 DOI: 10.1371/journal.pone.0157064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is recognized as a common injury among children, sportsmen, and elderly population. mTBI lacks visible objective structural brain damage but patients frequently suffer from long-lasting cognitive, behavioral and emotional difficulties associated with biochemical and cellular changes. Currently there is no effective treatment for patients with mTBI. The thioredoxin reductase/thioredoxin pathway (TrxR/Trx1) has both anti-inflammatory and anti-oxidative properties. If the system is compromised, Trx1 remains oxidized and triggers cell death via an ASK1-Trx1 signal transduction mechanism. We previously showed tri and tetra peptides which were derived from the canonical -CxxC- motif of the Trx1-active site, called thioredoxin mimetic (TXM) peptides, reversed inflammatory and oxidative stress damage mimicking Trx1 activity. Here, TXM-peptides were examined for protecting cognitive function following weight drop closed-head injury in a mouse model of mTBI. TXM-CB3 (AcCys-Pro-CysNH2), TXM-CB13 (DY-70; AcCys-Met-Lys-CysNH2) or AD4 (ACysNH2) were administered at 50 mg/kg, 60 min after injury and cognitive performance was monitored by the novel-object-recognition and Y-maze tests. Behavioral deficits subsequent to mTBI injury were reversed by a single dose of TXM-CB3, TXM-CB13 and, to a lesser extent, by AD4. TXM-CB13 similar to TXM-CB3 and AD4 reversed oxidative stress-induced phosphorylation of mitogen-activated kinases, p38MAPK and c-Jun N-terminal kinase, (JNK) in human neuronal SH-SY5Y cells. We conclude that significantly improved cognitive behavior post mTBI by the TXM-peptides could result from anti-apoptotic, and/or anti-inflammatory activities. Future preclinical studies are required to establish the TXM-peptides as potential therapeutic drugs for brain injuries.
Collapse
Affiliation(s)
- Renana Baratz-Goldstein
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail: (RBG); (DA)
| | - Hanna Deselms
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Leore Raphael Heim
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lena Khomski
- Department Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Daphne Atlas
- Department Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- * E-mail: (RBG); (DA)
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Datan E, Roy SG, Germain G, Zali N, McLean JE, Golshan G, Harbajan S, Lockshin RA, Zakeri Z. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis 2016; 7:e2127. [PMID: 26938301 PMCID: PMC4823927 DOI: 10.1038/cddis.2015.409] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/31/2022]
Abstract
A virus that reproduces in a host without killing cells can easily establish a successful infection. Previously, we showed that dengue-2, a virus that threatens 40% of the world, induces autophagy, enabling dengue to reproduce in cells without triggering cell death. Autophagy further protects the virus-laden cells from further insults. In this study, we evaluate how it does so; we show that dengue upregulates host pathways that increase autophagy, namely endoplasmic reticulum (ER) stress and ataxia telangiectasia mutated (ATM) signaling followed by production of reactive oxygen species (ROS). Inhibition of ER stress or ATM signaling abrogates the dengue-conferred protection against other cell stressors. Direct inhibition of ER stress response in infected cells decreases autophagosome turnover, reduces ROS production and limits reproduction of dengue virus. Blocking ATM activation, which is an early response to infection, decreases transcription of ER stress response proteins, but ATM has limited impact on production of ROS and virus titers. Production of ROS determines only late-onset autophagy in infected cells and is not necessary for dengue-induced protection from stressors. Collectively, these results demonstrate that among the multiple autophagy-inducing pathways during infection, ER stress signaling is more important to viral replication and protection of cells than either ATM or ROS-mediated signaling. To limit virus production and survival of dengue-infected cells, one must address the earliest phase of autophagy, induced by ER stress.
