1
|
De Rubis G, Paudel KR, Liu G, Agarwal V, MacLoughlin R, de Jesus Andreoli Pinto T, Singh SK, Adams J, Nammi S, Chellappan DK, Oliver BGG, Hansbro PM, Dua K. Berberine-loaded engineered nanoparticles attenuate TGF-β-induced remodelling in human bronchial epithelial cells. Toxicol In Vitro 2023; 92:105660. [PMID: 37591407 DOI: 10.1016/j.tiv.2023.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Airway remodelling occurs in chronic respiratory diseases (CRDs) such as asthma and chronic obstructive pulmonary disease (COPD). It is characterized by aberrant activation of epithelial reparation, excessive extracellular matrix (ECM) deposition, epithelial-to-mesenchymal transition (EMT), and airway obstruction. The master regulator is Transforming Growth Factor-β (TGF-β), which activates tissue repair, release of growth factors, EMT, increased cell proliferation, and reduced nitric oxide (NO) secretion. Due to its fundamental role in remodelling, TGF-β is an emerging target in the treatment of CRDs. Berberine is a benzylisoquinoline alkaloid with antioxidant, anti-inflammatory, and anti-fibrotic activities whose clinical application is hampered by poor permeability. To overcome these limitations, in this study, berberine was encapsulated in monoolein-based liquid crystalline nanoparticles (BM-LCNs). The potential of BM-LCNs in inhibiting TGF-β-induced remodelling features in human bronchial epithelial cells (BEAS-2B) was tested. BM-LCNs significantly inhibited TGF-β-induced migration, reducing the levels of proteins upregulated by TGF-β including endoglin, thrombospondin-1, basic fibroblast growth factor, vascular-endothelial growth factor, and myeloperoxidase, and increasing the levels of cystatin C, a protein whose expression was downregulated by TGF-β. Furthermore, BM-LCNs restored baseline NO levels downregulated by TGF-β. The results prove the in vitro therapeutic efficacy of BM-LCNs in counteracting TGF-β-induced remodelling features. This study supports the suitability of berberine-loaded drug delivery systems to counteract airway remodelling, with potential application as a treatment strategy against CRDs.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, H91 HE94 Galway, Connacht, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Leinster, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Leinster, Ireland
| | | | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Srinivas Nammi
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
2
|
Leto G, Sepporta MV. The potential of cystatin C as a predictive biomarker in breast cancer. Expert Rev Anticancer Ther 2020; 20:1049-1056. [PMID: 32990495 DOI: 10.1080/14737140.2020.1829481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Breast cancer (BCa) is the leading cause of cancer-related deaths among women. Numerous efforts are being directed toward identifying novel tissue and/or circulating molecular markers that may help clinicians in detecting early-stage BCa patients and in providing an accurate estimation of the prognosis and prediction of response to clinical treatments. In this setting, emerging evidence has indicated Cystatin C (Cyst C), as the most potent endogenous inhibitor of cysteine cathepsins, as a possible useful marker in the clinical management of BCa patients. AREAS COVERED This review analyzes the results of emerging studies underpinning a potential clinical role of Cyst C, as additional marker in BCa. EXPERT OPINION Cyst C expression levels have been reported to be altered in tumor tissues and/or in biological fluids of BCa patients. Furthermore, clinical evidence has highlighted a significant correlation between altered Cyst C levels in tumor tissues and/or biological fluids and some clinco-biological parameters of BCa progression. These findings provide evidence for a potential clinical use of Cyst C as a novel marker to improve the clinical and therapeutic management of BCa patients and as a gauge for better clarifying the role of cysteine proteinases in the various steps of BCa progression.
