1
|
Cooley M, Wegierak D, Perera R, Abenojar E, Nittayacharn P, Berg FM, Kim Y, Kolios MC, Exner AA. Assessing Therapeutic Nanoparticle Accumulation in Tumors Using Nanobubble-Based Contrast-Enhanced Ultrasound Imaging. ACS NANO 2024; 18:33181-33196. [PMID: 39566912 PMCID: PMC11619768 DOI: 10.1021/acsnano.4c11805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024]
Abstract
This study explores the challenges associated with nanoparticle-based drug delivery to the tumor parenchyma, focusing on the widely utilized enhanced permeability and retention effect (EPR). While EPR has been a key strategy, its inconsistent clinical success lacks clear mechanistic understanding and is hindered by limited tools for studying relevant phenomena. This work introduces an approach that employs multiparametric dynamic contrast-enhanced ultrasound (CEUS) with a nanoscale contrast agent for noninvasive, real-time examination of tumor microenvironment characteristics. We demonstrate that CEUS imaging can: (1) evaluate tumor microenvironment features, (2) be used to help predict the distribution of doxorubicin-loaded liposomes in the tumor parenchyma, and (3) be used to predict nanotherapeutic efficacy. CEUS using nanobubbles (NBs) was carried out in two tumor types of high (LS174T) and low (U87) vascular permeability. LS174T tumors consistently showed significantly different time intensity curve (TIC) parameters, including area under the rising curve (AUCR, 2.7×) and time to peak intensity (TTP, 1.9×) compared to U87 tumors. Crucially, a recently developed decorrelation time (DT) parameter specific to NB CEUS dynamics successfully predicted the distribution of doxorubicin-loaded liposomes within the tumor parenchyma (r = 0.86 ± 0.13). AUCR, TTP, and DT were used to correlate imaging findings to nanotherapeutic response with 100% accuracy in SKOV-3 tumors. These findings suggest that NB-CEUS parameters can effectively discern tumor vascular permeability, serving as a biomarker for identifying tumor characteristics and predicting the responsiveness to nanoparticle-based therapies. The observed differences between LS174T and U87 tumors and the accurate prediction of nanotherapeutic efficacy in SKOV-3 tumors indicate the potential utility of this method in predicting treatment efficacy and evaluating EPR in diseases characterized by pathologically permeable vasculature. Ultimately, this research contributes valuable insights into refining drug delivery strategies and assessing the broader applicability of EPR-based approaches.
Collapse
Affiliation(s)
- Michaela
B. Cooley
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Dana Wegierak
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Reshani Perera
- Department
of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Eric Abenojar
- Department
of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Pinunta Nittayacharn
- Department
of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Department
of Biomedical Engineering, Faculty of Engineering, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Felipe M. Berg
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
- Hospital
Israelita Albert Einstein, São
Paulo, São Paulo 05652-900, Brazil
| | - Youjoung Kim
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Michael C. Kolios
- Department
of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
- Institute
for Biomedical Engineering, Science and Technology (iBEST), A Partnership
between St. Michael’s Hospital, A
Site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Agata A. Exner
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
- Department
of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
2
|
Cooley MB, Wegierak D, Perera R, Abenojar EC, Nittayacharn PA, Berg FM, Kim Y, Kolios MC, Exner AA. Assessing Tumor Microenvironment Characteristics and Stratifying EPR with a Nanobubble Companion Nanoparticle via Contrast-Enhanced Ultrasound Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567934. [PMID: 38045236 PMCID: PMC10690218 DOI: 10.1101/2023.11.20.567934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The tumor microenvironment is characterized by dysfunctional endothelial cells, resulting in heightened vascular permeability. Many nanoparticle-based drug delivery systems attempt to use this enhanced permeability combined with impaired lymphatic drainage (a concept known as the 'enhanced permeability and retention effect' or EPR effect) as the primary strategy for drug delivery, but this has not proven to be as clinically effective as anticipated. The specific mechanisms behind the inconsistent clinical outcomes of nanotherapeutics have not been clearly articulated, and the field has been hampered by a lack of accessible tools to study EPR-associated phenomena in clinically relevant scenarios. While medical imaging has tremendous potential to contribute to this area, it has not been broadly explored. This work examines, for the first time, the use of multiparametric dynamic contrast-enhanced ultrasound (CEUS) with a novel nanoscale contrast agent to examine tumor microenvironment characteristics noninvasively and in real-time. We demonstrate that CEUS imaging can: (1) evaluate tumor microenvironment features and (2) be used to help predict the distribution of doxorubicin-loaded liposomes in the tumor parenchyma. CEUS using nanobubbles (NBs) was carried out in two tumor types of high (LS174T) and low (U87) vascular permeability, and time-intensity curve (TIC) parameters were evaluated in both models prior to injection of doxorubicin liposomes. Consistently, LS174T tumors showed significantly different TIC parameters, including area under the rising curve (2.7x), time to peak intensity (1.9x) and decorrelation time (DT, 1.9x) compared to U87 tumors. Importantly, the DT parameter successfully predicted tumoral nanoparticle distribution (r = 0.86 ± 0.13). Ultimately, substantial differences in NB-CEUS generated parameters between LS174T and U87 tumors suggest that this method may be useful in determining tumor vascular permeability and could be used as a biomarker for identifying tumor characteristics and predicting sensitivity to nanoparticle-based therapies. These findings could ultimately be applied to predicting treatment efficacy and to evaluating EPR in other diseases with pathologically permeable vasculature.