Collapse
Affiliation(s)
- E Datan
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - S G Roy
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - G Germain
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - N Zali
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - J E McLean
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - G Golshan
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - S Harbajan
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - R A Lockshin
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - Z Zakeri
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| |
Collapse
|
9
|
Sahni S, Bae DH, Lane DJR, Kovacevic Z, Kalinowski DS, Jansson PJ, Richardson DR. The metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), inhibits stress-induced autophagy in cancer cells. J Biol Chem 2014; 289:9692-709. [PMID: 24532803 DOI: 10.1074/jbc.m113.529511] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
N-myc downstream regulated gene 1 (NDRG1) is a potent metastasis suppressor with an undefined role in the stress response. Autophagy is a pro-survival pathway and can be regulated via the protein kinase-like endoplasmic reticulum kinase (PERK)/eIF2α-mediated endoplasmic reticulum (ER) stress pathway. Hence, we investigated the role of NDRG1 in stress-induced autophagy as a mechanism of inhibiting metastasis via the induction of apoptosis. As thiosemicarbazone chelators induce stress and up-regulate NDRG1 to inhibit metastasis, we studied their effects on the ER stress response and autophagy. This was important to assess, as little is understood regarding the role of the stress induced by iron depletion and its role in autophagy. We observed that the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), which forms redox-active iron and copper complexes, effectively induced ER stress as shown by activation of the PERK/eIF2α pathway. Dp44mT also increased the expression of the autophagic marker, LC3-II, and this was dependent on activation of the PERK/eIF2α axis, as silencing PERK prevented LC3-II accumulation. The effect of Dp44mT on LC3-II expression was at least partially due to iron-depletion, as this effect was also demonstrated with the classical iron chelator, desferrioxamine (DFO), and was not observed for the DFO-iron complex. NDRG1 overexpression also inhibited basal autophagic initiation and the ER stress-mediated autophagic pathway via suppression of the PERK/eIF2α axis. Moreover, NDRG1-mediated suppression of the pro-survival autophagic pathway probably plays a role in its anti-metastatic effects by inducing apoptosis. In fact, multiple pro-apoptotic markers were increased, whereas anti-apoptotic Bcl-2 was decreased upon NDRG1 overexpression. This study demonstrates the role of NDRG1 as an autophagic inhibitor that is important for understanding its mechanism of action.
Collapse
Affiliation(s)
- Sumit Sahni
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Effective Components of Panax quinquefolius and Corydalis tuber Protect Myocardium through Attenuating Oxidative Stress and Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:482318. [PMID: 23864891 PMCID: PMC3707262 DOI: 10.1155/2013/482318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022]
Abstract
Both oxidative stress and endoplasmic reticulum stress (ERS) have been implicated in carcinogenesis and neurological diseases, while there are few reports about the mechanisms of them in the progression of acute myocardial infarction (AMI). This study examined oxidative stress and ERS in a rat model of AMI and evaluated their role in therapy by metoprolol and effective components of Panax quinquefolius and Corydalis tuber (EPC). In the present study a rat model of AMI was established by ligation of the left anterior descending coronary artery. After oral administration of metoprolol or low-to-high doses of EPC for 2 weeks, serum malondialdehyde (MDA), superoxide dismutase (SOD), and 8-iso-prostaglandin F2α (8-iso-PGF2α) were detected using enzyme-linked immunosorbent assay (ELISA). Quantitative real-time PCR and Western blotting were used to examine mRNA and protein expressions of the hallmarks of ERS-glucose-regulated protein-78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP). We confirmed that both metoprolol and moderate-to-high dose of EPC decreased 8-iso-PGF2α serum level and downregulated the mRNA and protein expressions of GRP78 and CHOP in myocardium, while EPC also increased SOD serum level. These results indicated that metoprolol and EPC protect the myocardium by attenuating oxidative stress and ERS induced by myocardial infarction, highlighting the ERS pathways as potential therapeutic targets for AMI.
Collapse
|
11
|
Yin QQ, Dong CF, Dong SQ, Dong XL, Hong Y, Hou XY, Luo DZ, Pei JJ, Liu XP. AGEs induce cell death via oxidative and endoplasmic reticulum stresses in both human SH-SY5Y neuroblastoma cells and rat cortical neurons. Cell Mol Neurobiol 2012; 32:1299-309. [PMID: 22717618 DOI: 10.1007/s10571-012-9856-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 05/31/2012] [Indexed: 11/26/2022]
Abstract
Advanced glycation endproducts (AGEs) are elevated in aging and neurodegenerative diseases such as Alzheimer's disease (AD), and they can stimulate the generation of reactive oxygen species (ROSs) via NADPH oxidase, induce oxidative stress that lead to cell death. In the current study, we investigated the molecular events underlying the process that AGEs induce cell death in SH-SY5Y cells and rat cortical neurons. We found: (1) AGEs increase intracellular ROSs; (2) AGEs cause cell death after ROSs increase; (3) oxidative stress-induced cell death is inhibited via the blockage of AGEs receptor (RAGE), the down-regulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and the increase of scavenging by anti-oxidant alpha-lipoic acid (ALA); (4) endoplasmic reticulum (ER) stress was triggered by AGE-induced oxidative stress, resulting in the activation of C/EBP homologous protein (CHOP) and caspase-12 that consequently initiates cell death, taurine-conjugated ursodeoxycholic acid (TUDCA) inhibited AGE-induced ER stress and cell death. Blocking RAGE-NADPH oxidase, and RAGE-NADPH oxidase-ROSs and ER stress scavenging pathways could efficiently prevent the oxidative and ER stresses, and consequently inhibited cell death. Our results suggest a new prevention and or therapeutic approach in AGE-induced cell death.
