1
|
Sanchez N, Harvey C, Vincent D, Croft J, Zhang J. Biomarkers derived from CmP signal network in triple negative breast cancers. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2023; 4:21. [PMID: 38751477 PMCID: PMC11093088 DOI: 10.21037/tbcr-23-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/25/2023] [Indexed: 05/18/2024]
Abstract
Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer-related death in women, accounting for approximately 30% of all new cancer cases. The prognosis of breast cancer heavily depends on the stage of diagnosis, with early detection resulting in higher survival rates. Various risk factors, including family history, alcohol consumption and hormone exposure, contribute to breast cancer development. Triple-negative breast cancer (TNBC), characterized by the absence of certain receptors, is particularly aggressive and heterogeneous. Cerebral cavernous malformations (CCMs), abnormal dilations of small blood vessels in the brain, is contributed by mutated genes like CCM1, CCM2, and CCM3 through the perturbed formation of the CCM signaling complex (CSC). The CSC-non-classic membrane progesterone receptors (mPRs)-progesterone (PRG) (CmP)/CSC-mPRs-PRG-classic nuclear progesterone receptors (nPRs) (CmPn) signaling network, which integrates the CSC with mPRs and nPRs, plays a role in breast cancer tumorigenesis. Understanding these pathways can provide insights into potential treatments. This paper focuses on the emerging field of CmPn/CmP signal networks, which involve PRG, its receptors (nPRs and mPRs), and the CSC. These networks play a role in tumorigenesis, particularly in TNBCs. Aims to deliver a thorough examination of the CmP/CmPn pathways concerning TNBCs, this paper provides a comprehensive overview of these pathways, explores their applications and highlights their significance in the context of TNBCs.
Collapse
Affiliation(s)
- Nickolas Sanchez
- Department of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX, USA
| | - Charles Harvey
- Department of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX, USA
| | - Drexell Vincent
- Department of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX, USA
| | - Jacob Croft
- Department of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX, USA
| | - Jun Zhang
- Department of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX, USA
| |
Collapse
|
2
|
Takenaka W, Yokoyama Y, Ikehata K, Kouda S, Hirose H, Minami K, Hamada Y, Mori S, Koizumi M, Yamamoto H. KRT13 is upregulated in pancreatic cancer stem-like cells and associated with radioresistance. JOURNAL OF RADIATION RESEARCH 2023; 64:284-293. [PMID: 36610719 PMCID: PMC10036105 DOI: 10.1093/jrr/rrac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Pancreatic cancer is one of the most aggressive cancers and the seventh leading cause of cancer-associated death in the world. Radiation is performed as an adjuvant therapy as well as anti-cancer drugs. Because cancer stem-like cells (CSCs) are considered to be radioresistant and cause recurrence and metastasis, understanding their properties is required for the development of novel therapeutic strategies. To investigate the CSC properties of pancreatic cancer cells, we used a pancreatic CSC model, degron (++) cells, which have low proteasome activity. Degron (++) cells displayed radioresistance in comparison with control cells. Using Ribonucleic acid (RNA) sequencing, we successfully identified KRT13 as a candidate gene responsible for radioresistance. Knockdown of KRT13 sensitized the degron (++) cells to radiation. Furthermore, a database search revealed that KRT13 is upregulated in pancreatic cancer cell lines and that high expression of KRT13 is associated with poorer prognosis. These results indicate that a combination therapy of KRT13 knockdown and radiation could hold therapeutic promise in pancreatic cancer.
Collapse
Affiliation(s)
- Wataru Takenaka
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Yuhki Yokoyama
- Corresponding author. Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan. Tel: +81-6-6879-2595; Fax: +81-6-6879-2595; E-mail:
| | - Katsuya Ikehata
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Shihori Kouda
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Haruka Hirose
- Department of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya city, Nagoya, 466-8550, Japan
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Yoshinosuke Hamada
- Department of Health Economics and Management, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
- Department of Pediatric Dentistry, School of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata city, Osaka, 573-1121, Japan
| | - Seiji Mori
- Department of Medical Technology, Faculty of Health Sciences, Morinomiya University of Medical Sciences, 1-26-16 Nankokita, Suminoe-ku, Osaka city, Osaka, 559-8611, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita city, Osaka, 565-0871, Japan
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita city, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Stabilization of DEPTOR sensitizes hypopharyngeal cancer to radiotherapy via targeting degradation. Mol Ther Oncolytics 2022; 26:330-346. [PMID: 36090478 PMCID: PMC9420345 DOI: 10.1016/j.omto.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
The use of radiotherapy for hypopharyngeal cancer (HC) treatment is increasing, and it is currently the primary treatment option for this cancer. However, radioresistance occurs in a proportion of patients. Here, we found that radiation increased proteasomal gene expression and that proteasome assembly was dependent on the induction of transcription factor NRF1 in HC. Through screening assays, we identified a mechanism by which proteasome-mediated degradation of DEP domain-containing mTOR-interacting protein (DEPTOR) contributes to the elevation of mTORC1 signaling after radiation. Therefore, after treatment with proteasome inhibitors (PIs), stabilization of DEPTOR inhibited mTORC1 signaling elevated by radiation and ultimately sensitized HC to radiotherapy. Mechanically, PIs not only interrupted the deubiquitination and degradation of DEPTOR but also suppressed the ubiquitination of DEPTOR mediated by β-TrCP. Clinically, the high levels of DEPTOR in HC cells were associated with sensitivity to radiotherapy and favorable prognosis. Stabilizing DEPTOR through targeting proteasome-mediated degradation is a potential strategy for sensitizing HC to radiotherapy.
Collapse
|
4
|
Luo H, Ge H. Application of Proteomics in the Discovery of Radiosensitive Cancer Biomarkers. Front Oncol 2022; 12:852791. [PMID: 35280744 PMCID: PMC8904368 DOI: 10.3389/fonc.2022.852791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Radiation therapy remains an important component of cancer treatment. Gene-encoded proteins were the actual executors of cellular functions. Proteomic was a novel technology that can systematically analysis protein composition and measure their levels of change, this was a high throughput method, and were the import tools in the post genomic era. In recent years, rapid progress of proteomic have been made in the study of cancer mechanism, diagnosis, and treatment. This article elaborates current advances and future directions of proteomics in the discovery of radiosensitive cancer biomarkers.
Collapse
Affiliation(s)
- Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Ravichandran A, Clegg J, Adams MN, Hampson M, Fielding A, Bray LJ. 3D Breast Tumor Models for Radiobiology Applications. Cancers (Basel) 2021; 13:5714. [PMID: 34830869 PMCID: PMC8616164 DOI: 10.3390/cancers13225714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a leading cause of cancer-associated death in women. The clinical management of breast cancers is normally carried out using a combination of chemotherapy, surgery and radiation therapy. The majority of research investigating breast cancer therapy until now has mainly utilized two-dimensional (2D) in vitro cultures or murine models of disease. However, there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers over the past decade, highlighting a complimentary model for studies of radiotherapy, especially in conjunction with chemotherapy. In this review, we underline the effects of radiation therapy on normal and malignant breast cells and tissues, and explore the emerging opportunities that pre-clinical 3D models offer in improving our understanding of this treatment modality.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Julien Clegg
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Mark N. Adams
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Madison Hampson
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
| | - Andrew Fielding
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Laura J. Bray
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| |
Collapse
|
6
|
Lewis JE, Forshaw TE, Boothman DA, Furdui CM, Kemp ML. Personalized Genome-Scale Metabolic Models Identify Targets of Redox Metabolism in Radiation-Resistant Tumors. Cell Syst 2021; 12:68-81.e11. [PMID: 33476554 PMCID: PMC7905848 DOI: 10.1016/j.cels.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Redox cofactor production is integral toward antioxidant generation, clearance of reactive oxygen species, and overall tumor response to ionizing radiation treatment. To identify systems-level alterations in redox metabolism that confer resistance to radiation therapy, we developed a bioinformatics pipeline for integrating multi-omics data into personalized genome-scale flux balance analysis models of 716 radiation-sensitive and 199 radiation-resistant tumors. These models collectively predicted that radiation-resistant tumors reroute metabolic flux to increase mitochondrial NADPH stores and reactive oxygen species (ROS) scavenging. Simulated genome-wide knockout screens agreed with experimental siRNA gene knockdowns in matched radiation-sensitive and radiation-resistant cancer cell lines, revealing gene targets involved in mitochondrial NADPH production, central carbon metabolism, and folate metabolism that allow for selective inhibition of glutathione production and H2O2 clearance in radiation-resistant cancers. This systems approach represents a significant advancement in developing quantitative genome-scale models of redox metabolism and identifying personalized metabolic targets for improving radiation sensitivity in individual cancer patients.