Collapse
|
3
|
Yin D, Li M, Xiang P. Mapping research performance and hotspots on nanoparticles in cardiovascular diseases. Medicine (Baltimore) 2023; 102:e33520. [PMID: 37058013 PMCID: PMC10101270 DOI: 10.1097/md.0000000000033520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/22/2023] [Indexed: 04/15/2023] Open
Abstract
Nanoparticles have broad prospects and profound academic significance in cardiovascular diseases. This study aimed to comprehensively summarize the global scientific achievements of nanoparticles in cardiovascular diseases research. Articles on the application of nanoparticles in cardiovascular diseases published from 2002 to 2021 were retrieved from the science citation index expanded of the Web of Science Core Collection, and knowledge maps were generated by Cite Space, VOS viewer, and Hist Cite for further bibliometric analysis. A total of 4321 records were retrieved, and only reviews and articles were retained with a total of 4258 studies. The number of publications on nanoparticles in the cardiovascular field has steadily increased from 2002 to 2021. China and the US contribute the most to this field, producing nearly all the most influential authors and institutions in the top 10 list. The Chinese Academy of Medical Sciences and Harvard University have obtained many high-quality research results. Targeted drug delivery via nanoparticles, myocardial infarction and atherosclerosis are research hotspots. This is the first time to analyze the application of nanoparticles in the cardiovascular field by using multiple bibliometric software. This study provides evidence for researchers to understand the hotspots and directions in this area.
Collapse
Affiliation(s)
- Dan Yin
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mi Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ping Xiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
4
|
Rajabi M, Adeyeye M, Mousa SA. Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer. Curr Med Chem 2019; 26:5664-5683. [DOI: 10.2174/0929867326666190620100800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022]
Abstract
:Targeting angiogenesis in the microenvironment of a tumor can enable suppression of tumor angiogenesis and delivery of anticancer drugs into the tumor. Anti-angiogenesis targeted delivery systems utilizing passive targeting such as Enhanced Permeability and Retention (EPR) and specific receptor-mediated targeting (active targeting) should result in tumor-specific targeting. One targeted anti-angiogenesis approach uses peptides conjugated to nanoparticles, which can be loaded with anticancer agents. Anti-angiogenesis agents can suppress tumor angiogenesis and thereby affect tumor growth progression (tumor growth arrest), which may be further reduced with the targetdelivered anticancer agent. This review provides an update of tumor vascular targeting for therapeutic and diagnostic applications, with conventional or long-circulating nanoparticles decorated with peptides that target neovascularization (anti-angiogenesis) in the tumor microenvironment.