Collapse
Affiliation(s)
- Qing-Qing Yin
- Department of Senile Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gomez-Sucerquia LJ, Blas-Garcia A, Marti-Cabrera M, Esplugues JV, Apostolova N. Profile of stress and toxicity gene expression in human hepatic cells treated with Efavirenz. Antiviral Res 2012; 94:232-41. [DOI: 10.1016/j.antiviral.2012.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 11/16/2022]
|
13
|
Dinosaurs and ancient civilizations: reflections on the treatment of cancer. Neoplasia 2011; 12:957-68. [PMID: 21170260 DOI: 10.1593/neo.101588] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 12/14/2022] Open
Abstract
Research efforts in the area of palaeopathology have been seen as an avenue to improve our understanding of the pathogenesis of cancer. Answers to questions of whether dinosaurs had cancer, or if cancer plagued ancient civilizations, have captured the imagination as well as the popular media. Evidence for dinosaurian cancer may indicate that cancer may have been with us from the dawn of time. Ancient recorded history suggests that past civilizations attempted to fight cancer with a variety of interventions. When contemplating the issue why a generalized cure for cancer has not been found, it might prove useful to reflect on the relatively limited time that this issue has been an agenda item of governmental attention as well as continued introduction of an every evolving myriad of manmade carcinogens relative to the total time cancer has been present on planet Earth. This article reflects on the history of cancer and the progress made following the initiation of the "era of cancer chemotherapy."
Collapse
|
14
|
Abstract
The Ataxia-Telangiectasia mutated (ATM) kinase is regarded as the major regulator of the cellular response to DNA double strand breaks (DSBs). In response to DSBs, ATM dimers dissociate into active monomers in a process promoted by the Mre11-Rad50-Nbs1 (MRN) complex. ATM can also be activated by oxidative stress directly in the form of exposure to H2O2. The active ATM in this case is a disulfide-crosslinked dimer containing 2 or more disulfide bonds. Mutation of a critical cysteine residue in the FATC domain involved in disulfide bond formation specifically blocks ATM activation by oxidative stress. Here we show that ATM activation by DSBs is inhibited in the presence of H2O2 because oxidation blocks the ability of MRN to bind to DNA. However, ATM activation via direct oxidation by H2O2 complements the loss of MRN/DSB-dependent activation and contributes significantly to the overall level of ATM activity in the presence of both DSBs and oxidative stress.
Collapse
Affiliation(s)
- Zhi Guo
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX, USA
| | | | | |
Collapse
|
15
|
Kuang X, Hu W, Yan M, Wong PKY. Phenylbutyric acid suppresses protein accumulation-mediated ER stress in retrovirus-infected astrocytes and delays onset of paralysis in infected mice. Neurochem Int 2010; 57:738-48. [PMID: 20813146 DOI: 10.1016/j.neuint.2010.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/20/2010] [Accepted: 08/06/2010] [Indexed: 12/15/2022]
Abstract
Many neurodegenerative diseases are associated with accumulation of misfolded proteins in cells of the central nervous system (CNS). We have previously reported that accumulation of the precursor envelope protein gPr80(env) of ts1, a mutant of Moloney murine leukemia virus (MoMuLV), in the endoplasmic reticulum (ER) of infected astrocytes, results in ER stress, oxidative stress and cell death, subsequently leading to ts1-mediated neurodegeneration in infected mice. In the present study, we assessed whether treatments that reduce the accumulation of gPr80(env) in the ER of ts1-infected astrocytes provided a protective effect against ER stress and cell death. We show that treatment with phenylbutyric acid (PBA) can prevent the unfolded protein response (UPR), ER stress and cell death in cultured ts1-infected astrocytes. The protective effect of PBA is associated with its ability to reduce gPr80(env) accumulation and to increase the expression of proteins involved in protein folding in the ER, such as protein disulfide isomerase (PDI) and ERp44, rather than by decrease mRNA levels of gPr80(env) or alter the proteasomal degradation process for gPr80(env). In infected mice treated with PBA we also noted a reduction in the severity of the neuropathology in brainstem tissues and a delayed onset of paralysis. These results show that PBA is a potentially effective drug for the treatment of neurodegeneration caused by protein accumulation in cells of the CNS.