Collapse
Affiliation(s)
- Joshua E. Lewis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Tom E. Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - David A. Boothman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA,Corresponding Author: Correspondence:
| |
Collapse
|
7
|
Yadav P, Pandey VK, Shankar BS. Proteomic analysis of radio-resistant breast cancer xenografts: Increased TGF-β signaling and metabolism. Cell Biol Int 2020; 45:804-819. [PMID: 33325135 DOI: 10.1002/cbin.11525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/16/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
Our previous studies have shown that MCF-7 breast cancer cell line exposed to 6 Gy and allowed to recover for 7 days (D7-6G) developed radio-resistance. In this study, we have tested the ability of these cells to form tumors in severe combined immunodeficiency (SCID) mice and characterized these tumors by proteomic analyses. Untreated (MCF-C) and D7-6G cells (MCF-R) were injected s.c. in SCID mice and tumor growth monitored. On Day 18, the mice were killed and tumor tissues were fixed in formalin or RNA later. Expression of genes was assessed by reverse transcription-polymerase chain reaction and proteins by enzyme-linked immunosorbent assay/antibody labeling and flow cytometry. Label free proteomic analyses was carried out by liquid chromatography-mass spectrometry. Metabolic analysis was carried out using Seahorse analyzer. MCF-R cells had a shorter latency and formed larger tumors. These tumors were characterized by an increased expression of transforming growth factor β (TGF-β) isoforms; its downstream genes pSMAD3, Snail-1, Zeb-1, HMGA2; hybrid epithelial/mesenchymal phenotype; migration, enrichment of cancer stem cells and radioresistance following challenge dose of radiation. Proteomic analysis of MCF-7R tumors resulted in identification of a total of 649 differentially expressed proteins and pathway analyses using protein annotation through evolutionary relationship indicated enrichment of genes involved in metabolism. Data are available via ProteomeXchange with identifier PXD022506. Seahorse analyzer confirmed increased metabolism in these cells with increased oxidative phosphorylation as well as glycolysis. Increased uptake of 2-NBDG further confirmed increased glycolysis. In summary, we demonstrate that radioresistant breast cancer cells had an enrichment of TGF-β signaling and increased metabolism.
Collapse
Affiliation(s)
- Poonam Yadav
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Center, Mumbai, Maharastra, India.,Department of Life Sciences, Homi Bhabha National Institute, Mumbai, Maharastra, India
| | - Vipul K Pandey
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Center, Mumbai, Maharastra, India
| | - Bhavani S Shankar
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Center, Mumbai, Maharastra, India.,Department of Life Sciences, Homi Bhabha National Institute, Mumbai, Maharastra, India
| |
Collapse
|
8
|
Petragnano F, Pietrantoni I, Camero S, Codenotti S, Milazzo L, Vulcano F, Macioce G, Giordani I, Tini P, Cheleschi S, Gravina GL, Festuccia C, Rossetti A, Delle Monache S, Ordinelli A, Ciccarelli C, Mauro A, Barbara B, Antinozzi C, Schiavetti A, Maggio R, Di Luigi L, Polimeni A, Marchese C, Tombolini V, Fanzani A, Bernabò N, Megiorni F, Marampon F. Clinically relevant radioresistant rhabdomyosarcoma cell lines: functional, molecular and immune-related characterization. J Biomed Sci 2020; 27:90. [PMID: 32854690 PMCID: PMC7453562 DOI: 10.1186/s12929-020-00683-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The probability of local tumor control after radiotherapy (RT) remains still miserably poor in pediatric rhabdomyosarcoma (RMS). Thus, understanding the molecular mechanisms responsible of tumor relapse is essential to identify personalized RT-based strategies. Contrary to what has been done so far, a correct characterization of cellular radioresistance should be performed comparing radioresistant and radiosensitive cells with the same isogenic background. METHODS Clinically relevant radioresistant (RR) embryonal (RD) and alveolar (RH30) RMS cell lines have been developed by irradiating them with clinical-like hypo-fractionated schedule. RMS-RR cells were compared to parental isogenic counterpart (RMS-PR) and studied following the radiobiological concept of the "6Rs", which stand for repair, redistribution, repopulation, reoxygenation, intrinsic radioresistance and radio-immuno-biology. RESULTS RMS-RR cell lines, characterized by a more aggressive and in vitro pro-metastatic phenotype, showed a higher ability to i) detoxify from reactive oxygen species; ii) repair DNA damage by differently activating non-homologous end joining and homologous recombination pathways; iii) counteract RT-induced G2/M cell cycle arrest by re-starting growth and repopulating after irradiation; iv) express cancer stem-like profile. Bioinformatic analyses, performed to assess the role of 41 cytokines after RT exposure and their network interactions, suggested TGF-β, MIF, CCL2, CXCL5, CXCL8 and CXCL12 as master regulators of cancer immune escape in RMS tumors. CONCLUSIONS These results suggest that RMS could sustain intrinsic and acquire radioresistance by different mechanisms and indicate potential targets for future combined radiosensitizing strategies.
Collapse
Affiliation(s)
- Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Pietrantoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simona Camero
- Department of Maternal, Infantile, and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, Division of Biotechnology, University of Brescia, Brescia, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Giampiero Macioce
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Ilenia Giordani
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, "Sapienza" University, Rome, Italy
| | - Paolo Tini
- Sbarro Health Research Organization, Temple University, Philadelphia, PA, USA
- Unit of Radiation Oncology, University Hospital of Siena, Siena, Italy
| | - Sara Cheleschi
- Department of Medicine, Surgery and Neuroscience, Rheumatology Unit, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandra Ordinelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Carmela Ciccarelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Barboni Barbara
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Cristina Antinozzi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Amalia Schiavetti
- Department of Maternal, Infantile, and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, Division of Biotechnology, University of Brescia, Brescia, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
9
|
Webb TE, Davies M, Maher J, Sarker D. The eIF4A inhibitor silvestrol sensitizes T-47D ductal breast carcinoma cells to external-beam radiotherapy. Clin Transl Radiat Oncol 2020; 24:123-126. [PMID: 32875125 PMCID: PMC7451755 DOI: 10.1016/j.ctro.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 01/05/2023] Open
Abstract
Treatment of T-47D breast cancer cells with silvestrol sensitised them to radiation. 1 nM silvestrol caused a 34% reduction in cells exposed to 2 Gy. Clonogenic assays revealed silvestrol had a dose modifying factor of 1.4. Radiation was delivered to the tissue culture plate using a clinical LINAC machine.
Purpose eIF4A is an RNA helicase that forms part of the machinery of translation initiation. Proteomic analysis demonstrated eIF4A expression to be at least two-fold greater in a radioresistant derivative of T-47D breast cancer cells compared to parental cells. Inhibition of eIF4A has previously been shown to re-sensitize lymphomas to chemotherapeutic agents that cause DNA damage. The objective of this work is to investigate whether inhibition of eIF4A using silvestrol sensitizes breast cancer cells to radiotherapy in tissue culture, using T-47D as a model system. Methods and materials T-47D cells were incubated in medium containing 0 nM to 1 nM silvestrol either for 24 h prior to irradiation at 0 Gy to 10 Gy, delivered by linear accelerator (LINAC) or continually for six days post irradiation. MTT viability and clonogenic assays were used to quantify response. Results Pre-treatment of T-47D cells with 1 nM silvestrol caused a 34% reduction (p = 0.014) in viability on irradiation at 2 Gy compared to treatment with a DMSO control, as assessed by MTT assay. Maintenance of cells in 1 nM silvestrol for six days following irradiation at 2 Gy caused a 58% reduction (p = <0.001) in tumor cell viability. Clonogenic assays performed on cells maintained in 1 nM silvestrol following irradiation showed a dose modifying factor (DMF) of 1.4 (p = <0.001, one-way ANOVA). Conclusions Low concentrations of silvestrol sensitize T-47D breast cancer cells to radiation with minimal effects on unirradiated cells. This highlights the possible usefulness of eIF4A inhibition in potentiating radiation-induced damage at the tumor site without causing systemic toxicity.
