1
|
Hanekamp BA, Virdee PS, Goh V, Jones M, Hvass Hansen R, Hjorth Johannesen H, Schulz A, Serup-Hansen E, Guren MG, Muirhead R. Diffusion-weighted magnetic resonance imaging as an early prognostic marker of chemoradiotherapy response in squamous cell carcinoma of the anus: An individual patient data meta-analysis. Phys Imaging Radiat Oncol 2024; 31:100618. [PMID: 39188809 PMCID: PMC11345337 DOI: 10.1016/j.phro.2024.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Background and purpose Squamous cell carcinoma of the anus (SCCA) can recur after chemoradiotherapy (CRT). Early prediction of treatment response is crucial for individualising treatment. Existing data on radiological biomarkers is limited and contradictory. We performed an individual patient data meta-analysis (IPM) of four prospective trials investigating whether diffusion-weighted (DW) magnetic resonance imaging (MRI) in weeks two to three of CRT predicts treatment failure in SCCA. Material and methods Individual patient data from four trials, including paired DW-MRI at baseline and during CRT, were combined into one dataset. The association between ADC volume histogram parameters and treatment failure (locoregional and any failure) was assessed using logistic regression. Pre-defined analysis included categorising patients into a change in the mean ADC of the delineated tumour volume above and below 20%. Results The study found that among all included 142 patients, 11.3 % (n = 16) had a locoregional treatment failure. An ADC mean change of <20 % and >20 % resulted in a locoregional failure rate of 16.7 % and 8.0 %, respectively. However, no other ADC-based histogram parameter was associated with locoregional or any treatment failure. Conclusions DW-MRI standard parameters, as an isolated biomarker, were not found to be associated with increased odds of treatment failure in SCCA in this IPM. Radiological biomarker investigations involve multiple steps and can result in heterogeneous data. In future, it is crucial to include radiological biomarkers in large prospective trials to minimize heterogeneity and maximize learning.
Collapse
Affiliation(s)
- Bettina A. Hanekamp
- Department of Radiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pradeep S. Virdee
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Vicky Goh
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Department of Radiology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | | | - Rasmus Hvass Hansen
- Section for Radiation Therapy, Department of Oncology, Copenhagen University Hospital, Rigs-hospitalet, Copenhagen, Denmark
| | - Helle Hjorth Johannesen
- Department of Clinical Physiology and Nuclear Medicin, Copenhagen University Hospital, Rigs-hospitalet, Copenhagen, Denmark
| | - Anselm Schulz
- Department of Radiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Serup-Hansen
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, Denmark
| | - Marianne G. Guren
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
2
|
McDonald BA, Dal Bello R, Fuller CD, Balermpas P. The Use of MR-Guided Radiation Therapy for Head and Neck Cancer and Recommended Reporting Guidance. Semin Radiat Oncol 2024; 34:69-83. [PMID: 38105096 PMCID: PMC11372437 DOI: 10.1016/j.semradonc.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Although magnetic resonance imaging (MRI) has become standard diagnostic workup for head and neck malignancies and is currently recommended by most radiological societies for pharyngeal and oral carcinomas, its utilization in radiotherapy has been heterogeneous during the last decades. However, few would argue that implementing MRI for annotation of target volumes and organs at risk provides several advantages, so that implementation of the modality for this purpose is widely accepted. Today, the term MR-guidance has received a much broader meaning, including MRI for adaptive treatments, MR-gating and tracking during radiotherapy application, MR-features as biomarkers and finally MR-only workflows. First studies on treatment of head and neck cancer on commercially available dedicated hybrid-platforms (MR-linacs), with distinct common features but also differences amongst them, have also been recently reported, as well as "biological adaptation" based on evaluation of early treatment response via functional MRI-sequences such as diffusion weighted ones. Yet, all of these approaches towards head and neck treatment remain at their infancy, especially when compared to other radiotherapy indications. Moreover, the lack of standardization for reporting MR-guided radiotherapy is a major obstacle both to further progress in the field and to conduct and compare clinical trials. Goals of this article is to present and explain all different aspects of MR-guidance for radiotherapy of head and neck cancer, summarize evidence, as well as possible advantages and challenges of the method and finally provide a comprehensive reporting guidance for use in clinical routine and trials.