Collapse
Affiliation(s)
- Gaetano Leto
- Laboratory of Experimental Pharmacology, Department of Health Promotion Sciences, School of Medicine, University of Palermo , Palermo, Italy
| | - Maria Vittoria Sepporta
- Pediatric Unit, Department Women-Mother-Children, Pediatric Hematology-Oncology Research Laboratory, Lausanne University Hospital , Lausanne, Switzerland
| |
Collapse
|
3
|
Zheng K, Li Q, Lin D, Zong X, Luo X, Yang M, Yue X, Ma S. Peptidomic analysis of pilose antler and its inhibitory effect on triple-negative breast cancer at multiple sites. Food Funct 2020; 11:7481-7494. [PMID: 32789330 DOI: 10.1039/d0fo01531h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pilose antler (PA) is a traditional Chinese functional food that has been reported to inhibit breast cancer; however, the specific substances that exert this effect and the underlying mechanisms remain unknown. This study aims to identify the specific proteins in PA water-soluble polypeptides (PAWPs) that are involved in cancer inhibition and determine the effects of PAWPs on triple-negative breast cancer in mice. In this study, peptidomic analysis of 105 varieties of polypeptides from PAWPs was carried out using LC-MS, 22 of which had functions that could potentially suppress tumors, including endopeptidase inhibitors, metal ion-binding proteins, angiogenesis inhibitors, intercellular adhesion proteins, and extracellular matrix repair proteins. Furthermore, we showed that intragastric administration of PAWPs into mice inhibited the growth and metastasis of triple-negative 4T1 breast tumors. PAWPs activated the expression of cleaved-caspase3 and increased tumor apoptosis, resulting in the reduction of platelet-endothelial cell adhesion molecule (PECAM-1/CD31) expression and the number of blood vessels, as well as the inhibition of matrix metalloproteinase (MMP) 2 and 9, increasing the ratio of Cadherin-1 (CDH1)/Cadherin-2 (CDH2) and inhibiting epithelial-mesenchymal transition (EMT) in these tumors. Therefore, PAWPs inhibit the progression and metastasis of triple-negative 4T1 breast cancer at multiple key sites in mice and contain various tumor suppressor proteins that are potentially involved in these processes.
Collapse
Affiliation(s)
- Kexin Zheng
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Qilong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Dongdong Lin
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Xiaoyan Zong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xue Luo
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Mei Yang
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Xiqing Yue
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Shiliang Ma
- College of Food Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China. and College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
4
|
Cystatins in cancer progression: More than just cathepsin inhibitors. Biochimie 2019; 166:233-250. [PMID: 31071357 DOI: 10.1016/j.biochi.2019.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
Abstract
Cystatins are endogenous and reversible inhibitors of cysteine peptidases that are important players in cancer progression. Besides their primary role as regulators of cysteine peptidase activity, cystatins are involved in cancer development and progression through proteolysis-independent mechanisms. Mechanistic studies of cystatin function revealed that they affect all stages of cancer progression including tumor growth, apoptosis, invasion, metastasis and angiogenesis. Recently, the involvement of cystatins in the antitumor immune responses was reported. In this review, we discuss molecular mechanisms and clinical aspects of cystatins in cancer. Altered expression of cystatins in cancer resulting in harmful excessive cysteine peptidase activity has been a subject of several studies in order to find correlations with clinical outcome and therapy response. However, involvement in anti-tumor immune response and signaling cascades leading to cancer progression designates cystatins as possible targets for development of new anti-tumor drugs.
Collapse
|
5
|
Kwon WS, Kim TS, Nahm CH, Moon Y, Kim JJ. Aberrant cystatin-C expression in blood from patients with breast cancer is a suitable marker for monitoring tumor burden. Oncol Lett 2018; 16:5583-5590. [PMID: 30344712 PMCID: PMC6176264 DOI: 10.3892/ol.2018.9380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/30/2017] [Indexed: 01/05/2023] Open
Abstract
The present study was performed to evaluate the efficacy of circulating cystatin-C as a tumor monitoring biomarker at different clinical time points in patients with breast cancer over a long-term follow-up period. In addition, the secretory rate of circulating cystatin-C from cancer tissue was investigated by comparing the blood and tissue expression levels of cystatin-C. Blood samples from healthy volunteers (40 males and 40 females) were obtained at yearly health examinations if laboratory and imaging abnormalities were not detected. Blood samples from 34 patients with breast cancer were obtained at 205 different time points of clinical progression. Blood levels of cystatin-C were measured using ELISA and the tissue levels were measured using immunohistochemistry. No age-associated effect was observed in male and female blood cystatin-C levels. The positivity rate was 46% in patients (38/83) and 40% in samples collected at different time points (82/205). Blood cystatin-C levels were lowest following surgery compared with patients with systemic metastasis (P<0.001). The sensitivity, specificity and accuracy rates of ELISA were 53.6, 63.6 and 53.9%, respectively. The concordance rate between blood and tissue expression was 38%. The main reason for discordance between tissue and serum expression of cytostatin-C came from low serum positivity in samples showing tissue cytostatin-C (3/11, 27%). The specificity between cytostatin-C and CA-125 was highest in tumor absence state. In conclusion, elevated blood levels of cystatin-C were observed in 40% of breast cancer cases and were tumor-volume dependent. However, the concordance rate between tissue and blood was quite low, suggesting tumor heterogeneity of cystatin-C expression or co-acting pathway activation, such as cathepsin D. As one-third of breast cancer tissues express cystatin-C without cancer antigen 15-3 elevation, cystatin-C may represent a good tumor-monitoring marker in breast cancer.