Collapse
Affiliation(s)
- Thomas E Webb
- Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Marc Davies
- Research Oncology, Comprehensive Cancer Centre, 3rd Floor Bermondsey Wing, Guy's Hospital, Great Maze, Pond Road, London SE1 9RT, UK.,King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, Great Maze, Pond, London SE1 9RT, UK
| | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, Great Maze, Pond, London SE1 9RT, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark, Hill, London SE5 9RS, UK.,Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD, UK
| | - Debashis Sarker
- Research Oncology, Comprehensive Cancer Centre, 3rd Floor Bermondsey Wing, Guy's Hospital, Great Maze, Pond Road, London SE1 9RT, UK.,Department of Medical Oncology, Guy's & St Thomas' NHS Trust, London SE1 9RT, UK
| |
Collapse
|
10
|
Gray M, Turnbull AK, Meehan J, Martínez-Pérez C, Kay C, Pang LY, Argyle DJ. Comparative Analysis of the Development of Acquired Radioresistance in Canine and Human Mammary Cancer Cell Lines. Front Vet Sci 2020; 7:439. [PMID: 32851022 PMCID: PMC7396503 DOI: 10.3389/fvets.2020.00439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
Research using in vitro canine mammary cancer cell lines and naturally-occurring canine mammary tumors are not only fundamental models used to advance the understanding of cancer in veterinary patients, but are also regarded as excellent translational models of human breast cancer. Human breast cancer is commonly treated with radiotherapy; however, tumor response depends on both innate radiosensitivity and on tumor repopulation by cells that develop radioresistance. Comparative canine and human studies investigating the mechanisms of radioresistance may lead to novel cancer treatments that benefit both species. In this study, we developed a canine mammary cancer (REM-134) radioresistant (RR) cell line and investigated the cellular mechanisms related to the development of acquired radioresistance. We performed a comparative analysis of this resistant model with our previously developed human breast cancer radioresistant cell lines (MCF-7 RR, ZR-751 RR, and MDA-MB-231 RR), characterizing inherent differences through genetic, molecular, and cell biology approaches. RR cells demonstrated enhanced invasion/migration capabilities, with phenotypic evidence suggestive of epithelial-to-mesenchymal transition. Similarities were identified between the REM-134 RR, MCF-7 RR, and ZR-751 RR cell lines in relation to the pattern of expression of both epithelial and mesenchymal genes, in addition to WNT, PI3K, and MAPK pathway activation. Following the development of radioresistance, transcriptomic data indicated that parental MCF-7 and ZR-751 cell lines changed from a luminal A classification to basal/HER2-overexpressing (MCF-7 RR) and normal-like/HER2-overexpressing (ZR-751 RR). These radioresistant subtypes were similar to the REM-134 and REM-134 RR cell lines, which were classified as HER2-overexpressing. To our knowledge, our study is the first to generate a canine mammary cancer RR cell line model and provide a comparative genetic and phenotypic analysis of the mechanisms of acquired radioresistance between canine and human cancer cell lines. We demonstrate that the cellular processes that occur with the development of acquired radioresistance are similar between the human and canine cell lines; our results therefore suggest that the canine model is appropriate to study both human and canine radioresistant mammary cancers, and that treatment strategies used in human medicine may also be applicable to veterinary patients.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Arran K Turnbull
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - James Meehan
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa Y Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David J Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Mass Spectrometric Comparison of HPV-Positive and HPV-Negative Oropharyngeal Cancer. Cancers (Basel) 2020; 12:cancers12061531. [PMID: 32545200 PMCID: PMC7352546 DOI: 10.3390/cancers12061531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) consist of two distinct biological entities. While the numbers of classical, tobacco-induced HNSCC are declining, tumors caused by human papillomavirus (HPV) infection are increasing in many countries. HPV-positive HNSCC mostly arise in the oropharynx and are characterized by an enhanced sensitivity towards radiotherapy and a favorable prognosis. To identify molecular differences between both entities on the protein level, we conducted a mass spectrometric comparison of eight HPV-positive and nine HPV-negative oropharyngeal tumors (OPSCC). Overall, we identified 2051 proteins, of which 31 were found to be differentially expressed. Seventeen of these can be assorted to three functional groups, namely DNA replication, nuclear architecture and cytoskeleton regulation, with the differences in the last group potentially reflecting an enhanced migratory and invasive capacity. Furthermore, a number of identified proteins have been described to directly impact on DNA double-strand break repair or radiation sensitivity (e.g., SLC3A2, cortactin, RBBP4, Numa1), offering explanations for the differential prognosis. The unequal expression of three proteins (SLC3A2, MCM2 and lamin B1) was confirmed by immunohistochemical staining using a tissue microarray containing 205 OPSCC samples. The expression levels of SLC3A2 and lamin B1 were found be of prognostic relevance in patients with HPV-positive and HPV-negative OPSCC, respectively.
Collapse
|
12
|
Meehan J, Gray M, Martínez-Pérez C, Kay C, Pang LY, Fraser JA, Poole AV, Kunkler IH, Langdon SP, Argyle D, Turnbull AK. Precision Medicine and the Role of Biomarkers of Radiotherapy Response in Breast Cancer. Front Oncol 2020; 10:628. [PMID: 32391281 PMCID: PMC7193869 DOI: 10.3389/fonc.2020.00628] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy remains an important treatment modality in nearly two thirds of all cancers, including the primary curative or palliative treatment of breast cancer. Unfortunately, largely due to tumor heterogeneity, tumor radiotherapy response rates can vary significantly, even between patients diagnosed with the same tumor type. Although in recent years significant technological advances have been made in the way radiation can be precisely delivered to tumors, it is proving more difficult to personalize radiotherapy regimens based on cancer biology. Biomarkers that provide prognostic or predictive information regarding a tumor's intrinsic radiosensitivity or its response to treatment could prove valuable in helping to personalize radiation dosing, enabling clinicians to make decisions between different treatment options whilst avoiding radiation-induced toxicity in patients unlikely to gain therapeutic benefit. Studies have investigated numerous ways in which both patient and tumor radiosensitivities can be assessed. Tumor molecular profiling has been used to develop radiosensitivity gene signatures, while the assessment of specific intracellular or secreted proteins, including circulating tumor cells, exosomes and DNA, has been performed to identify prognostic or predictive biomarkers of radiation response. Finally, the investigation of biomarkers related to radiation-induced toxicity could provide another means by which radiotherapy could become personalized. In this review, we discuss studies that have used these methods to identify or develop prognostic/predictive signatures of radiosensitivity, and how such assays could be used in the future as a means of providing personalized radiotherapy.
Collapse
Affiliation(s)
- James Meehan
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Gray
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa Y Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer A Fraser
- School of Applied Science, Sighthill Campus, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Amy V Poole
- School of Applied Science, Sighthill Campus, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Ian H Kunkler
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Arran K Turnbull
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Oike T, Ohno T. Molecular mechanisms underlying radioresistance: data compiled from isogenic cell experiments. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:273. [PMID: 32355717 PMCID: PMC7186667 DOI: 10.21037/atm.2020.02.90] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Gunma, Japan
| |
Collapse
|
14
|
Zhou L, Yang P, Zheng Y, Tian T, Dai C, Wang M, Lin S, Deng Y, Hao Q, Zhai Z, Li H, Dai Z. Effects of Postoperative Radiotherapy in Early Breast Cancer Patients Older than 75 Years: A Propensity-Matched Analysis. J Cancer 2019; 10:6225-6232. [PMID: 31772655 PMCID: PMC6856758 DOI: 10.7150/jca.35204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Currently, there is still some controversy regarding whether early breast cancer patients with a tumor size of ≤5 cm and 1-3 positive lymph nodes should undergo postoperative radiotherapy (PRT). Materials and Methods: We obtained data from the Surveillance, Epidemiology, and End Results (SEER) 18 database. Then, we conducted propensity score matching (PSM), according to the radiotherapy record. The Kaplan-Meier and Cox regression analysis were conducted to explore prognostic factors in breast cancer. Results: A total of 6,777 patients aged 75+ years old were eligible and 2,361 patients were included after PSM. We found PRT could improve patient overall survival (OS) (P = 0.01, hazard ratio [HR] = 0.88, 95% confidence interval [CI], 0.80-0.97). Subgroup analysis revealed PRT could improve OS in patients with hormone receptor positive (HR+) (P = 0.001, HR = 0.84, 95% CI, 0.76 - 0.94) or white patients (P =0.004, HR = 0.86, 95% CI, 0.77 - 0.95). Conclusions: PRT may benefit for elderly women with early breast cancer, especially in HR+ patients or white patients. These findings may inform future optimized options whether elderly female patients with early breast cancer should undergo postoperative radiotherapy.