Collapse
Affiliation(s)
- Brigid A McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Rydelius A, Bengzon J, Engelholm S, Kinhult S, Englund E, Nilsson M, Lätt J, Lampinen B, Sundgren PC. Predictive value of diffusion MRI-based parametric response mapping for prognosis and treatment response in glioblastoma. Magn Reson Imaging 2023; 104:88-96. [PMID: 37734574 DOI: 10.1016/j.mri.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Early detection of treatment response is important for the management of patients with malignant brain tumors such as glioblastoma to assure good quality of life in relation to therapeutic efficacy. AIM To investigate whether parametric response mapping (PRM) with diffusion MRI may provide prognostic information at an early stage of standard therapy for glioblastoma. MATERIALS AND METHODS This prospective study included 31 patients newly diagnosed with glioblastoma WHO grade IV, planned for primary standard postoperative treatment with radiotherapy 60Gy/30 fractions with concomitant and adjuvant Temozolomide. MRI follow-up including diffusion and perfusion weighting was performed at 3 T at start of postoperative chemoradiotherapy, three weeks into treatment, and then regularly until twelve months postoperatively. Regional mean diffusivity (MD) changes were analyzed voxel-wise using the PRM method (MD-PRM). At eight and twelve months postoperatively, after completion of standard treatment, patients were classified using conventional MRI and clinical evaluation as either having stable disease (SD, including partial response) or progressive disease (PD). It was assessed whether MD-PRM differed between patients having SD versus PD and whether it predicted the risk of disease progression (progression-free survival, PFS) or death (overall survival, OS). A subgroup analysis was performed that compared MD-PRM between SD and PD in patients only undergoing diagnostic biopsy. MGMT-promotor methylation status (O6-methylguanine-DNA methyltransferase) was registered and analyzed with respect to PFS, OS and MD-PRM. RESULTS Of the 31 patients analyzed: 21 were operated by resection and ten by diagnostic biopsy. At eight months, 19 patients had SD and twelve had PD. At twelve months, ten patients had SD and 20 had PD, out of which ten were deceased within twelve months and one was deceased without known tumor progression. Median PFS was nine months, and median OS was 17 months. Eleven patients had methylated MGMT-promotor, 16 were MGMT unmethylated, and four had unknown MGMT-status. MD-PRM did not significantly predict patients having SD versus PD neither at eight nor at twelve months. Patients with an above median MD-PRM reduction had a slightly longer PFS (P = 0.015) in Kaplan-Maier analysis, as well as a non-significantly longer OS (P = 0.099). In the subgroup of patients only undergoing biopsy, total MD-PRM change at three weeks was generally higher for patients with SD than for patients with PD at eight months, although no tests were performed. MGMT status strongly predicted both PFS and OS but not MD-PRM change. CONCLUSION MD-PRM at three weeks was not demonstrated to be predictive of treatment response, disease progression, or survival. Preliminary results suggested a higher predictive value in non-resected patients, although this needs to be evaluated in future studies.
Collapse
Affiliation(s)
- A Rydelius
- Department of Clinical Sciences Lund, Division of Neurology, Lund University, Skane University Hospital, Lund, Sweden; Department of Clinical Sciences Lund, Division of Diagnostic Radiology, Lund University, Skane University Hospital, Lund, Sweden.
| | - J Bengzon
- Department of Clinical Sciences Lund, Division of Neurosurgery, Lund University, Skane University Hospital, Lund, Sweden
| | - S Engelholm
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Skane University Hospital, Lund, Sweden
| | - S Kinhult
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Skane University Hospital, Lund, Sweden
| | - E Englund
- Department of Clinical Sciences Lund, Division of Pathology, Lund University, Clinical Genetics, Pathology and Molecular Diagnostics, Medical Service, Lund, Skane University Hospital, Lund, Sweden
| | - M Nilsson
- Department of Clinical Sciences Lund, Division of Diagnostic Radiology, Lund University, Skane University Hospital, Lund, Sweden
| | - J Lätt
- Department for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - B Lampinen
- Department of Clinical Sciences Lund, Division of Diagnostic Radiology, Lund University, Skane University Hospital, Lund, Sweden
| | - P C Sundgren