Collapse
Affiliation(s)
- Woo Sun Kwon
- Song-Dang Institute for Cancer Research, Cancer Metastasis Research Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Tae Soo Kim
- Song-Dang Institute for Cancer Research, Cancer Metastasis Research Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chung Hyun Nahm
- Department of Laboratory Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Yeonsook Moon
- Department of Laboratory Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Jin Ju Kim
- Department of Laboratory Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea
| |
Collapse
|
6
|
Leto G, Crescimanno M, Flandina C. On the role of cystatin C in cancer progression. Life Sci 2018; 202:152-160. [DOI: 10.1016/j.lfs.2018.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/17/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
|
7
|
Cystatins 9 and C as a Novel Immunotherapy Treatment That Protects against Multidrug-Resistant New Delhi Metallo-Beta-Lactamase-1-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2018; 62:AAC.01900-17. [PMID: 29229643 PMCID: PMC5826106 DOI: 10.1128/aac.01900-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
Multidrug-resistant (MDR) bacterial pneumonia can induce dysregulated pulmonary and systemic inflammation leading to morbidity and mortality. Antibiotics to treat MDR pathogens do not function to modulate the extent and intensity of inflammation and can have serious side effects. Here we evaluate the efficacy of two human cysteine proteinase inhibitors, cystatin 9 (CST9) and cystatin C (CSTC), as a novel immunotherapeutic treatment to combat MDR New Delhi metallo-beta-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae. Our results showed that mice infected intranasally (i.n.) with a 90% lethal dose (LD90) challenge of NDM-1 K. pneumoniae and then treated with the combination of human recombinant CST9 (rCST9) and rCSTC (rCSTs; 50 pg of each i.n. at 1 h postinfection [p.i.] and/or 500 pg of each intraperitoneally [i.p.] at 3 days p.i.) had significantly improved survival compared to that of infected mice alone or infected mice treated with individual rCSTs (P < 0.05). Results showed that both of our optimal rCST treatment regimens modulated pulmonary and systemic proinflammatory cytokine secretion in the serum, lungs, liver, and spleen in infected mice (P < 0.05). Treatment also significantly decreased the bacterial burden (P < 0.05) while preserving lung integrity, with reduced inflammatory cell accumulation compared to that in infected mice. Further, rCST treatment regimens reduced lipid peroxidation and cell apoptosis in the lungs of infected mice. Additionally, in vitro studies showed that rCSTs (50 or 500 pg of each) directly decreased the viability of NDM-1 K. pneumoniae. In conclusion, the data showed that rCST9/rCSTC worked synergistically to modulate host inflammation against MDR NDM-1 K. pneumoniae pneumonia, which significantly improved survival. Therefore, rCST9/rCSTC is a promising therapeutic candidate for the treatment of bacterial pneumonia.
Collapse
|
8
|
Zi M, Xu Y. Involvement of cystatin C in immunity and apoptosis. Immunol Lett 2018; 196:80-90. [PMID: 29355583 PMCID: PMC7112947 DOI: 10.1016/j.imlet.2018.01.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/06/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
Abstract
As an abundantly expressed cysteine protease inhibitor widely distributed in the organisms, cystatin C is involved in various physiological processes. Due to its relatively small molecular weight and easy detection, cystatin C is commonly used as a measure for glomerular filtration rate. In pathological conditions, however, growing evidences suggest that cystatin C is associated with various immune responses against either exogenous or endogenous antigens, which ultimately result in inflammatory autoimmune diseases or tumor development if not properly controlled. Thus the fluctuation of cystatin C levels might have more clinical implications than a reflection of kidney functions. Here, we summarize the latest development of studies on the pathophysiological functions of cystatin C, with focus on its immune regulatory roles at both cellular and molecular levels including antigen presentation, secretion of cytokines, synthesis of nitric oxide, as well as apoptosis. Finally, we discuss the clinical implications and therapeutic potentials of what this predominantly expressed protease inhibitor can bring to us.