Collapse
Affiliation(s)
- Linghui Zhou
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China.,Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Pengtao Yang
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yi Zheng
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Tian Tian
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China.,Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Cong Dai
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Meng Wang
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Shuai Lin
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China.,Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Qian Hao
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China.,Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Zhen Zhai
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China.,Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Hongtao Li
- Department of Breast Head and Neck surgery, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Tumor Hospital), Urumqi 830000, Xinjiang, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
15
|
Manem VS, Dhawan A. RadiationGeneSigDB: a database of oxic and hypoxic radiation response gene signatures and their utility in pre-clinical research. Br J Radiol 2019; 92:20190198. [PMID: 31538514 DOI: 10.1259/bjr.20190198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Radiation therapy is among the most effective and widely used modalities of cancer therapy in current clinical practice. In this era of personalized radiation medicine, high-throughput data now provide the means to investigate novel biomarkers of radiation response. Large-scale efforts have identified several radiation response signatures, which poses two challenges, namely, their analytical validity and redundancy of gene signatures. METHODS To address these fundamental radiogenomics questions, we curated a database of gene expression signatures predictive of radiation response under oxic and hypoxic conditions. RadiationGeneSigDB has a collection of 11 oxic and 24 hypoxic signatures with the standardized gene list as a gene symbol, Entrez gene ID, and its function. We present the utility of this database by gaining an understanding of hypoxia-associated miRNA by applying a penalized multivariate model; by comparing breast cancer oxic signatures in cell line data vs patient data; and by comparing the similarity of head and neck cancer hypoxia signatures at the pathway level in clinical tumour data. RESULTS We obtained a set of miRNA highly associated both positively and negatively to the hypoxia gene signatures, across pan-cancer. In addition, we identified moderate correlations between breast cancer oxic signatures in patient data, and significant differences across molecular subtypes. Moreover, we also found that different set of pathways to be enriched using the head and neck hypoxia signatures, although, they are found to be concordant when applied on the patient data. CONCLUSION This valuable, curated repertoire of published gene expression signatures provides motivating case studies for how to search for similarities in radiation response for tumours arising from different tissues across model systems under oxic and hypoxic conditions, and how a well-curated set of gene signatures can be used to generate novel biological hypotheses about the functions of non-coding RNA. ADVANCES IN KNOWLEDGE We envision that RadiationSigDB database will help accelerate preclinical radiotherapeutic discovery pipelines in terms of analytical validity of novel biomarkers of radiation response and the need for ensemble approaches to clinical genomic biomarkers.
Collapse
Affiliation(s)
- Venkata Sk Manem
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec city, Québec, Canada
| | - Andrew Dhawan
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
16
|
Zhu J, Chen S, Yang B, Mao W, Yang X, Cai J. Molecular mechanisms of lncRNAs in regulating cancer cell radiosensitivity. Biosci Rep 2019; 39:BSR20190590. [PMID: 31391206 PMCID: PMC6712435 DOI: 10.1042/bsr20190590] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy is one of the main modalities of cancer treatment. However, tumor recurrence following radiotherapy occurs in many cancer patients. A key to solving this problem is the optimization of radiosensitivity. In recent years, long non-coding RNAs (lncRNAs), which affect the occurrence and development of tumors through a variety of mechanisms, have become a popular research topic. LncRNAs have been found to influence radiosensitivity by regulating various mechanisms, including DNA damage repair, cell cycle arrest, apoptosis, cancer stem cells regulation, epithelial-mesenchymal transition, and autophagy. LncRNAs are expected to become a potential therapeutic target for radiotherapy in the future. This article reviews recent advances in the role and mechanism of lncRNAs in tumor radiosensitivity.
Collapse
Affiliation(s)
- Jiamin Zhu
- Department of Oncology, the Affiliated Jiangyin Hospital of Southeast University Medical College, 163 Shoushan Road, Jiangyin 214400, P.R. China
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| | - Shusen Chen
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| | - Baixia Yang
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| | - Weidong Mao
- Department of Oncology, the Affiliated Jiangyin Hospital of Southeast University Medical College, 163 Shoushan Road, Jiangyin 214400, P.R. China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Cai
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| |
Collapse
|
17
|
Gray M, Turnbull AK, Ward C, Meehan J, Martínez-Pérez C, Bonello M, Pang LY, Langdon SP, Kunkler IH, Murray A, Argyle D. Development and characterisation of acquired radioresistant breast cancer cell lines. Radiat Oncol 2019; 14:64. [PMID: 30987655 PMCID: PMC6466735 DOI: 10.1186/s13014-019-1268-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Radiotherapy plays an important role in the multimodal treatment of breast cancer. The response of a breast tumour to radiation depends not only on its innate radiosensitivity but also on tumour repopulation by cells that have developed radioresistance. Development of effective cancer treatments will require further molecular dissection of the processes that contribute to resistance. METHODS Radioresistant cell lines were established by exposing MDA-MB-231, MCF-7 and ZR-751 parental cells to increasing weekly doses of radiation. The development of radioresistance was evaluated through proliferation and colony formation assays. Phenotypic characterisation included migration and invasion assays and immunohistochemistry. Transcriptomic data were also generated for preliminary hypothesis generation involving pathway-focused analyses. RESULTS Proliferation and colony formation assays confirmed radioresistance. Radioresistant cells exhibited enhanced migration and invasion, with evidence of epithelial-to-mesenchymal-transition. Significantly, acquisition of radioresistance in MCF-7 and ZR-751 cell lines resulted in a loss of expression of both ERα and PgR and an increase in EGFR expression; based on transcriptomic data they changed subtype classification from their parental luminal A to HER2-overexpressing (MCF-7 RR) and normal-like (ZR-751 RR) subtypes, indicating the extent of phenotypic changes and cellular plasticity involved in this process. Radioresistant cell lines derived from ER+ cells also showed a shift from ER to EGFR signalling pathways with increased MAPK and PI3K activity. CONCLUSIONS This is the first study to date that extensively describes the development and characterisation of three novel radioresistant breast cancer cell lines through both genetic and phenotypic analysis. More changes were identified between parental cells and their radioresistant derivatives in the ER+ (MCF-7 and ZR-751) compared with the ER- cell line (MDA-MB-231) model; however, multiple and likely interrelated mechanisms were identified that may contribute to the development of acquired resistance to radiotherapy.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, Scotland. .,Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland.
| | - Arran K Turnbull
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Carol Ward
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, Scotland.,Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland.,Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland
| | - Carlos Martínez-Pérez
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Maria Bonello
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Lisa Y Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Ian H Kunkler
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Alan Murray
- School of Engineering, Faraday Building, The King's Buildings, University of Edinburgh, Edinburgh, Scotland
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
18
|
Rajendra J, Datta KK, Ud Din Farooqee SB, Thorat R, Kumar K, Gardi N, Kaur E, Nair J, Salunkhe S, Patkar K, Desai S, Goda JS, Moiyadi A, Dutt A, Venkatraman P, Gowda H, Dutt S. Enhanced proteasomal activity is essential for long term survival and recurrence of innately radiation resistant residual glioblastoma cells. Oncotarget 2018; 9:27667-27681. [PMID: 29963228 PMCID: PMC6021241 DOI: 10.18632/oncotarget.25351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/25/2018] [Indexed: 02/05/2023] Open
Abstract
Therapy resistance and recurrence in Glioblastoma is due to the presence of residual radiation resistant cells. However, because of their inaccessibility from patient biopsies, the molecular mechanisms driving their survival remain unexplored. Residual Radiation Resistant (RR) and Relapse (R) cells were captured using cellular radiation resistant model generated from patient derived primary cultures and cell lines. iTRAQ based quantitative proteomics was performed to identify pathways unique to RR cells followed by in vitro and in vivo experiments showing their role in radio-resistance. 2720 proteins were identified across Parent (P), RR and R population with 824 and 874 differential proteins in RR and R cells. Unsupervised clustering showed proteasome pathway as the most significantly deregulated pathway in RR cells. Concordantly, the RR cells displayed enhanced expression and activity of proteasome subunits, which triggered NFkB signalling. Pharmacological inhibition of proteasome activity led to impeded NFkB transcriptional activity, radio-sensitization of RR cells in vitro, and significantly reduced capacity to form orthotopic tumours in vivo. We demonstrate that combination of proteasome inhibitor with radio-therapy abolish the inaccessible residual resistant cells thereby preventing GBM recurrence. Furthermore, we identified first proteomic signature of RR cells that can be exploited for GBM therapeutics.