- Department of Clinical Sciences Lund, Division of Diagnostic Radiology, Lund University, Skane University Hospital, Lund, Sweden; Department for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden; Lund University, BioImaging Centre (LBIC), Lund University, Lund, Sweden; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Kunimatsu N, Kunimatsu A, Miura K, Mori I, Kiryu S. Differentiation between pleomorphic adenoma and schwannoma in the parapharyngeal space: histogram analysis of apparent diffusion coefficient. Dentomaxillofac Radiol 2023; 52:20230140. [PMID: 37665011 PMCID: PMC10552127 DOI: 10.1259/dmfr.20230140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVES To elucidate the differences between pleomorphic adenomas and schwannomas occurring in the parapharyngeal space by histogram analyses of apparent diffusion coefficient (ADC) values measured with diffusion-weighted MRI. METHODS This retrospective study included 29 patients with pleomorphic adenoma and 22 patients with schwannoma arising in the parapharyngeal space or extending into the parapharyngeal space from the parotid region. Using pre-operative MR images, ADC values of tumor lesions showing the maximum diameter were measured. The regions of interest for ADC measurement were placed by contouring the tumor margin, and the histogram metrics of ADC values were compared between pleomorphic adenomas and schwannomas regarding the mean, skewness, and kurtosis by Wilcoxon's rank sum test. Subsequent to the primary analysis which included all lesions, we performed two subgroup analyses regarding b-values and magnetic field strength used for MRI. RESULTS The mean ADC values did not show significant differences between pleomorphic adenomas and schwannomas for the primary and subgroup analyses. Schwannomas showed higher skewness (p = 0.0001) and lower kurtosis (p = 0.003) of ADC histograms compared with pleomorphic adenomas in the primary analysis. Skewness was significantly higher in schwannomas in all the subgroup analyses. Kurtosis was consistently lower in schwannomas but did not reach statistical significance in one subgroup analysis. CONCLUSIONS Skewness and kurtosis showed significant differences between pleomorphic adenomas and schwannomas occupying the parapharyngeal space, but the mean ADC values did not. Our results suggest that the skewness and kurtosis of ADC histograms may be useful in differentiating these two parapharyngeal tumors.
Collapse
Affiliation(s)
| | - Akira Kunimatsu
- Department of Radiology, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Koki Miura
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | | | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, Chiba, Japan
| |
Collapse
|
5
|
Shi J, Li J, Li Z, Li Y, Xu L, Zhang Y. Prediction of pathological response grading for esophageal squamous carcinoma after neoadjuvant chemoradiotherapy based on MRI imaging using PDX. Front Oncol 2023; 13:1160815. [PMID: 37377911 PMCID: PMC10292012 DOI: 10.3389/fonc.2023.1160815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction To confirm the efficacy of magnetic resonance-diffusion weighted imaging (MR-DWI) in esophageal squamous cell carcinoma (ESCC) early pathological response prediction and assessment to neoadjuvant chemoradiotherapy (nCRT) using patient-derived xenografts (PDXs). Methods PDX-bearing mice were randomly divided into two groups: the experimental group receiving cisplatin combined with radiotherapy, whereas the control group receiving normal saline. MRI scans were performed in treatment groups in the before, middle, and end of treatment. The correlations between tumor volumes, ADC values and tumor pathological response at different time nodes were explored. Then, expression of proliferation marker and apoptotic marker were detected using immunohistochemistry, and apoptosis rate was detected by TUNEL assay to further verify the results observed in the PDX models. Results The ADC values of the experimental group were significantly higher than the control group in the both middle and end stage of treatment (all P< 0.001), however, significant difference was only observed in tumor volume at the end stage of treatment (P< 0.001). Furthermore, the △ADCmid-pre in our study may able to identify tumors with or without pCR to nCRT at an early stage, due to these changes were prior to the changes of tumor volume after treatment. Finally, TUNEL results also showed that the apoptosis rate of the experiment groups increased the most in the middle stage of treatment, especially the groups with pCR, but the highest apoptosis rate occurred in the end of the treatment. Further, the two PDX models with pCR exhibited the highest levels of apoptotic marker (Bax), and lowest levels of proliferation marker (PCNA and Ki-67) in the both middle and end stage of the treatment. Conclusions ADC values could be used to determine the tumor's response to nCRT, especially in the middle stages of treatment and before the tumor tissue morphology changes, and further, the ADC values were consistent with the potential biomarkers reflecting histopathological changes. Therefore, we suggest that radiation oncologists could refer to the ADC values in the middle stages of treatment when predicting the tumor histopathological response to n CRT in patients with ESCC.