Collapse
Affiliation(s)
- Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Mary Adeyeye
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| |
Collapse
|
5
|
18F-labeled magnetic nanoparticles for monitoring anti-angiogenic therapeutic effects in breast cancer xenografts. J Nanobiotechnology 2019; 17:105. [PMID: 31604441 PMCID: PMC6788012 DOI: 10.1186/s12951-019-0534-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To develop a novel fluorine-18 (18F)-labeled arginine-glycine-aspartic acid (RGD)-coupled ultra-small iron oxide nanoparticle (USPIO) (hereafter, referred to as 18F-RGD@USPIO) and conduct an in-depth investigation to monitor the anti-angiogenic therapeutic effects by using a novel dual-modality PET/MRI probe. METHODS The RGD peptide and 18F were coupled onto USPIO by click chemistry. In vitro experiments including determination of stability, cytotoxicity, cell binding of the obtained 18F-RGD@USPIO were carried out, and the targeting kinetics and bio-distribution were tested on an MDA-MB-231 tumor model. A total of 20 (n = 10 per group) MDA-MB-231 xenograft-bearing mice were treated with bevacizumab or placebo (intraperitoneal injections of bevacizumab or a volume-equivalent placebo solution at the dose of 5 mg/kg for consecutive 7 days, respectively), and underwent PET/CT and MRI examinations with 18F-RGD@USPIO before and after treatment. Imaging findings were validated by histological analysis with regard to β3-integrin expression (CD61 expression), microvascular density (CD31 expression), and proliferation (Ki-67 expression). RESULTS Excellent stability, low toxicity, and good specificity to endothelial of 18F-RGD@USPIO were confirmed. The best time point for MRI scan was 6 h post-injection. No intergroup differences were observed in tumor volume development between baseline and day 7. However, 18F-RGD@USPIO binding was significantly reduced after bevacizumab treatment compared with placebo, both on MRI (P < 0.001) and PET/CT (P = 0.002). Significantly lower microvascular density, tumor cell proliferation, and integrin β3 expression were noted in the bevacizumab therapy group than the placebo group, which were consistent with the imaging results. CONCLUSION PET/MRI with the dual-modality nanoprobe, 18F-RGD@USPIO, can be implemented as a noninvasive approach to monitor the therapeutic effects of anti-angiogenesis in breast cancer model in vivo.
Collapse
|
6
|
Xu J, Seung-Young Lee S, Seo H, Pang L, Jun Y, Zhang RY, Zhang ZY, Kim P, Lee W, Kron SJ, Yeo Y. Quinic Acid-Conjugated Nanoparticles Enhance Drug Delivery to Solid Tumors via Interactions with Endothelial Selectins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803601. [PMID: 30411856 PMCID: PMC6361670 DOI: 10.1002/smll.201803601] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/11/2018] [Indexed: 05/26/2023]
Abstract
Current nanoparticle (NP) drug carriers mostly depend on the enhanced permeability and retention (EPR) effect for selective drug delivery to solid tumors. However, in the absence of a persistent EPR effect, the peritumoral endothelium can function as an access barrier to tumors and negatively affect the effectiveness of NPs. In recognition of the peritumoral endothelium as a potential barrier in drug delivery to tumors, poly(lactic-co-glycolic acid) (PLGA) NPs are modified with a quinic acid (QA) derivative, synthetic mimic of selectin ligands. QA-decorated NPs (QA-NP) interact with human umbilical vein endothelial cells expressing E-/P-selectins and induce transient increase in endothelial permeability to translocate across the layer. QA-NP reach selectin-upregulated tumors, achieving greater tumor accumulation and paclitaxel (PTX) delivery than polyethylene glycol-decorated NPs (PEG-NP). PTX-loaded QA-NP show greater anticancer efficacy than Taxol or PTX-loaded PEG-NP at the equivalent PTX dose in different animal models and dosing regimens. Repeated dosing of PTX-loaded QA-NP for two weeks results in complete tumor remission in 40-60% of MDA-MB-231 tumor-bearing mice, while those receiving control treatments succumb to death. QA-NP can exploit the interaction with selectin-expressing peritumoral endothelium and deliver anticancer drugs to tumors to a greater extent than the level currently possible with the EPR effect.