Collapse
Affiliation(s)
- Jacinth Rajendra
- 1 Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Keshava K. Datta
- 2 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Sheikh Burhan Ud Din Farooqee
- 3 Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Rahul Thorat
- 5 Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Kiran Kumar
- 2 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Nilesh Gardi
- 4 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Ekjot Kaur
- 1 Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Jyothi Nair
- 1 Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Sameer Salunkhe
- 1 Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Ketaki Patkar
- 1 Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
| | - Sanket Desai
- 4 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Jayant Sastri Goda
- 8 Department of Radiation Oncology, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Aliasgar Moiyadi
- 6 Department of neurosurgery Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Amit Dutt
- 4 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Prasanna Venkatraman
- 3 Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Harsha Gowda
- 2 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Shilpee Dutt
- 1 Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
19
|
Smith R, Wang J, Seymour C, Fernandez-Palomo C, Fazzari J, Schültke E, Bräuer-Krisch E, Laissue J, Schroll C, Mothersill C. Homogenous and Microbeam X-Ray Radiation Induces Proteomic Changes in the Brains of Irradiated Rats and in the Brains of Nonirradiated Cage Mate Rats. Dose Response 2018; 16:1559325817750068. [PMID: 29383012 PMCID: PMC5784471 DOI: 10.1177/1559325817750068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
To evaluate microbeam radiation therapy (MRT), for brain tumor treatment, the bystander effect in nonirradiated companion animals was investigated. Adult rats were irradiated with 35 or 350 Gy at the European Synchrotron Research Facility using homogenous irradiation (HR) or MRT to the right brain hemisphere. The irradiated rats were housed with nonirradiated rats. After 48 hours, all rats were euthanized and the frontal lobe proteome was analyzed using 2-dimensional electrophoresis and mass spectrometry. Proteome changes were determined by analysis of variance (P < .05). Homogenous irradiation increased serum albumin, heat shock protein 71 (HSP-71), triosephosphate isomerase (TPI), fructose bisphosphate aldolase (FBA), and prohibitin and decreased dihydrolipoyl dehydrogenase (DLD) and pyruvate kinase. Microbeam radiation therapy increased HSP-71, FBA, and prohibitin, and decreased aconitase, dihydropyrimidinase, TPI, tubulin DLD, and pyruvate kinase. Cage mates with HR irradiated rats showed increased HSP-71 and FBA and decreased pyruvate kinase, DLD, and aconitase. Cage mates with MRT irradiated rats showed increased HSP-71, prohibitin, and FBA and decreased aconitase and DLD. Homogenous irradiation proteome changes indicated tumorigenesis, while MRT proteome changes indicated an oxidative stress response. The bystander effect of proteome changes appeared antitumorigenic and inducing radioresistance. This investigation also supports the need for research into prohibitin interaction with HSP-70/71 chaperones and cancer therapy.
Collapse
Affiliation(s)
- Richard Smith
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jiaxi Wang
- Mass Spectrometry Facility, Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Colin Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cristian Fernandez-Palomo
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Fazzari
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Elisabeth Schültke
- Department of Radio-oncology, Rostock University Medical Centre, Rostock, Germany
| | | | - Jean Laissue
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Christian Schroll
- Stereotactic Neurosurgery and Laboratory for Molecular Neurosurgery, Freiburg University Medical Centre, Freiburg, Germany
| | - Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Bigdeli B, Goliaei B, Masoudi-Khoram N, Jooyan N, Nikoofar A, Rouhani M, Haghparast A, Mamashli F. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis. Toxicol Appl Pharmacol 2016; 313:180-194. [DOI: 10.1016/j.taap.2016.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/09/2016] [Accepted: 10/24/2016] [Indexed: 01/17/2023]
|
21
|
Wang Y, Guan H, Xie DF, Xie Y, Liu XD, Wang Q, Sui L, Song M, Zhang H, Zhou J, Zhou PK. Proteomic Analysis Implicates Dominant Alterations of RNA Metabolism and the Proteasome Pathway in the Cellular Response to Carbon-Ion Irradiation. PLoS One 2016; 11:e0163896. [PMID: 27711237 PMCID: PMC5053480 DOI: 10.1371/journal.pone.0163896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 09/18/2016] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy with heavy ions is considered advantageous compared to irradiation with photons due to the characteristics of the Braggs peak and the high linear energy transfer (LET) value. To understand the mechanisms of cellular responses to different LET values and dosages of heavy ion radiation, we analyzed the proteomic profiles of mouse embryo fibroblast MEF cells exposed to two doses from different LET values of heavy ion 12C. Total proteins were extracted from these cells and examined by Q Exactive with Liquid Chromatography (LC)—Electrospray Ionization (ESI) Tandem MS (MS/MS). Using bioinformatics approaches, differentially expressed proteins with 1.5 or 2.0-fold changes between different dosages of exposure were compared. With the higher the dosage and/or LET of ion irradiation, the worse response the cells were in terms of protein expression. For instance, compared to the control (0 Gy), 771 (20.2%) proteins in cells irradiated at 0.2 Gy of carbon-ion radiation with 12.6 keV/μm, 313 proteins (8.2%) in cells irradiated at 2 Gy of carbon-ion radiation with 12.6 keV/μm, and 243 proteins (6.4%) in cells irradiated at 2 Gy of carbon-ion radiation with 31.5 keV/μm exhibited changes of 1.5-fold or greater. Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Munich Information Center for Protein Sequences (MIPS) analysis, and BioCarta analysis all indicated that RNA metabolic processes (RNA splicing, destabilization and deadenylation) and proteasome pathways may play key roles in the cellular response to heavy-ion irradiation. Proteasome pathways ranked highest among all biological processes associated with heavy carbon-ion irradiation. In addition, network analysis revealed that cellular pathways involving proteins such as Col1a1 and Fn1 continued to respond to high dosages of heavy-ion irradiation, suggesting that these pathways still protect cells against damage. However, pathways such as those involving Ikbkg1 responded better at lower dosages than at higher dosages, implying that cell damage would occur when the networks involving these proteins stop responding. Our investigation provides valuable proteomic information for elucidating the mechanism of biological effects induced by carbon ions in general.
Collapse
Affiliation(s)
- Yu Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Da-Fei Xie
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yi Xie
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiao-Dan Liu
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qi Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Li Sui
- China Institute of Atomic Energy, Beijing 102413, China
| | - Man Song
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jianhua Zhou
- iBioinfo Groups, Lexington, Massachusetts 02421, United States of America
- Department of Neuroregeneration, Nantong University, Nantong, China
- * E-mail: (PKZ); (JZ)
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- * E-mail: (PKZ); (JZ)
| |
Collapse
|
22
|
Qiu J, Tao Y, Yang G, Xu K, Lin AL, Li L. Effect of a chemical inhibitor of human phosphatidylethanolamine-binding protein 4 on radiosensitivity of rectal cancer cells. World J Surg Oncol 2016; 14:221. [PMID: 27553494 PMCID: PMC4994219 DOI: 10.1186/s12957-016-0977-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/13/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human phosphatidylethanolamine-binding protein 4 (hPEBP4) is a well-established antiapoptosis molecule in recent years. It has also been demonstrated to be involved in the radioresistance of rectal cancer. The objective of this study was to determine whether IOI-42, a chemical inhibitor of hPEBP4, could sensitize rectal cancer cells. METHODS Rectal cancer cells were treated with IOI-42 alone or in combination with irradiation. Clonogenic survival assays and tumor volume growth analysis were used, respectively, to study the effect of IOI-42 in vitro and in vivo. Western blot was adopted to measure the activation of signal pathway. RESULTS Clonogenic survival assays showed that IOI-42, combined with irradiation, caused a significant decrease in colony formation compared with radiation alone, which was associated with the downregulation of Akt activation. And we also confirmed the effect of IOI-42 in nude mice transplanted with human rectal cancer subcutaneously. CONCLUSIONS These data suggest that IOI-42 has a potential to enhance the radiosensitivity of rectal cancer cells, providing a rationale to further investigate the feasibility of combining of IOI-42 with radiation, keeping in mind that this may result in unexpected toxicities.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Colorectal Surgery, The Third Hospital of Hangzhou, 38 West Lake Avenue, ShangChen District, Hangzhou, China.