Collapse
Affiliation(s)
- Xianghong Kuang
- Department of Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
16
|
The War on Cancer rages on. Neoplasia 2010; 11:1252-63. [PMID: 20019833 DOI: 10.1593/neo.91866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 02/08/2023] Open
Abstract
In 1971, the "War on Cancer" was launched by the US government to cure cancer by the 200-year anniversary of the founding of the United States of America, 1976. This article briefly looks back at the progress that has been made in cancer research and compares progress made in other areas of human affliction. While progress has indeed been made, the battle continues to rage on.
Collapse
|
17
|
Xu J, Wang G, Wang Y, Liu Q, Xu W, Tan Y, Cai L. Diabetes- and angiotensin II-induced cardiac endoplasmic reticulum stress and cell death: metallothionein protection. J Cell Mol Med 2009; 13:1499-512. [PMID: 19583814 PMCID: PMC3828862 DOI: 10.1111/j.1582-4934.2009.00833.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have shown cardiac protection by metallothionein (MT) in the development of diabetic cardiomyopathy (DCM) via suppression of cardiac cell death in cardiac-specific MT-overexpressing transgenic (MT-TG) mice. The present study was undertaken to define whether diabetes can induce cardiac endoplasmic reticulum (ER) stress and whether MT can prevent cardiac cell death via attenuating ER stress. Diabetes was induced by streptozotocin in both MT-TG and wild-type (WT) mice. Two weeks, and 2 and 5 months after diabetes onset, cardiac ER stress was detected by expression of ER chaperones, and apoptosis was detected by CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) and cleaved caspase-3 and caspase-12. Cardiac apoptosis in the WT diabetic mice, but not in MT-TG diabetic mice, was significantly increased 2 weeks after diabetes onset. In parallel with apoptotic effect, significant up-regulation of the ER chaperones, including glucose-regulated protein (GRP)78 and GRP94, cleaved ATF6 and phosporylated eIF2alpha, in the hearts of WT, but not MT-TG diabetic mice. Infusion of angiotensin II (Ang II) also significantly induced ER stress and apoptosis in the hearts of WT, but not in MT-TG mice. Direct administration of chemical ER stress activator tunicamycin significantly increased cardiac cell death only in WT mice. Pre-treatment with antioxidants completely prevented Ang II-induced ER stress and apoptosis in the cultured cardiac cells. These results suggest that ER stress exists in the diabetic heart, which may cause the cardiac cell death. MT prevents both diabetes- and Ang II-induced cardiac ER stress and associated cell death most likely via its antioxidant action, which may be responsible for MT's prevention of DCM.
Collapse
Affiliation(s)
- Jiancheng Xu
- The First Hospital of the Jilin University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Hiss DC, Gabriels GA. Implications of endoplasmic reticulum stress, the unfolded protein response and apoptosis for molecular cancer therapy. Part I: targeting p53, Mdm2, GADD153/CHOP, GRP78/BiP and heat shock proteins. Expert Opin Drug Discov 2009; 4:799-821. [PMID: 23496268 DOI: 10.1517/17460440903052559] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND In eukaryotes, endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are coordinately regulated to maintain steady-state levels and activities of various cellular proteins to ensure cell survival. OBJECTIVE This review (Part I of II) focuses on specific ERS and UPR signalling regulators, their expression in the cancer phenotype and apoptosis, and proposes how their implication in these processes can be rationalised into proteasome inhibition, apoptosis induction and the development of more efficacious targeted molecular cancer therapies. METHOD In this review, we contextualise many ERS and UPR client proteins that are deregulated or mutated in cancers and show links between ERS and the UPR, their implication in oncogenic transformation, tumour progression and escape from immune surveillance, apoptosis inhibition, angiogenesis, metastasis, acquired drug resistance and poor cancer prognosis. CONCLUSION Evasion of programmed cell death or apoptosis is a hallmark of cancer that enables tumour cells to proliferate uncontrollably. Successful eradication of cancer cells through targeting ERS- and UPR-associated proteins to induce apoptosis is currently being pursued as a central tenet of anticancer drug discovery.