Collapse
Affiliation(s)
- Mengting Zi
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
9
|
Tian M, Schiemann WP. TGF-β Stimulation of EMT Programs Elicits Non-genomic ER-α Activity and Anti-estrogen Resistance in Breast Cancer Cells. ACTA ACUST UNITED AC 2017; 3:150-160. [PMID: 28955730 DOI: 10.20517/2394-4722.2017.38] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM Estrogen receptor-α (ER-α) activation drives the progression of luminal breast cancers. Signaling by transforming growth factor-β (TGF-β) typically opposes the actions of ER-α; it also induces epithelial-mesenchymal transition (EMT) programs that promote breast cancer dissemination, stemness, and chemoresistance. The impact of EMT programs on nongenomic ER-α signaling remains unknown and was studied herein. METHODS MCF-7 and BT474 cells were stimulated with TGF-β to induce EMT programs, at which point ER-α expression, localization, and nongenomic interactions with receptor tyrosine kinases and MAP kinases (MAPKs) were determined. Cell sensitivity to anti-estrogens both before and after traversing the EMT program was also investigated. RESULTS TGF-β stimulated MCF-7 and BT474 cells to acquire EMT phenotypes, which enhanced cytoplasmic accumulation of ER-α without altering its expression. Post-EMT cells exhibited (i) elevated expression of EGFR and IGF1R, which together with Src formed cytoplasmic complexes with ER-α; (ii) enhanced coupling of EGF, IGF-1 and estrogen to the activation of MAPKs; and (iii) reduced sensitivity to tamoxifen, an event reversed by administration of small molecule inhibitors against the receptors for TGF-β, EGF, and IGF-1, as well as those against MAPKs. CONCLUSION EMT stimulated by TGF-β promotes anti-estrogen resistance by activating EGFR-, IGF1R-, and MAPK-dependent nongenomic ER-α signaling.
Collapse
Affiliation(s)
- Maozhen Tian
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
10
|
Dai DN, Li Y, Chen B, Du Y, Li SB, Lu SX, Zhao ZP, Zhou AJ, Xue N, Xia TL, Zeng MS, Zhong Q, Wei WD. Elevated expression of CST1 promotes breast cancer progression and predicts a poor prognosis. J Mol Med (Berl) 2017; 95:873-886. [PMID: 28523467 PMCID: PMC5515997 DOI: 10.1007/s00109-017-1537-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/09/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022]
Abstract
Cystatin SN (CST1) belongs to the type 2 cystatin (CST) superfamily, which restricts the proteolytic activities of cysteine proteases. CST1 has been recently considered to be involved in the development of several human cancers. However, the prognostic significance and function of CST1 in breast cancer remains unknown. In the current study, we found that CST1 was generally upregulated in breast cancer at both mRNA and protein level. Furthermore, overall survival (OS) and disease-free survival (DFS) in the low CST1 expression subgroup were significantly superior to the high CST1 expression subgroup (OS, p < 0.001; DFS, p < 0.001), which indicated that CST1 expression level was closely correlated to the survival risk of these patients. Univariate and multivariate analyses demonstrated that CST1 expression was an independent prognostic factor, the same as ER status and nodal status. Next, CST1 overexpression promoted breast cancer cell proliferation, clonogenicity, migration, and invasion abilities. By contrast, knockdown of CST1 attenuated these malignant characteristics in breast cancer cells. Collectively, our study indicates that CST1 cannot only serve as a significant prognostic indicator but also as a potential therapeutic target for breast cancer. KEY MESSAGES High CST1 expression is negatively correlated with survival of breast cancer patients. CST1 promotes cell proliferation, clone formation, and metastasis in breast cancer cells. CST1 is a novel potential prognostic biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Da-Nian Dai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Bo Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Yong Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shi-Bing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shi-Xun Lu
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhi-Ping Zhao
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ai-Jun Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ning Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China.
| | - Wei-Dong Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China.
| |
Collapse
|
11
|
Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells. Oncotarget 2017; 8:73793-73809. [PMID: 29088746 PMCID: PMC5650301 DOI: 10.18632/oncotarget.17379] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/22/2017] [Indexed: 01/01/2023] Open
Abstract
Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro, indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-β pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.