| | - Yong Tao
- Department of Colorectal Surgery, The Third Hospital of Hangzhou, 38 West Lake Avenue, ShangChen District, Hangzhou, China
| | - Guangen Yang
- Department of Colorectal Surgery, The Third Hospital of Hangzhou, 38 West Lake Avenue, ShangChen District, Hangzhou, China
| | - Kan Xu
- Department of Colorectal Surgery, The Third Hospital of Hangzhou, 38 West Lake Avenue, ShangChen District, Hangzhou, China
| | - A Li Lin
- Department of Pathology, The Third Hospital of Hangzhou, 38 West Lake Avenue, ShangChen District, Hangzhou, China
| | - Liuyu Li
- Department of Pathology, The Third Hospital of Hangzhou, 38 West Lake Avenue, ShangChen District, Hangzhou, China
| |
Collapse
|
23
|
Hauptmann M, Haghdoost S, Gomolka M, Sarioglu H, Ueffing M, Dietz A, Kulka U, Unger K, Babini G, Harms-Ringdahl M, Ottolenghi A, Hornhardt S. Differential Response and Priming Dose Effect on the Proteome of Human Fibroblast and Stem Cells Induced by Exposure to Low Doses of Ionizing Radiation. Radiat Res 2016; 185:299-312. [PMID: 26934482 DOI: 10.1667/rr14226.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It has been suggested that a mechanistic understanding of the cellular responses to low dose and dose rate may be valuable in reducing some of the uncertainties involved in current risk estimates for cancer- and non-cancer-related radiation effects that are inherited in the linear no-threshold hypothesis. In this study, the effects of low-dose radiation on the proteome in both human fibroblasts and stem cells were investigated. Particular emphasis was placed on examining: 1. the dose-response relationships for the differential expression of proteins in the low-dose range (40-140 mGy) of low-linear energy transfer (LET) radiation; and 2. the effect on differential expression of proteins of a priming dose given prior to a challenge dose (adaptive response effects). These studies were performed on cultured human fibroblasts (VH10) and human adipose-derived stem cells (ADSC). The results from the VH10 cell experiments demonstrated that low-doses of low-LET radiation induced unique patterns of differentially expressed proteins for each dose investigated. In addition, a low priming radiation dose significantly changed the protein expression induced by the subsequent challenge exposure. In the ADSC the number of differentially expressed proteins was markedly less compared to VH10 cells, indicating that ADSC differ in their intrinsic response to low doses of radiation. The proteomic results are further discussed in terms of possible pathways influenced by low-dose irradiation.
Collapse
Affiliation(s)
- Monika Hauptmann
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| | - Siamak Haghdoost
- c Center for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Maria Gomolka
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| | - Hakan Sarioglu
- b Helmholtz Zentrum München, German Research Center for Environmental Health, Department of Protein Science, Neuherberg, Germany
| | - Marius Ueffing
- b Helmholtz Zentrum München, German Research Center for Environmental Health, Department of Protein Science, Neuherberg, Germany
| | - Anne Dietz
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| | - Ulrike Kulka
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| | - Kristian Unger
- d Helmholtz Zentrum München, German Research Center for Environmental Health, Department of Radiation Cytogenetics, Neuherberg, Germany; and
| | | | - Mats Harms-Ringdahl
- c Center for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Sabine Hornhardt
- a Federal Office for Radiation Protection, Department SG Radiation Protection and Health, Oberschleissheim, Germany
| |
Collapse
|
24
|
Proteomics discovery of radioresistant cancer biomarkers for radiotherapy. Cancer Lett 2015; 369:289-97. [DOI: 10.1016/j.canlet.2015.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/08/2015] [Accepted: 09/23/2015] [Indexed: 12/28/2022]
|
25
|
Skvortsova I, Debbage P, Kumar V, Skvortsov S. Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling. Semin Cancer Biol 2015; 35:39-44. [PMID: 26392376 DOI: 10.1016/j.semcancer.2015.09.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/16/2015] [Indexed: 02/07/2023]
Abstract
Despite the fact that radiation therapy is a highly effective therapeutic approach, a small intratumoral cell subpopulation known as "cancer stem cells" (CSCs) is radiation-resistant and possesses specific molecular properties protecting it against radiation-induced damage. The exact mechanisms of this radioresistance are still not fully elucidated, but they relate to these cells' enhanced DNA repair capacities and their low intracellular ROS concentrations, resulting from their up-regulation of ROS scavengers. The low ROS content is accompanied by disturbances in cell cycle regulation, so it can be assumed that either CSCs are quiescent or dormant themselves, or that this cell population consists of at least two cell subpopulations: the normally and the slowly proliferating cells (quiescent or dormant cells). Slowly dividing CSCs show concomitant dysregulation of the signaling molecules mediating both cell cycle progression and maintenance of cell stemness. Despite a massive accumulation of data concerning the mechanisms underlying DNA damage response in CSCs, it represents a challenge to researchers in the era of personalized medicine to elucidate the role of intracellular ROS and of signaling pathways associated with the radiation resistance of these cells; there is a clear need to understand the molecular mechanisms helping CSCs to survive radiation exposure.
Collapse
Affiliation(s)
- Ira Skvortsova
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.
| | - Paul Debbage
- Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria
| | - Vinod Kumar
- Centre for Chemical and Pharmaceutical Sciences, Central University of Punjab, Bathinda, India
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
26
|
Kurono S, Kaneko Y, Matsuura S, Niwayama S. Quantification of proteins using (13)C7-labeled and unlabeled iodoacetanilide by nano liquid chromatography/nanoelectrospray ionization and by selected reaction monitoring mass spectrometry. Bioorg Med Chem Lett 2015; 25:1110-6. [PMID: 25619637 DOI: 10.1016/j.bmcl.2014.12.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 10/24/2022]
Abstract
The combination of cysteine-specific modifiers, iodoacetanilide (IAA) and (13)C7-labeled iodoacetanilide ((13)C7-IAA), has been applied to absolute quantification of proteins. The selected reaction monitoring (SRM) with the use of nano liquid chromatography/nanoelectrospray ionization ion trap mass spectrometry (nano LC/nano-ESI-IT-MS) analysis was applied to precise quantification of three commercial proteins. Good correlation was observed between the theoretical ratios and observed ratios for all these proteins both in a simple buffer solution and in a complex protein environment. Due to efficient tagging, this method does not require separate synthesis of isotope-labeled peptides for the SRM studies. Therefore, this method is expected to be a useful tool for proteomics research.
Collapse
Affiliation(s)
- Sadamu Kurono
- Laboratory of Molecular Signature Analysis, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory Chemicals Division, Wako Pure Chemical Industries, Ltd., 3-1-2 Doshomachi, Chuo-ku, Osaka, Osaka 540-8605, Japan
| | - Yuka Kaneko
- Laboratory of Molecular Signature Analysis, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory Chemicals Division, Wako Pure Chemical Industries, Ltd., 3-1-2 Doshomachi, Chuo-ku, Osaka, Osaka 540-8605, Japan
| | - Shuji Matsuura
- Laboratory of Molecular Signature Analysis, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satomi Niwayama
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
27
|
McDermott N, Meunier A, Lynch TH, Hollywood D, Marignol L. Isogenic radiation resistant cell lines: development and validation strategies. Int J Radiat Biol 2014; 90:115-26. [PMID: 24350914 DOI: 10.3109/09553002.2014.873557] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE The comparison of cell lines with differing radiosensitivities and their molecular response to radiation exposure has been used in a number of human cancer models to study the molecular response to radiation. This review proposes to analyze and compare the protocols used by investigators for the development and validation of these isogenic models of radioresistance. CONCLUSION There is large variability in the strategies used to generate and validate isogenic models of radioresistance. Further characterization of these models is required.
Collapse
Affiliation(s)
- Niamh McDermott
- Radiation and Urologic Oncology, Applied Radiation Therapy Trinity and Prostate Molecular Oncology Research Group, Discipline of Radiation Therapy, Trinity College Dublin , Ireland
| | | | | | | | | |
Collapse
|
28
|
Langlands FE, Dodwell D, Hanby AM, Horgan K, Millican-Slater RA, Speirs V, Verghese ET, Smith L, Hughes TA. PSMD9 expression predicts radiotherapy response in breast cancer. Mol Cancer 2014; 13:73. [PMID: 24673853 PMCID: PMC4230020 DOI: 10.1186/1476-4598-13-73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 03/24/2014] [Indexed: 01/02/2023] Open
Abstract
Background More than 50% of cancer patients are recommended to receive radiotherapy. Recommendations are based mainly on clinical and pathological factors and not intrinsic tumour radio-sensitivity. Use of radiotherapy according to predictive markers would potentially reduce costly over-treatment, and improve the treatment risk-benefit ratio and cancer outcomes. Tumour expression of the 26S proteasome has been reported to predict radiotherapy response: low expression was associated with higher rates of local recurrence after radiotherapy, suggesting that low proteasome expression and activity was associated with radio-resistance. However, this conclusion is at odds with the emerging use of proteasome inhibitors as radio-sensitizers. Our aim was to further analyse the relevance of 26S proteasome expression, focussing specifically on the PSMD9 subunit, in the largest clinical cohort to date, and to investigate the functional role of PSMD9 in radio-sensitivity in breast cancer cell lines. Methods We examined expression of PSMD9 using immunohistochemistry in a cohort of 157 breast cancer patients, including 32 cases (20.4%) that subsequently developed local recurrences. The value of expression as a prognostic or radiotherapy predictive marker was tested using Kaplan-Meier and Cox regression analyses. PSMD9 function was examined in breast cancer cell lines MCF7 and MDA-MB-231 using siRNA knock-downs and colony forming assays after irradiation. Results Low tumour PSMD9 expression was significantly associated with a reduced incidence of local recurrence in patients receiving adjuvant radiotherapy (univariate log rank p = 0.02; multivariate regression p = 0.009), but not in those treated without radiotherapy, suggesting that low PSMD9 expression was associated with relative tumour radio-sensitivity. In support of this, reduction of PSMD9 expression using siRNA in breast cancer cell lines in vitro sensitized cells to radiotherapy. Conclusions We conclude that PSMD9 expression may predict radiotherapy benefit, with low expression indicative of relative radio-sensitivity, the opposite of previous reports relating to 26S proteasome expression. Our conclusion is compatible with use of proteasome inhibitors as radio-sensitizers, and highlights PSMD9 as a potential target for radio-sensitizing drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Laura Smith
- Leeds Institutes of Molecular Medicine, University of Leeds, Leeds, UK.