Collapse
Affiliation(s)
- Jun Xu
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA,
| | - Steve Seung-Young Lee
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, MC 9006, and Department of Molecular Genetics and Cellular Biology, The University of Chicago, 929 East 57th Street, GCIS W519, Chicago, IL 60637, USA
| | - Howon Seo
- Graduate School of Nanoscience and Technology and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Liang Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People’s Republic of China
| | - Yearin Jun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Stephen J. Kron
- Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, MC 9006, and Department of Molecular Genetics and Cellular Biology, The University of Chicago, 929 East 57th Street, GCIS W519, Chicago, IL 60637, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA, ; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Deng Y, Xu A, Yu Y, Fu C, Liang G. Biomedical Applications of Fluorescent and Magnetic Resonance Imaging Dual‐Modality Probes. Chembiochem 2018; 20:499-510. [DOI: 10.1002/cbic.201800450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Yun Deng
- Institute for Interdisciplinary & Research Key Laboratory of, Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 P.R. China
| | - Aifei Xu
- School of Tobacco Science and EngineeringZhengzhou University of Light Industry Zhengzhou 450002 P.R. China
| | - Yanhua Yu
- Institute for Interdisciplinary & Research Key Laboratory of, Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 P.R. China
| | - Cheng Fu
- Institute for Interdisciplinary & Research Key Laboratory of, Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 P.R. China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter ChemistryDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 P.R. China
| |
Collapse
|
8
|
Abdalla AM, Xiao L, Ullah MW, Yu M, Ouyang C, Yang G. Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of Nanotherapeutics. Theranostics 2018; 8:533-548. [PMID: 29290825 PMCID: PMC5743565 DOI: 10.7150/thno.21674] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
With growing interest in cancer therapeutics, anti-angiogenic therapy has received considerable attention and is widely administered in several types of human cancers. Nonetheless, this type of therapy may induce multiple signaling pathways compared with cytotoxics and lead to worse outcomes in terms of resistance, invasion, metastasis, and overall survival (OS). Moreover, there are important challenges that limit the translation of promising biomarkers into clinical practice to monitor the efficiency of anti-angiogenic therapy. These pitfalls emphasize the urgent need for discovering alternative angiogenic inhibitors that target multiple angiogenic factors or developing a new drug delivery system for the current inhibitors. The great advantages of nanoparticles are their ability to offer effective routes that target the biological system and regulate different vital processes based on their unique features. Limited studies so far have addressed the effectiveness of nanoparticles in the normalization of the delicate balance between stimulating (pro-angiogenic) and inhibiting (anti-angiogenic) factors. In this review, we shed light on tumor vessels and their microenvironment and consider the current directions of anti-angiogenic and nanotherapeutic treatments. To the best of our knowledge, we consider an important effort in the understanding of anti-angiogenic agents (often a small volume of metals, nonmetallic molecules, or polymers) that can control the growth of new vessels.
Collapse
Affiliation(s)
- Ahmed M.E. Abdalla
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum 1660/11111, Sudan
| | - Lin Xiao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Miao Yu
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, Beijing 100037, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Li TR, Yu MH, Huang XB, Yang ZJ, Lu GM, Li YJ. Magnetic Resonance Gd-RGD Imaging Study of Hepatocellular Carcinoma with High and Low Metastatic Potential before and after Human Bone Marrow-derived Mesenchymal Stem Cell Intervention. Chin Med J (Engl) 2017; 130:2591-2600. [PMID: 29067958 PMCID: PMC5678260 DOI: 10.4103/0366-6999.217089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Biotherapy based on human bone marrow-derived mesenchymal stem cells (BMSCs) is currently the focus of research, especially in the field of autologous stem cell transplantation. A novel type of metastasis-associated magnetic resonance (MR) molecular imaging probe was constructed, and the changes in metastasis and proliferation of hepatocellular carcinoma (HCC) before and after BMSC intervention were observed through MR imaging (MRI). Methods: Metastasis-associated MR molecular imaging probe, integrin αvβ3 ligand cRGD-PEG-DGL-DTPA-Gd (Gd-RGD), were constructed. After human BMSC intervention was performed for 6 weeks, tumor weight inhibition rates were calculated, and the RGD molecular probe was imaged through MRI with molecular imaging agent Gd-DTPA as control. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the MRI experiment were used as semi-quantitative indicators. Polymerase chain reaction method was performed to detect proliferation- and metastasis-associated indicators, transforming growth factor β-1 (TGFβ1), osteopontin (OPN), and integrin subunit αv and β3. Results: The highest tumor weight inhibition rates were observed 3 weeks after the BMSC transplantation. The MR Gd-RGD in the HCC tissues after the BMSC intervention showed less enhancement than Gd-DTPA. The Gd-DTPA MRI of control group had higher SNR and CNR than Gd-RGD MRI in the experimental groups (P < 0.05). For high metastatic potential hepatocellular carcinoma (MHCC97-H), significant differences were observed in the SNRs and CNRs of Gd-RGD MRI before and after the BMSC intervention (P < 0.05). For low metastatic potential hepatocellular carcinoma (MHCC97-L), the CNRs of Gd-RGD MRI were statistically different before and after BMSC intervention (P < 0.05). With regard to MHCC97-H, OPN, β3, and TGFβ1 expression significantly decreased after BMSC intervention (P < 0.05). In MHCC97-L and OPN, β3, TGFβ1, and αv expression after BMSC intervention decreased, and the difference was statistically significant (P < 0.05). Conclusions: The CNR index of MRI is a good indicator for distinguishing high- and low-metastatic potential HCC tissues. After BMSC transplantation of MRI through the two kinds of tracer, the SNR and CNR indexes can distinguish two kinds of high and low metastatic potential HCC tissues, and Gd-RGD imaging is more suitable in distinguishing the metastatic potential changes through BMSC intervention.