Collapse
|
12
|
Leto G, Incorvaia L, Flandina C, Ancona C, Fulfaro F, Crescimanno M, Sepporta MV, Badalamenti G. Clinical Impact of Cystatin C/Cathepsin L and Follistatin/Activin A Systems in Breast Cancer Progression: A Preliminary Report. Cancer Invest 2016; 34:415-423. [DOI: 10.1080/07357907.2016.1222416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gaetano Leto
- Department of Sciences for Health Promotion, School of Medicine, University of Palermo, Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Carla Flandina
- Department of Sciences for Health Promotion, School of Medicine, University of Palermo, Palermo, Italy
| | - Chiara Ancona
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Fabio Fulfaro
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Marilena Crescimanno
- Department of Sciences for Health Promotion, School of Medicine, University of Palermo, Palermo, Italy
| | | | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
13
|
Cystatin C is a disease-associated protein subject to multiple regulation. Immunol Cell Biol 2015; 93:442-51. [PMID: 25643616 PMCID: PMC7165929 DOI: 10.1038/icb.2014.121] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023]
Abstract
A protease inhibitor, cystatin C (Cst C), is a secreted cysteine protease inhibitor abundantly expressed in body fluids. Clinically, it is mostly used to measure glomerular filtration rate as a marker for kidney function due to its relatively small molecular weight and easy detection. However, recent findings suggest that Cst C is regulated at both transcriptional and post‐translational levels, and Cst C production from haematopoietic cell lineages contributes significantly to the systematic pools of Cst C. Furthermore, Cst C is directly linked to many pathologic processes through various mechanisms. Thus fluctuation of Cst C levels might have serious clinical implications rather than a mere reflection of kidney functions. Here, we summarize the pathophysiological roles of Cst C dependent and independent on its inhibition of proteases, outline its change of expression by various stimuli, and elucidate the regulatory mechanisms to control this disease‐related protease inhibitor. Finally, we discuss the clinical implications of these findings for translational gains.
Collapse
|
14
|
Lee YH, Schiemann WP. Chemotherapeutic Targeting of the Transforming Growth Factor-β Pathway in Breast Cancers. BREAST CANCER MANAGEMENT 2014; 3:73-85. [PMID: 25904986 DOI: 10.2217/bmt.13.74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor (TGF-β) is a multifunctional cytokine that plays essential roles in regulating mammary gland development, morphogenesis, differentiation, and involution. TGF-β also regulates mammary gland homeostasis and prevents its transformation by prohibiting dysregulated cell cycle progression, and by inducing apoptosis; it also creates cell microenvironments that readily inhibit cell migration, invasion, and metastasis. Interestingly, while early-stage mammary tumors remain sensitive to the tumor suppressing activities of TGF-β, late-stage breast cancers become insensitive to the anticancer functions of this cytokine and instead rely upon TGF-β to drive disease and metastatic progression. This switch in TGF-β function is known as the "TGF-β Paradox" and represents the rationale for developing chemotherapies to inactivate the TGF-β pathway and its oncogenic functions in late-stage breast cancers. Here we outline the molecular mechanisms that manifest the "TGF-β Paradox" and discuss the challenges associated with the development and use of anti-TGF-β agents to treat breast cancer patients.