Collapse
Affiliation(s)
- Donavon C Hiss
- Head, Molecular Oncology Research Programme University of the Western Cape, Department of Medical BioSciences, Bellville, 7535, South Africa +27 21 959 2334 ; +27 21 959 1563 ;
| | | |
Collapse
|
19
|
Neoplasia: the second decade. Neoplasia 2009; 10:1314-24. [PMID: 19048110 DOI: 10.1593/neo.81372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 10/27/2008] [Accepted: 10/27/2008] [Indexed: 12/30/2022] Open
Abstract
This issue marks the end of the 10-year anniversary of Neoplasia where we have seen exciting growth in both number of submitted and published articles in Neoplasia. Neoplasia was first published in 1999. During the past 10 years, Neoplasia has dynamically adapted to the needs of the cancer research community as technologies have advanced. Neoplasia is currently providing access to articles through PubMed Central to continue to facilitate rapid broad-based dissemination of published findings to the scientific community through an Open Access model. This has in part helped Neoplasia to achieve an improved impact factor this past year, demonstrating that the manuscripts published by Neoplasia are of great interest to the overall cancer research community. This past year, Neoplasia received a record number of articles for review and has had a 21% increase in the number of published articles.
Collapse
|
20
|
He L, Kim SO, Kwon O, Jeong SJ, Kim MS, Lee HG, Osada H, Jung M, Ahn JS, Kim BY. ATM blocks tunicamycin-induced endoplasmic reticulum stress. FEBS Lett 2009; 583:903-8. [DOI: 10.1016/j.febslet.2009.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 01/28/2009] [Accepted: 02/01/2009] [Indexed: 10/21/2022]
|
21
|
Richie DL, Hartl L, Aimanianda V, Winters MS, Fuller KK, Miley MD, White S, McCarthy JW, Latgé JP, Feldmesser M, Rhodes JC, Askew DS. A role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus. PLoS Pathog 2009; 5:e1000258. [PMID: 19132084 PMCID: PMC2606855 DOI: 10.1371/journal.ppat.1000258] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 12/08/2008] [Indexed: 01/12/2023] Open
Abstract
Filamentous fungi rely heavily on the secretory pathway, both for the delivery of cell wall components to the hyphal tip and the production and secretion of extracellular hydrolytic enzymes needed to support growth on polymeric substrates. Increased demand on the secretory system exerts stress on the endoplasmic reticulum (ER), which is countered by the activation of a coordinated stress response pathway termed the unfolded protein response (UPR). To determine the contribution of the UPR to the growth and virulence of the filamentous fungal pathogen Aspergillus fumigatus, we disrupted the hacA gene, encoding the major transcriptional regulator of the UPR. The ΔhacA mutant was unable to activate the UPR in response to ER stress and was hypersensitive to agents that disrupt ER homeostasis or the cell wall. Failure to induce the UPR did not affect radial growth on rich medium at 37°C, but cell wall integrity was disrupted at 45°C, resulting in a dramatic loss in viability. The ΔhacA mutant displayed a reduced capacity for protease secretion and was growth-impaired when challenged to assimilate nutrients from complex substrates. In addition, the ΔhacA mutant exhibited increased susceptibility to current antifungal agents that disrupt the membrane or cell wall and had attenuated virulence in multiple mouse models of invasive aspergillosis. These results demonstrate the importance of ER homeostasis to the growth and virulence of A. fumigatus and suggest that targeting the UPR, either alone or in combination with other antifungal drugs, would be an effective antifungal strategy. The pathogenic mold Aspergillus fumigatus is the leading cause of airborne fungal infections in immunocompromised patients. The fungus normally resides in compost, an environment that challenges the organism to obtain nutrients by degrading complex organic polymers. This is accomplished by secreted enzymes, some of which may also contribute to nutrient acquisition during infection. Extracellular enzymes are folded in the endoplasmic reticulum (ER) prior to secretion. If the folding capacity of the ER is overwhelmed by increased secretory demand, the resulting ER stress triggers an adaptive response termed the unfolded protein response (UPR). In this study, we uncover a previously unknown function for the master transcriptional regulator of the UPR, HacA, in fungal virulence. In the absence of HacA, A. fumigatus was unable to secrete high levels of proteins and had reduced virulence in mice. In addition, loss of HacA caused a cell wall defect and increased susceptibility to two major classes of antifungal drugs used for the treatment of aspergillosis. These findings demonstrate that A. fumigatus relies on HacA for growth in the host environment and suggest that therapeutic targeting of the UPR could have merit against A. fumigatus, as well as other eukaryotic pathogens with highly developed secretory systems.
Collapse
Affiliation(s)
- Daryl L. Richie
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Lukas Hartl
- Unité des Aspergillus, Institut Pasteur, Paris, France
| | | | - Michael S. Winters
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kevin K. Fuller
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Michael D. Miley
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Stephanie White
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jason W. McCarthy
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | | | - Marta Feldmesser
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Judith C. Rhodes
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David S. Askew
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|