Collapse
Affiliation(s)
- Tian-Ran Li
- Department of Radiology, The 1st Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Ming-Hui Yu
- Department of Radiology, The 1st Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Xiao-Bin Huang
- Department of Radiology, Chinese PLA 95th Hospital, Putian, Fujian 351100, China
| | - Zhi-Jie Yang
- Department of Radiology, Chinese PLA 95th Hospital, Putian, Fujian 351100, China
| | - Guang-Ming Lu
- Department of Radiology, Chinese PLA Nanjing General Hospital, Nanjing, Jiangsu 210000, China
| | - Yan-Jun Li
- Department of Radiology, Chinese PLA Nanjing General Hospital, Nanjing, Jiangsu 210000, China
| |
Collapse
|
10
|
Alaarg A, Pérez-Medina C, Metselaar JM, Nahrendorf M, Fayad ZA, Storm G, Mulder WJM. Applying nanomedicine in maladaptive inflammation and angiogenesis. Adv Drug Deliv Rev 2017; 119:143-158. [PMID: 28506745 PMCID: PMC5682240 DOI: 10.1016/j.addr.2017.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/12/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
Abstract
Inflammation and angiogenesis drive the development and progression of multiple devastating diseases such as atherosclerosis, cancer, rheumatoid arthritis, and inflammatory bowel disease. Though these diseases have very different phenotypic consequences, they possess several common pathophysiological features in which monocyte recruitment, macrophage polarization, and enhanced vascular permeability play critical roles. Thus, developing rational targeting strategies tailored to the different stages of the journey of monocytes, from bone marrow to local lesions, and their extravasation from the vasculature in diseased tissues will advance nanomedicine. The integration of in vivo imaging uniquely allows studying nanoparticle kinetics, accumulation, clearance, and biological activity, at levels ranging from subcellular to an entire organism, and will shed light on the fate of intravenously administered nanomedicines. We anticipate that convergence of nanomedicines, biomedical engineering, and life sciences will help to advance clinically relevant therapeutics and diagnostic agents for patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Amr Alaarg
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Josbert M Metselaar
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Institute for Experimental Molecular Imaging, University Clinic, Helmholtz Institute for Biomedical Engineering, Aachen, Germany
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gert Storm
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Suero-Abreu GA, Aristizábal O, Bartelle BB, Volkova E, Rodríguez JJ, Turnbull DH. Multimodal Genetic Approach for Molecular Imaging of Vasculature in a Mouse Model of Melanoma. Mol Imaging Biol 2016; 19:203-214. [PMID: 27677887 DOI: 10.1007/s11307-016-1006-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE In this study, we evaluated a genetic approach for in vivo multimodal molecular imaging of vasculature in a mouse model of melanoma. PROCEDURES We used a novel transgenic mouse, Ts-Biotag, that genetically biotinylates vascular endothelial cells. After inoculating these mice with B16 melanoma cells, we selectively targeted endothelial cells with (strept)avidinated contrast agents to achieve multimodal contrast enhancement of Tie2-expressing blood vessels during tumor progression. RESULTS This genetic targeting system provided selective labeling of tumor vasculature and showed in vivo binding of avidinated probes with high specificity and sensitivity using microscopy, near infrared, ultrasound, and magnetic resonance imaging. We further demonstrated the feasibility of conducting longitudinal three-dimensional (3D) targeted imaging studies to dynamically assess changes in vascular Tie2 from early to advanced tumor stages. CONCLUSIONS Our results validated the Ts-Biotag mouse as a multimodal targeted imaging system with the potential to provide spatio-temporal information about dynamic changes in vasculature during tumor progression.
Collapse
Affiliation(s)
- Giselle A Suero-Abreu
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
- Biomedical Imaging Graduate Program, NYUSoM, New York, NY, USA
- Department of Radiology, NYUSoM, New York, NY, USA
| | - Orlando Aristizábal
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
| | - Benjamin B Bartelle
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eugenia Volkova
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
| | - Joe J Rodríguez
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA.
- Biomedical Imaging Graduate Program, NYUSoM, New York, NY, USA.
- Department of Radiology, NYUSoM, New York, NY, USA.