Collapse
Affiliation(s)
- Yong-Hun Lee
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland, OH 44106
| | - William P Schiemann
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland, OH 44106
| |
Collapse
|
15
|
Lysyl oxidase contributes to mechanotransduction-mediated regulation of transforming growth factor-β signaling in breast cancer cells. Neoplasia 2011; 13:406-18. [PMID: 21532881 DOI: 10.1593/neo.101086] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 02/17/2011] [Accepted: 02/23/2011] [Indexed: 01/16/2023] Open
Abstract
Transforming growth factor-β (TGF-β) regulates all stages of mammary gland development, including the maintenance of tissue homeostasis and the suppression of tumorigenesis in mammary epithelial cells (MECs). Interestingly, mammary tumorigenesis converts TGF-β from a tumor suppressor to a tumor promoter through molecular mechanisms that remain incompletely understood. Changes in integrin signaling and tissue compliance promote the acquisition of malignant phenotypes in MECs in part through the activity of lysyl oxidase (LOX), which regulates desmoplastic reactions and metastasis. TGF-β also regulates the activities of tumor reactive stroma and MEC metastasis. We show here that TGF-β1 stimulated the synthesis and secretion of LOX from normal and malignant MECs in vitro and in mammary tumors produced in mice. The ability of TGF-β1 to activate Smad2/3 was unaffected by LOX inactivation in normal MECs, whereas the stimulation of p38 MAPK by TGF-β1 was blunted by inhibiting LOX activity in malignant MECs or by inducing the degradation of hydrogen peroxide in both cell types. Inactivating LOX activity impaired TGF-β1-mediated epithelial-mesenchymal transition and invasion in breast cancer cells. We further show that increasing extracellular matrix rigidity by the addition of type I collagen to three-dimensional organotypic cultures promoted the proliferation of malignant MECs, a cellular reaction that was abrogated by inhibiting the activities of TGF-β1 or LOX, and by degrading hydrogen peroxide. Our findings identify LOX as a potential mediator that couples mechanotransduction to oncogenic signaling by TGF-β1 and suggest that measures capable of inactivating LOX function may prove effective in diminishing breast cancer progression stimulated by TGF-β1.
Collapse
|
16
|
Zu X, Zhang Q, Cao R, Liu J, Zhong J, Wen G, Cao D. Transforming growth factor-β signaling in tumor initiation, progression and therapy in breast cancer: an update. Cell Tissue Res 2011; 347:73-84. [PMID: 21845401 DOI: 10.1007/s00441-011-1225-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/22/2011] [Indexed: 01/06/2023]
Abstract
Transforming growth factor-β (TGF-β) is a ubiquitous cytokine playing an essential role in cell proliferation, differentiation, apoptosis, adhesion and invasion, as well as in cellular microenvironment. In malignant diseases, TGF-β signaling features a growth inhibitory effect at an early stage but aggressive oncogenic activity at the advanced malignant state. Here, we update the current understanding of TGF-β signaling in cancer development and progression with a focus on breast cancer. We also review the current approaches of TGF-β signaling-targeted therapeutics for human malignancies.
Collapse
Affiliation(s)
- Xuyu Zu
- Clinical Research Institution, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Brown LJ, Alawoki M, Crawford ME, Reida T, Sears A, Torma T, Albig AR. Lipocalin-7 is a matricellular regulator of angiogenesis. PLoS One 2010; 5:e13905. [PMID: 21085487 PMCID: PMC2976702 DOI: 10.1371/journal.pone.0013905] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/15/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Matricellular proteins are extracellular regulators of cellular adhesion, signaling and performing a variety of physiological behaviors such as proliferation, migration and differentiation. Within vascular microenvironments, matricellular proteins exert both positive and negative regulatory cues to vascular endothelium. The relative balance of these matricellular cues is believed to be critical for vascular homeostasis, angiogenesis activation or angiogenesis resolution. However, our knowledge of matricellular proteins within vascular microenvironments and the mechanisms by which these proteins impact vascular function remain largely undefined. The matricellular protein lipocalin-7 (LCN7) is found throughout vascular microenvironments, and circumstantial evidence suggests that LCN7 may be an important regulator of angiogenesis. Therefore, we hypothesized that LCN7 may be an important regulator of vascular function. METHODOLOGY AND PRINCIPAL FINDINGS To test this hypothesis, we examined the effect of LCN7 overexpression, recombinant protein and gene knockdown in a series of in vitro and in vivo models of angiogenesis. We found that overexpression of LCN7 in MB114 and SVEC murine endothelial cell lines or administration of highly purified recombinant LCN7 protein increased endothelial cell invasion. Similarly, LCN7 increased angiogenic sprouting from quiescent endothelial cell monolayers and ex vivo aortic rings. Moreover, LCN7 increased endothelial cell sensitivity to TGF-β but did not affect sensitivity to other pro-angiogenic growth factors including bFGF and VEGF. Finally, morpholino based knockdown of LCN7 in zebrafish embryos specifically inhibited angiogenic sprouting but did not affect vasculogenesis within injected embryos. CONCLUSIONS AND SIGNIFICANCE No functional analysis has previously been performed to elucidate the function of LCN7 in vascular or other cellular processes. Collectively, our results show for the first time that LCN7 is an important pro-angiogenic matricellular protein of vascular microenvironments.