| | | |
Collapse
|
29
|
Leszczynski D. Radiation proteomics: A brief overview. Proteomics 2014; 14:481-8. [DOI: 10.1002/pmic.201300390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/30/2013] [Accepted: 12/01/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Dariusz Leszczynski
- STUK - Radiation and Nuclear Safety Authority; Helsinki Finland
- Department of Biosciences and Biotechnology; University of Helsinki; Helsinki Finland
| |
Collapse
|
30
|
Skvortsov S, Debbage P, Cho WCS, Lukas P, Skvortsova I. Putative biomarkers and therapeutic targets associated with radiation resistance. Expert Rev Proteomics 2014; 11:207-14. [PMID: 24564737 DOI: 10.1586/14789450.2014.893194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Radiation therapy plays an important role in the management of malignant tumors, however, the problem of radiation resistance resulting in tumor recurrences after treatment is still unsolved. The emergence of novel biomarkers to predict cancer cell insensitivity to ionizing radiation could help to improve therapy results in cancer patients receiving radiation therapy. The proteomic approach could be effectively used to identify proteins associated with cancer radiation resistance. It is generally believed that radiation resistance could be associated with cancer stem cell persistence within the tumor. Therefore, determination of the molecular characteristics of cancer stem cells could provide additional possibilities to discover novel biomarkers to predict radiation resistance in cancer patients. This review addresses proteome-based findings that could be used for further biomarker identification and preclinical and clinical validation.
Collapse
Affiliation(s)
- Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Innsbruck, Austria
| | | | | | | | | |
Collapse
|
31
|
Lacombe J, Azria D, Mange A, Solassol J. Proteomic approaches to identify biomarkers predictive of radiotherapy outcomes. Expert Rev Proteomics 2014; 10:33-42. [DOI: 10.1586/epr.12.68] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis 2013; 4:e875. [PMID: 24157869 PMCID: PMC3920940 DOI: 10.1038/cddis.2013.407] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/04/2013] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
Radioresistance is a major challenge in prostate cancer (CaP) radiotherapy (RT). In this study, we investigated the role and association of epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and the PI3K/Akt/mTOR signaling pathway in CaP radioresistance. We developed three novel CaP radioresistant (RR) cell lines (PC-3RR, DU145RR and LNCaPRR) by radiation treatment and confirmed their radioresistance using a clonogenic survival assay. Compared with untreated CaP-control cells, the CaP-RR cells had increased colony formation, invasion ability and spheroid formation capability (P<0.05). In addition, enhanced EMT/CSC phenotypes and activation of the checkpoint proteins (Chk1 and Chk2) and the PI3K/Akt/mTOR signaling pathway proteins were also found in CaP-RR cells using immunofluorescence, western blotting and quantitative real-time PCR (qRT-PCR). Furthermore, combination of a dual PI3K/mTOR inhibitor (BEZ235) with RT effectively increased radiosensitivity and induced more apoptosis in CaP-RR cells, concomitantly correlated with the reduced expression of EMT/CSC markers and the PI3K/Akt/mTOR signaling pathway proteins compared with RT alone. Our findings indicate that CaP radioresistance is associated with EMT and enhanced CSC phenotypes via activation of the PI3K/Akt/mTOR signaling pathway, and that the combination of BEZ235 with RT is a promising modality to overcome radioresistance in the treatment of CaP. This combination approach warrants future in vivo animal study and clinical trials.
Collapse
|
33
|
Chung L, Baxter RC. Breast cancer biomarkers: proteomic discovery and translation to clinically relevant assays. Expert Rev Proteomics 2013; 9:599-614. [PMID: 23256671 DOI: 10.1586/epr.12.62] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the molecular classification and prognostic assessment of breast tumors based on gene expression profiling is well established, a number of proteomic studies that propose potential breast cancer biomarkers has not yet led to any new diagnostic, prognostic or predictive test in wide clinical use. This review examines the current status of breast cancer biomarkers, discusses sample types (including plasma, tumor tissue, nipple aspirate and ductal lavage, as well as cell culture models) and different electrophoretic and mass spectrometry methods that have been widely used for the discovery of proteomic biomarkers in breast cancer, and also considers several approaches to biomarker validation. The pathway leading from the initial proteomic discovery and validation process to translation into a clinically useful test is also discussed.
Collapse
Affiliation(s)
- Liping Chung
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | | |
Collapse
|
34
|
Kurono S, Kaneko Y, Niwayama S. Quantitative protein analysis using (13)C7-labeled iodoacetanilide and d5-labeled N-ethylmaleimide by nano liquid chromatography/nanoelectrospray ionization ion trap mass spectrometry. Bioorg Med Chem Lett 2013; 23:3111-8. [PMID: 23562245 DOI: 10.1016/j.bmcl.2013.02.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
We have developed a methodology for quantitative analysis and concurrent identification of proteins by the modification of cysteine residues with a combination of iodoacetanilide (IAA, 1) and (13)C7-labeled iodoacetanilide ((13)C7-IAA, 2), or N-ethylmaleimide (NEM, 3) and d5-labeled N-ethylmaleimide (d5-NEM, 4), followed by mass spectrometric analysis using nano liquid chromatography/nanoelectrospray ionization ion trap mass spectrometry (nano LC/nano-ESI-IT-MS). The combinations of these stable isotope-labeled and unlabeled modifiers coupled with LC separation and ESI mass spectrometric analysis allow accurate quantitative analysis and identification of proteins, and therefore are expected to be a useful tool for proteomics research.
Collapse
Affiliation(s)
- Sadamu Kurono
- Joint Research Laboratory of Molecular Signature Analysis, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
35
|
Langlands FE, Horgan K, Dodwell DD, Smith L. Breast cancer subtypes: response to radiotherapy and potential radiosensitisation. Br J Radiol 2013; 86:20120601. [PMID: 23392193 DOI: 10.1259/bjr.20120601] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Radiotherapy (RT) is of critical importance in the locoregional management of early breast cancer. Over 50% of patients receive RT at some time during the treatment of their disease, equating to over 500 000 patients worldwide receiving RT each year. Unfortunately, not all patients derive therapeutic benefit and some breast cancers are resistant to treatment, as evidenced by distant metastatic spread and local recurrence. Prediction of individual responses to RT may allow a stratified approach to this treatment permitting those patients with radioresistant tumours to receive higher doses of RT (total and/or tumour cavity boost doses) and/or radiosensitising agents to optimise treatment. Also, for those patients unlikely to respond at all, it would prevent harmful side effects occurring for no therapeutic gain. More selective targeting would better direct National Health Service resources, ease the burden on heavily used treatment RT machines and reduce the economic cost of cancer treatment. Unfortunately, there are no robust and validated biomarkers for predicting RT outcome. We review the available literature to determine whether classification of breast cancers according to their molecular profile may be used to predict successful response to, or increased morbidity from, RT. Class-specific biomarkers for targeting by radiosensitising agents are also discussed.