- Department of Pathology, NYUSoM, New York, NY, USA.
| |
Collapse
|
12
|
Abstract
Molecular imaging plays an important role in the era of personalized medicine, especially with recent advances in magnetic resonance (MR) probes. While the first generation of these probes focused on maximizing contrast enhancement, a second generation of probes has been developed to improve the accumulation within specific tissues or pathologies, and the newest generation of agents is also designed to report on changes in physiological status and has been termed "smart" agents. This represents a paradigm switch from the previously commercialized gadolinium and iron oxide probes to probes with new capabilities, and leads to new challenges as scanner hardware needs to be adapted for detecting these probes. In this chapter, we highlight the unique features for all five different categories of MR probes, including the emerging chemical exchange saturation transfer, (19)F, and hyperpolarized probes, and describe the key physical properties and features motivating their design. As part of this comparison, the strengths and weaknesses of each category are discussed.
Collapse
Affiliation(s)
- Michael T McMahon
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA; The Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Kannie W Y Chan
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA; The Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Near-Infrared Confocal Laser Endomicroscopy Detects Colorectal Cancer via an Integrin αvβ3 Optical Probe. Mol Imaging Biol 2015; 17:450-60. [DOI: 10.1007/s11307-015-0825-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Multispectral fluorescence ultramicroscopy: three-dimensional visualization and automatic quantification of tumor morphology, drug penetration, and antiangiogenic treatment response. Neoplasia 2014; 16:1-13. [PMID: 24563615 DOI: 10.1593/neo.131848] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/02/2013] [Accepted: 12/19/2013] [Indexed: 01/14/2023] Open
Abstract
Classic histology still represents the gold standard in tumor tissue analytics. However, two-dimensional analysis of single tissue slides does not provide a representative overview of the inhomogeneous tumor physiology, and a detailed analysis of complex three-dimensional structures is not feasible with this technique. To overcome this problem, we applied multispectral fluorescence ultramicroscopy (UM) to the field of tumor analysis. Optical sectioning of cleared tumor specimen provides the possibility to three-dimensionally acquire relevant tumor parameters on a cellular resolution. To analyze the virtual UM tumor data sets, we created a novel set of algorithms enabling the fully automatic segmentation and quantification of multiple tumor parameters. This new postmortem imaging technique was applied to determine the therapeutic treatment effect of bevacizumab on the vessel architecture of orthotopic KPL-4 breast cancer xenografts at different time points. A significant reduction of the vessel volume, number of vessel segments, and branching points in the tumor periphery was already detectable 1 day after initiation of treatment. These parameters remained virtually unchanged in the center of the tumor. Furthermore, bevacizumab-induced vessel normalization and reduction in vascular permeability diminished the penetration behavior of trastuzumab-Alexa 750 into tumor tissue. Our results demonstrated that this newimaging method enables the three-dimensional visualization and fully automatic quantification of multiple tumor parameters and drug penetration on a cellular level. Therefore,UM is a valuable tool for cancer research and drug development. It bridges the gap between common macroscopic and microscopic imaging modalities and opens up new three-dimensional (3D) insights in tumor biology.
Collapse
|
15
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|
16
|
Advances in imaging probes and optical microendoscopic imaging techniques for early in vivo cancer assessment. Adv Drug Deliv Rev 2014; 74:53-74. [PMID: 24120351 DOI: 10.1016/j.addr.2013.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/18/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
A new chapter in the history of medical diagnosis happened when the first X-ray technology was invented in the late 1800s. Since then, many non-invasive and minimally invasive imaging techniques have been invented for clinical diagnosis to research in cellular biology, drug discovery, and disease monitoring. These imaging modalities have leveraged the benefits of significant advances in computer, electronics, and information technology and, more recently, targeted molecular imaging. The development of targeted contrast agents such as fluorescent and nanoparticle probes coupled with optical imaging techniques has made it possible to selectively view specific biological events and processes in both in vivo and ex vivo systems with great sensitivity and selectivity. Thus, the combination of targeted molecular imaging probes and optical imaging techniques have become a mainstay in modern medicinal and biological research. Many promising results have demonstrated great potentials to translate to clinical applications. In this review, we describe a discussion of employing imaging probes and optical microendoscopic imaging techniques for cancer diagnosis.