Collapse
Affiliation(s)
- Jingzhen Shi
- Department of Oncology, The Second Hospital of Tianjin Medical University, Tianjin, China
- School of Medicine, Shandong University, Jinan, China
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yankang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Liang Xu
- Department of Medical Imaging, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
6
|
Shah D, Gehani A, Mahajan A, Chakrabarty N. Advanced Techniques in Head and Neck Cancer Imaging: Guide to Precision Cancer Management. Crit Rev Oncog 2023; 28:45-62. [PMID: 37830215 DOI: 10.1615/critrevoncog.2023047799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Precision treatment requires precision imaging. With the advent of various advanced techniques in head and neck cancer treatment, imaging has become an integral part of the multidisciplinary approach to head and neck cancer care from diagnosis to staging and also plays a vital role in response evaluation in various tumors. Conventional anatomic imaging (CT scan, MRI, ultrasound) remains basic and focuses on defining the anatomical extent of the disease and its spread. Accurate assessment of the biological behavior of tumors, including tumor cellularity, growth, and response evaluation, is evolving with recent advances in molecular, functional, and hybrid/multiplex imaging. Integration of these various advanced diagnostic imaging and nonimaging methods aids understanding of cancer pathophysiology and provides a more comprehensive evaluation in this era of precision treatment. Here we discuss the current status of various advanced imaging techniques and their applications in head and neck cancer imaging.
Collapse
Affiliation(s)
- Diva Shah
- Senior Consultant Radiologist, Department of Radiodiagnosis, HCG Cancer Centre, Ahmedabad, 380060, Gujarat, India
| | - Anisha Gehani
- Department of Radiology and Imaging Sciences, Tata Medical Centre, New Town, WB 700160, India
| | - Abhishek Mahajan
- Department of Radiology, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, L7 8YA, United Kingdom
| | - Nivedita Chakrabarty
- Department of Radiodiagnosis, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), 400012, Mumbai, India
| |
Collapse
|
7
|
Touska P, Connor S. Imaging of human papilloma virus associated oropharyngeal squamous cell carcinoma and its impact on diagnosis, prognostication, and response assessment. Br J Radiol 2022; 95:20220149. [PMID: 35687667 PMCID: PMC9815738 DOI: 10.1259/bjr.20220149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/22/2022] [Accepted: 06/07/2022] [Indexed: 01/13/2023] Open
Abstract
The clinical behaviour and outcomes of patients with oropharyngeal cancer (OPC) may be dichotomised according to their association with human papilloma virus (HPV) infection. Patients with HPV-associated disease (HPV+OPC) have a distinct demographic profile, clinical phenotype and demonstrate considerably better responses to chemoradiotherapy. This has led to a reappraisal of staging and treatment strategies for HPV+OPC, which are underpinned by radiological data. Structural modalities, such as CT and MRI can provide accurate staging information. These can be combined with ultrasound-guided tissue sampling and functional techniques (such as diffusion-weighted MRI and 18F-fludeoxyglucose positron emission tomography-CT) to monitor response to treatment, derive prognostic information, and to identify individuals who might benefit from intensification or deintensification strategies. Furthermore, advanced MRI techniques, such as intravoxel incoherent motion and perfusion MRI as well as application of artificial intelligence and radiomic techniques, have shown promise in treatment response monitoring and prognostication. The following review will consider the contemporary role and knowledge on imaging in HPV+OPC.
Collapse
Affiliation(s)
- Philip Touska
- Department of Radiology, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | | |
Collapse
|
8
|
Chen S, Qin A, Yan D. Dynamic Characteristics and Predictive Capability of Tumor Voxel Dose-Response Assessed Using 18F-FDG PET/CT Imaging Feedback. Front Oncol 2022; 12:876861. [PMID: 35875108 PMCID: PMC9299377 DOI: 10.3389/fonc.2022.876861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Tumor voxel dose–response matrix (DRM) can be quantified using feedback from serial FDG-PET/CT imaging acquired during radiotherapy. This study investigated the dynamic characteristics and the predictive capability of DRM. Methods FDG-PET/CT images were acquired before and weekly during standard chemoradiotherapy with the treatment dose 2 Gy × 35 from 31 head and neck cancer patients. For each patient, deformable image registration was performed between the pretreatment/baseline PET/CT image and each weekly PET/CT image. Tumor voxel DRM was derived using linear regression on the logarithm of the weekly standard uptake value (SUV) ratios for each tumor voxel, such as SUV measured at a dose level normalized to the baseline SUV0. The dynamic characteristics were evaluated by comparing the DRMi estimated using a single feedback image acquired at the ith treatment week (i = 1, 2, 3, or 4) to the DRM estimated using the last feedback image for each patient. The predictive capability of the DRM estimated using 1 or 2 feedback images was evaluated using the receiver operating characteristic test with respect to the treatment outcome of tumor local–regional control or failure. Results The mean ± SD of tumor voxel SUV measured at the pretreatment and the 1st, 2nd, 3rd, 4th, and last treatment weeks was 6.76 ± 3.69, 5.72 ± 3.43, 3.85 ± 2.22, 3.27 ± 2.25, 2.5 ± 1.79, and 2.23 ± 1.27, respectively. The deviations between the DRMi estimated using the single feedback image obtained at the ith week and the last feedback image were 0.86 ± 4.87, −0.06 ± 0.3, −0.09 ± 0.17, and −0.09 ± 0.12 for DRM1, DRM2, DRM3, and DRM4, respectively. The predictive capability of DRM3 and DRM4 was significant (p < 0.001). The area under the curve (AUC) was increased with the increase in treatment dose level. The DRMs constructed using the single feedback image achieved an AUC of 0.86~1. The AUC was slightly improved to 0.94~1 for the DRMs estimated using 2 feedback images. Conclusion Tumor voxel metabolic activity measured using FDG-PET/CT fluctuated noticeably during the first 2 treatment weeks and obtained a stabilized reduction rate thereafter. Tumor voxel DRM constructed using a single FDG-PET/CT feedback image after the 2nd treatment week (>20 Gy) has a good predictive capability. The predictive capability improved continuously using a later feedback image and marginally improved when two feedback images were applied.