Collapse
Affiliation(s)
- F E Langlands
- Section of Pathology and Tumour Biology, Leeds Institute of Molecular Medicine, Leeds University, Leeds, UK
| | | | | | | |
Collapse
|
36
|
Lacombe J, Mange A, Azria D, Solassol J. Identification de marqueurs prédictifs de la réponse à la radiothérapie par approche protéomique. Cancer Radiother 2013; 17:62-9; quiz 70, 72. [DOI: 10.1016/j.canrad.2012.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/08/2012] [Accepted: 11/22/2012] [Indexed: 12/15/2022]
|
37
|
Donna LD, Lagadec C, Pajonk F. Radioresistance of prostate cancer cells with low proteasome activity. Prostate 2012; 72:868-74. [PMID: 21932424 PMCID: PMC3396561 DOI: 10.1002/pros.21489] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/25/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prostate cancer is frequently treated with radiotherapy. While treatment results are in general excellent, some patients relapse and current systemic therapies are not curative, thus, underlining the need for novel targeted therapies. Proteasome inhibitors have been suggested as promising new agents against solid tumors including prostate cancer but initial results from clinical trials are disappointing. METHODS In this study we tested if prostate cancer cells are heterogeneous with regard to their intrinsic 26S proteasome activity, which could explain the lack of clinical responses to bortezomib. PC-3 and DU145 prostate cancer cells and an imaging system for proteasome activity were used to identify individual cells with low proteasome activity. Clonogenic survival assays, a sphere-forming assay and an in vivo limiting dilution assay were used to characterize radiation sensitivity, self-renewal capacity, and tumorigenicity of the different subsets of cells. RESULTS We identified a small population of cells with intrinsically low 26S proteasome activity. Fractionated radiation enriched for these cells and clonogenic survival assays and sphere-forming assays revealed a radioresistant phenotype and increased self-renewal capacity. CONCLUSIONS We conclude that low 26S proteasome activity identifies a radioresistant prostate cancer cell population. This population of cells could be responsible for the clinical resistance of advanced prostate cancer to proteasome inhibitors and radiation.
Collapse
Affiliation(s)
| | - Chann Lagadec
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA
- Jonsson Comprehensive Cancer Center at UCLA
- Correspondence address: Department of Radiation Oncology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1714,
| |
Collapse
|
38
|
Discovery and verification of gelsolin as a potential biomarker of colorectal adenocarcinoma in the Chinese population: Examining differential protein expression using an iTRAQ labelling-based proteomics approach. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2012; 26:41-7. [PMID: 22288069 DOI: 10.1155/2012/645218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To identify and validate potential biomarkers of colorectal adenocarcinoma using a proteomic approach. METHODS Multidimensional liquid chromatography⁄mass spectrometry was used to analyze biological samples labelled with isobaric mass tags for relative and absolute quantitation to identify differentially expressed proteins in human colorectal adenocarcinoma and paired normal mucosa for the discovery of cancerous biomarkers. Cancerous and noncancerous samples were compared using online and offline separation. Protein identification was performed using mass spectrometry. The downregulation of gelsolin protein in colorectal adenocarcinoma samples was confirmed by Western blot analysis and validated using immunohistochemistry. RESULTS A total of 802 nonredundant proteins were identified in colorectal adenocarcinoma samples, 82 of which fell outside the expression range of 0.8 to 1.2, and were considered to be potential cancer-specific proteins. Immunohistochemistry revealed a complete absence of gelsolin expression in 86.89% of samples and a reduction of expression in 13.11% of samples, yielding a sensitivity of 86.89% and a specificity of 100% for distinguishing colorectal adenocarcinoma from normal tissue. CONCLUSIONS These findings suggest that decreased expression of gelsolin is a potential biomarker of colorectal adenocarcinoma.
Collapse
|
39
|
The interconnectedness of cancer cell signaling. Neoplasia 2012; 13:1183-93. [PMID: 22241964 DOI: 10.1593/neo.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022] Open
Abstract
The elegance of fundamental and applied research activities have begun to reveal a myriad of spatial and temporal alterations in downstream signaling networks affected by cell surface receptor stimulation including G protein-coupled receptors and receptor tyrosine kinases. Interconnected biochemical pathways serve to integrate and distribute the signaling information throughout the cell by orchestration of complex biochemical circuits consisting of protein interactions and covalent modification processes. It is clear that scientific literature summarizing results from both fundamental and applied scientific research activities has served to provide a broad foundational biologic database that has been instrumental in advancing our continued understanding of underlying cancer biology. This article reflects on historical advances and the role of innovation in the competitive world of grant-sponsored research.
Collapse
|
40
|
Scaife L, Hodgkinson VC, Drew PJ, Lind MJ, Cawkwell L. Differential proteomics in the search for biomarkers of radiotherapy resistance. Expert Rev Proteomics 2011; 8:535-52. [PMID: 21819306 DOI: 10.1586/epr.11.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The individualization of radiotherapy treatment would be beneficial for cancer patients; however, there are no predictive biomarkers of radiotherapy resistance in routine clinical use. This article describes the body of work in this field where comparative proteomics methods have been used for the discovery of putative biomarkers associated with radiotherapy resistance. A large number of differentially expressed proteins have been reported, mostly from the study of novel radiotherapy-resistant cell lines. Here, we have assessed these putative biomarkers through the discovery, confirmation and validation phases of the biomarker pipeline, and inform the reader on the current status of proteomics-based findings. Suggested avenues for future work are discussed.
Collapse
Affiliation(s)
- Lucy Scaife
- Cancer Biology Proteomics Group, Postgraduate Medical Institute of the University of Hull, UK
| | | | | | | | | |
Collapse
|
41
|
Repeatedly identified differentially expressed proteins (RIDEPs) from antibody microarray proteomic analysis. J Proteomics 2011; 74:698-703. [DOI: 10.1016/j.jprot.2011.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/19/2011] [Accepted: 02/14/2011] [Indexed: 02/08/2023]
|
42
|
Dinosaurs and ancient civilizations: reflections on the treatment of cancer. Neoplasia 2011; 12:957-68. [PMID: 21170260 DOI: 10.1593/neo.101588] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 12/14/2022] Open
Abstract
Research efforts in the area of palaeopathology have been seen as an avenue to improve our understanding of the pathogenesis of cancer. Answers to questions of whether dinosaurs had cancer, or if cancer plagued ancient civilizations, have captured the imagination as well as the popular media. Evidence for dinosaurian cancer may indicate that cancer may have been with us from the dawn of time. Ancient recorded history suggests that past civilizations attempted to fight cancer with a variety of interventions. When contemplating the issue why a generalized cure for cancer has not been found, it might prove useful to reflect on the relatively limited time that this issue has been an agenda item of governmental attention as well as continued introduction of an every evolving myriad of manmade carcinogens relative to the total time cancer has been present on planet Earth. This article reflects on the history of cancer and the progress made following the initiation of the "era of cancer chemotherapy."
Collapse
|
43
|
Elfadl D, Hodgkinson VC, Long ED, Scaife L, Drew PJ, Lind MJ, Cawkwell L. A pilot study to investigate the role of the 26S proteasome in radiotherapy resistance and loco-regional recurrence following breast conserving therapy for early breast cancer. Breast 2011; 20:334-7. [PMID: 21411324 DOI: 10.1016/j.breast.2011.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/11/2011] [Accepted: 02/21/2011] [Indexed: 11/29/2022] Open
Abstract
Breast conserving therapy is a currently accepted method for managing patients with early stage breast cancer. However, approximately 7% of patients may develop loco-regional tumour recurrence within 5 years. We previously reported that expression of the 26S proteasome may be associated with radio-resistance. Here we aimed to analyse the 26S proteasome in a pilot series of early breast cancers and correlate the findings with loco-regional recurrence. Fourteen patients with early breast cancer who developed loco-regional recurrence within 4 years of completing breast conserving therapy were selected according to strict criteria and compared with those from 14 patients who were disease-free at 10 years. Decreased expression of the 26S proteasome was significantly associated with radio-resistance, manifested as the development of a loco-regional recurrence within 4 years of breast conserving therapy (p = 0.018). This small pilot study provides further suggestion that the 26S proteasome may be associated with response to radiotherapy.
Collapse
Affiliation(s)
- Dalia Elfadl
- Cancer Biology Proteomics Group, Postgraduate Medical Institute of the University of Hull, Hull, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Streckfus CF, Brown RE, Bull JM. Proteomics, morphoproteomics, saliva and breast cancer: An emerging approach to guide the delivery of individualised thermal therapy, thermochemotherapy and monitor therapy response. Int J Hyperthermia 2010; 26:649-61. [DOI: 10.3109/02656736.2010.506470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
45
|
The War on Cancer rages on. Neoplasia 2010; 11:1252-63. [PMID: 20019833 DOI: 10.1593/neo.91866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 02/08/2023] Open
Abstract
In 1971, the "War on Cancer" was launched by the US government to cure cancer by the 200-year anniversary of the founding of the United States of America, 1976. This article briefly looks back at the progress that has been made in cancer research and compares progress made in other areas of human affliction. While progress has indeed been made, the battle continues to rage on.
Collapse
|