Collapse
|
17
|
Winter PM, Pearce J, Chu Z, McPherson CM, Takigiku R, Lee JH, Qi X. Imaging of brain tumors with paramagnetic vesicles targeted to phosphatidylserine. J Magn Reson Imaging 2014; 41:1079-87. [PMID: 24797437 DOI: 10.1002/jmri.24654] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To investigate paramagnetic saposin C and dioleylphosphatidylserine (SapC-DOPS) vesicles as a targeted contrast agent for imaging phosphatidylserine (PS) expressed by glioblastoma multiforme (GBM) tumors. MATERIALS AND METHODS Gd-DTPA-BSA/SapC-DOPS vesicles were formulated, and the vesicle diameter and relaxivity were measured. Targeting of Gd-DTPA-BSA/SapC-DOPS vesicles to tumor cells in vitro and in vivo was compared with nontargeted paramagnetic vesicles (lacking SapC). Mice with GBM brain tumors were imaged at 3, 10, 20, and 24 h postinjection to measure the relaxation rate (R1) in the tumor and the normal brain. RESULTS The mean diameter of vesicles was 175 nm, and the relaxivity at 7 Tesla was 3.32 (s*mM)(-1) relative to the gadolinium concentration. Gd-DTPA-BSA/SapC-DOPS vesicles targeted cultured cancer cells, leading to an increased R1 and gadolinium level in the cells. In vivo, Gd-DTPA-BSA/SapC-DOPS vesicles produced a 9% increase in the R1 of GBM brain tumors in mice 10 h postinjection, but only minimal changes (1.2% increase) in the normal brain. Nontargeted paramagnetic vesicles yielded minimal change in the tumor R1 at 10 h postinjection (1.3%). CONCLUSION These experiments demonstrate that Gd-DTPA-BSA/SapC-DOPS vesicles can selectively target implanted brain tumors in vivo, providing noninvasive mapping of the cancer biomarker PS.
Collapse
Affiliation(s)
- Patrick M Winter
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Deddens LH, van Tilborg GAF, van der Toorn A, de Vries HE, Dijkhuizen RM. PECAM-1-targeted micron-sized particles of iron oxide as MRI contrast agent for detection of vascular remodeling after cerebral ischemia. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:393-401. [PMID: 23740809 DOI: 10.1002/cmmi.1536] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 11/30/2012] [Accepted: 01/14/2013] [Indexed: 12/23/2022]
Abstract
An increasing amount of studies have provided evidence for vascular remodeling, for example, angiogenesis, after cerebral ischemia, which may play a significant role in post-stroke brain plasticity and recovery. Molecular imaging can provide unique in vivo whole-brain information on alterations in the expression of specific endothelial markers. A possible target for molecular magnetic resonance imaging (MRI) of post-stroke (neo)vascularization is platelet endothelial cell adhesion molecule-1 (PECAM-1). Here we describe significantly increased PECAM-1 mRNA levels in ipsilesional brain tissue at 6 h, 24 h and 3 days after transient middle cerebral artery occlusion in mice, and elevated PECAM-1 staining throughout the lesion at 3, 7 and 21 days post-stroke. The potential of micron-sized particles of iron oxide (MPIO) conjugated with PECAM-1-targeted antibodies, that is, αPECAM-1-MPIO, to expose stroke-induced PECAM-1 upregulation with molecular MRI was assessed. In vitro studies demonstrated that PECAM-1-expressing brain endothelial cells could be effectively labeled with αPECAM-1-MPIO, giving rise to a fourfold increase in MRI relaxation rate R2. Injection of near-infrared fluorescent dye-labeled αPECAM-1 showed target specificity and dose efficiency of the antibody for detection of brain endothelial cells at 3 days post-stroke. However, in vivo molecular MRI at 3 and 7 days after stroke revealed no αPECAM-1-MPIO-based contrast enhancement, which was corroborated by the absence of αPECAM-1-MPIO in post mortem brain tissue. This indicates that this molecular MRI approach, which has been proven successful for in vivo detection of other types of cell adhesion molecules, is not invariably effective for MRI-based assessment of stroke-induced alterations in expression of cerebrovascular markers.
Collapse
Affiliation(s)
- Lisette H Deddens
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
19
|
Weingart J, Vabbilisetty P, Sun XL. Membrane mimetic surface functionalization of nanoparticles: methods and applications. Adv Colloid Interface Sci 2013; 197-198:68-84. [PMID: 23688632 PMCID: PMC3729609 DOI: 10.1016/j.cis.2013.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/22/2022]
Abstract
Nanoparticles (NPs), due to their size-dependent physical and chemical properties, have shown remarkable potential for a wide range of applications over the past decades. Particularly, the biological compatibilities and functions of NPs have been extensively studied for expanding their potential in areas of biomedical application such as bioimaging, biosensing, and drug delivery. In doing so, surface functionalization of NPs by introducing synthetic ligands and/or natural biomolecules has become a critical component in regard to the overall performance of the NP system for its intended use. Among known examples of surface functionalization, the construction of an artificial cell membrane structure, based on phospholipids, has proven effective in enhancing biocompatibility and has become a viable alternative to more traditional modifications, such as direct polymer conjugation. Furthermore, certain bioactive molecules can be immobilized onto the surface of phospholipid platforms to generate displays more reminiscent of cellular surface components. Thus, NPs with membrane-mimetic displays have found use in a range of bioimaging, biosensing, and drug delivery applications. This review herein describes recent advances in the preparations and characterization of integrated functional NPs covered by artificial cell membrane structures and their use in various biomedical applications.