Collapse
Affiliation(s)
- Shupeng Chen
- Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - An Qin
- Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Di Yan
- Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States.,Radiation Oncology, Huaxi Hospital/School of Medicine, Chengdu, China
| |
Collapse
|
9
|
Wong KL, Cheng KH, Lam SK, Liu C, Cai J. Review of functional magnetic resonance imaging in the assessment of nasopharyngeal carcinoma treatment response. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kwun Lam Wong
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
- Department of Radiotherapy Hong Kong Sanatorium & Hospital HKSH Medical Group Hong Kong SAR People's Republic of China
| | - Ka Hei Cheng
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| | - Sai Kit Lam
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| | - Chenyang Liu
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| | - Jing Cai
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR People's Republic of China
| |
Collapse
|
10
|
Guha A, Anjari M, Cook G, Goh V, Connor S. Radiomic Analysis of Tumour Heterogeneity Using MRI in Head and Neck Cancer Following Chemoradiotherapy: A Feasibility Study. Front Oncol 2022; 12:784693. [PMID: 35242703 PMCID: PMC8886142 DOI: 10.3389/fonc.2022.784693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives To evaluate interval changes in heterogeneity on diffusion-weighted apparent diffusion coefficient (ADC) maps and T1-weighted post-gadolinium (T1w post gad) MRI in head and neck carcinoma (HNSCC), with and without chemo-radiotherapy (CRT) response. Methods This prospective observational cohort study included 24 participants (20 men, age 62.9 ± 8.8 years) with stage III and IV HNSCC. The primary tumour (n = 23) and largest lymph node (n = 22) dimensions, histogram parameters and grey-level co-occurrence matrix (GLCM) parameters were measured on ADC maps and T1w post gad sequences, performed pretreatment and 6 and 12 weeks post CRT. The 2-year treatment response at primary and nodal sites was recorded. The Wilcoxon signed-rank test was used to compare interval changes in parameters after stratifying for treatment response and failure (p < 0.001 statistical significance). Results 23/23 primary tumours and 18/22 nodes responded to CRT at 2 years. Responding HNSCC demonstrated a significant interval change in ADC histogram parameters (kurtosis, coefficient of variation, entropy, energy for primary tumour; kurtosis for nodes) and T1w post gad GLCM (entropy and contrast in the primary tumour and nodes) by 6 weeks post CRT (p < 0.001). Lymph nodes with treatment failure did not demonstrate an interval alteration in heterogeneity parameters. Conclusions ADC maps and T1w post gad MRI demonstrate the evolution of heterogeneity parameters in successfully treated HNSCC by 6 weeks post CRT; however, this is not observed in lymph nodes failing treatment. Advances in Knowledge Early reduction in heterogeneity is demonstrated on MRI when HNSCC responds to CRT.