Collapse
Affiliation(s)
- Leslie J. Brown
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Mariam Alawoki
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Mary E. Crawford
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Tiffany Reida
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Allison Sears
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Tory Torma
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Allan R. Albig
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- * E-mail:
| |
Collapse
|
18
|
Richardson MR, Price MO, Price FW, Pardo JC, Grandin JC, You J, Wang M, Yoder MC. Proteomic analysis of human aqueous humor using multidimensional protein identification technology. Mol Vis 2009; 15:2740-50. [PMID: 20019884 PMCID: PMC2793904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/24/2009] [Indexed: 11/01/2022] Open
Abstract
Aqueous humor (AH) supports avascular tissues in the anterior segment of the eye, maintains intraocular pressure, and potentially influences the pathogenesis of ocular diseases. Nevertheless, the AH proteome is still poorly defined despite several previous efforts, which were hindered by interfering high abundance proteins, inadequate animal models, and limited proteomic technologies. To facilitate future investigations into AH function, the AH proteome was extensively characterized using an advanced proteomic approach. Samples from patients undergoing cataract surgery were pooled and depleted of interfering abundant proteins and thereby divided into two fractions: albumin-bound and albumin-depleted. Multidimensional Protein Identification Technology (MudPIT) was utilized for each fraction; this incorporates strong cation exchange chromatography to reduce sample complexity before reversed-phase liquid chromatography and tandem mass spectrometric analysis. Twelve proteins had multi-peptide, high confidence identifications in the albumin-bound fraction and 50 proteins had multi-peptide, high confidence identifications in the albumin-depleted fraction. Gene ontological analyses were performed to determine which cellular components and functions were enriched. Many proteins were previously identified in the AH and for several their potential role in the AH has been investigated; however, the majority of identified proteins were novel and only speculative roles can be suggested. The AH was abundant in anti-oxidant and immunoregulatory proteins as well as anti-angiogenic proteins, which may be involved in maintaining the avascular tissues. This is the first known report to extensively characterize and describe the human AH proteome and lays the foundation for future work regarding its function in homeostatic and pathologic states.
Collapse
Affiliation(s)
| | | | | | - Jennifer C. Pardo
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Juan C. Grandin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | | | - Mu Wang
- Monarch LifeSciences, Indianapolis, IN
| | - Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
19
|
Tian M, Schiemann WP. PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-beta signaling during mammary tumorigenesis. FASEB J 2009; 24:1105-16. [PMID: 19897661 DOI: 10.1096/fj.09-141341] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The molecular mechanisms that enable cyclooxygenase-2 (COX-2) and its mediator prostaglandin E2 (PGE2) to inhibit transforming growth factor-beta (TGF-beta) signaling during mammary tumorigenesis remain unknown. We show here that TGF-beta selectively stimulated the expression of the PGE2 receptor EP2, which increased normal and malignant mammary epithelial cell (MEC) invasion, anchorage-independent growth, and resistance to TGF-beta-induced cytostasis. Mechanistically, elevated EP2 expression in normal MECs inhibited the coupling of TGF-beta to Smad2/3 activation and plasminogen activator inhibitor-1 (PAI1) expression, while EP2 deficiency in these same MECs augmented Smad2/3 activation and PAI expression stimulated by TGF-beta. Along these lines, engineering malignant MECs to lack EP2 expression prevented their growth in soft agar, restored their cytostatic response to TGF-beta, decreased their invasiveness in response to TGF-beta, and potentiated their activation of Smad2/3 and expression of PAI stimulated by TGF-beta. More important, we show that COX-2 or EP2 deficiency both significantly decreased the growth, angiogenesis, and pulmonary metastasis of mammary tumors produced in mice. Collectively, this investigation establishes EP2 as a potent mediator of the anti-TGF-beta activities elicited by COX-2/PGE2 in normal and malignant MECs. Our findings also suggest that pharmacological targeting of EP2 receptors may provide new inroads to antagonize the oncogenic activities of TGF-beta during mammary tumorigenesis.-Tian, M., Schiemann, W. P. PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-beta signaling during mammary tumorigenesis.
Collapse
Affiliation(s)
- Maozhen Tian
- Department of Pharmacology, MS-8303, University of Colorado Denver, Anschutz Medical Campus, RC1 South Tower, Rm. L18-6110, 12801 East 17th Ave., PO Box 6511, Aurora, CO 80045, USA
| | | |
Collapse
|