Collapse
Affiliation(s)
- Jacob Weingart
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115
| | | | - Xue-Long Sun
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115
- Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
20
|
Hak S, Cebulla J, Huuse EM, Davies CDL, Mulder WJM, Larsson HBW, Haraldseth O. Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy. Angiogenesis 2013; 17:93-107. [PMID: 23982332 DOI: 10.1007/s10456-013-9380-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/13/2013] [Indexed: 12/11/2022]
Abstract
In the past two decades advances in the development of targeted nanoparticles have facilitated their application as molecular imaging agents and targeted drug delivery vehicles. Nanoparticle-enhanced molecular imaging of the angiogenic tumor vasculature has been of particular interest. Not only because angiogenesis plays an important role in various pathologies, but also since endothelial cell surface receptors are directly accessible for relatively large circulating nanoparticles. Typically, nanoparticle targeting towards these receptors is studied by analyzing the contrast distribution on tumor images acquired before and at set time points after administration. Although several exciting proof-of-concept studies demonstrated qualitative assessment of relative target concentration and distribution, these studies did not provide quantitative information on the nanoparticle targeting kinetics. These kinetics will not only depend on nanoparticle characteristics, but also on receptor binding and recycling. In this study, we monitored the in vivo targeting kinetics of αvβ3-integrin specific nanoparticles with intravital microscopy and dynamic contrast enhanced magnetic resonance imaging, and using compartment modeling we were able to quantify nanoparticle targeting rates. As such, this approach can facilitate optimization of targeted nanoparticle design and it holds promise for providing more quantitative information on in vivo receptor levels. Interestingly, we also observed a periodicity in the accumulation kinetics of αvβ3-integrin targeted nanoparticles and hypothesize that this periodicity is caused by receptor binding, internalization and recycling dynamics. Taken together, this demonstrates that our experimental approach provides new insights in in vivo nanoparticle targeting, which may proof useful for vascular targeting in general.
Collapse
Affiliation(s)
- Sjoerd Hak
- MI Lab, The Norwegian University of Science and Technology, Trondheim, Norway,
| | | | | | | | | | | | | |
Collapse
|
21
|
Overcoming intratumor heterogeneity of polygenic cancer drug resistance with improved biomarker integration. Neoplasia 2013; 14:1278-89. [PMID: 23308059 DOI: 10.1593/neo.122096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022] Open
Abstract
Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy.
Collapse
|
22
|
Menon JU, Gulaka PK, McKay MA, Geethanath S, Liu L, Kodibagkar VD. Dual-modality, dual-functional nanoprobes for cellular and molecular imaging. Am J Cancer Res 2012; 2:1199-207. [PMID: 23382776 PMCID: PMC3563152 DOI: 10.7150/thno.4812] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/29/2012] [Indexed: 12/19/2022] Open
Abstract
An emerging need for evaluation of promising cellular therapies is a non-invasive method to image the movement and health of cells following transplantation. However, the use of a single modality to serve this purpose may not be advantageous as it may convey inaccurate or insufficient information. Multi-modal imaging strategies are becoming more popular for in vivo cellular and molecular imaging because of their improved sensitivity, higher resolution and structural/functional visualization. This study aims at formulating Nile Red doped hexamethyldisiloxane (HMDSO) nanoemulsions as dual modality (Magnetic Resonance Imaging/Fluorescence), dual-functional (oximetry/detection) nanoprobes for cellular and molecular imaging. HMDSO nanoprobes were prepared using a HS15-lecithin combination as surfactant and showed an average radius of 71±39 nm by dynamic light scattering and in vitro particle stability in human plasma over 24 hrs. They were found to readily localize in the cytosol of MCF7-GFP cells within 18 minutes of incubation. As proof of principle, these nanoprobes were successfully used for fluorescence imaging and for measuring pO2 changes in cells by magnetic resonance imaging, in vitro, thus showing potential for in vivo applications.
Collapse
|