Collapse
Affiliation(s)
- Amrita Guha
- Department of Radio-Diagnosis, Tata Memorial Hospital, Mumbai, India.,Training School Complex, Homi Bhabha National Institute, Mumbai, India.,School of Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Mustafa Anjari
- Department of Radiology, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Gary Cook
- School of Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,King's College London & Guy's and St Thomas' Positron Emission Tomography (PET) Centre, London, United Kingdom
| | - Vicky Goh
- School of Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,Department of Radiology, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Steve Connor
- School of Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,Department of Radiology, Guy's and St Thomas' Hospital, London, United Kingdom.,Department of Neuroradiology, King's College Hospital, London, United Kingdom
| |
Collapse
|
11
|
Fu S, Li Y, Han Y, Wang H, Chen Y, Yan O, He Q, Ma H, Liu L, Liu F. Diffusion-weighted MRI-guided dose painting in patients with locoregionally advanced nasopharyngeal carcinoma treated with induction chemotherapy plus concurrent chemoradiotherapy: a randomized, controlled clinical trial. Int J Radiat Oncol Biol Phys 2022; 113:101-113. [PMID: 35074433 DOI: 10.1016/j.ijrobp.2021.12.175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSES We hypothesized that diffusion-weighted MRI (DWI)-guided dose-painting intensity modulated radiation therapy (DP-IMRT) is associated with improved local tumor control and survival in locoregionally advanced nasopharyngeal carcinoma (NPC). The purpose of this randomized study was to compare the efficacy and toxicity of DWI-guided DP-IMRT to conventional MRI-based IMRT in locoregional advanced NPC. METHODS A total of 260 NPC patients with stage III-IVa disease were randomly assigned in a 1:1 ratio to receive induction chemotherapy followed by chemoradiotherapy by DWI-guided DP-IMRT (group A, n = 130) or conventional MRI-based IMRT (group B, n = 130) in this prospective clinical trial. In group A, subvolume GTVnx-DWI (gross tumor volume of nasopharynx in DWI) was defined as the areas within the GTVnx (gross tumor volume of nasopharynx) with an apparent diffusion coefficient (ADC) below the mean ADC (ADC < mean) according to MRI before induction chemotherapy. The dose to GTVnx-DWI was escalated to 75.2 Gy/32 Fx in patients with T1-2 disease and to 77.55 Gy/33 Fx in those with T3-4 disease in 2.35 Gy per fraction. In group B, PGTVnx was irradiated at 70.4-72.6 Gy/32-33 Fx in 2.2 Gy per fraction. This trial is registered with chictr.org.cn (number). RESULTS A total of 260 patients were included in the trial (130 patients in group A and 130 in group B). Complete response rates after chemoradiotherapy were 99.2% (129/130) and 93.8% (122/130) in groups A and B, respectively (P=0.042). At a median follow-up of 25 months, DWI-guided DP-IMRT was associated with improved 2-year disease-free survival (DFS, 93.6% [95% CI, 88.1% to 99.1%] vs. 87.5% [95% CI, 81.4% to 93.6%], P = 0.015), local recurrence-free survival (LRFS, 100% [95% CI, not applicable (NA)] vs. 91.3% [95% CI, 85.4% to 97.2%]), locoregional recurrence-free survival (LRRFS, 95.8% [95% CI, NA] vs. 91.3% [95% CI, 85.4% to 97.2%]), distant metastasis-free survival (DMFS, 97.8% [95% CI, NA] vs. 90.9% [95% CI, 85.8% to 96.0%]), and overall survival (OS, 100% [95% CI, NA] vs. 94.5% [95% CI, 89.2% to 99.8%]). There were 0 and 3 patients had local-only recurrences in group A and B, respectively. The most common site of first failure in each arm was distant organ failure. No statistically significant differences in acute and late toxic effects were observed. Multivariate analyses showed that dose painting (DWI-guided DP-IMRT vs conventional MRI-based IMRT without DP) was associated with DFS, LRFS, LRRFS and DMFS. EBV DNA level was associated with DFS and LRRFS. CONCLUSIONS DWI-guided DP-IMRT plus chemotherapy is associated with a disease-free survival benefit compared with conventional MRI-based IMRT among patients with locoregionally advanced NPC without increasing acute toxicity.
Collapse
Affiliation(s)
- Shengnan Fu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanxian Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yaqian Han
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanzhu Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ouying Yan
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qian He
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hongzhi Ma
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lin Liu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Hoff BA, Lemasson B, Chenevert TL, Luker GD, Tsien CI, Amouzandeh G, Johnson TD, Ross BD. Parametric Response Mapping of FLAIR MRI Provides an Early Indication of Progression Risk in Glioblastoma. Acad Radiol 2021; 28:1711-1720. [PMID: 32928633 DOI: 10.1016/j.acra.2020.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
RATIONALE AND OBJECTIVES Glioblastoma image evaluation utilizes Magnetic Resonance Imaging contrast-enhanced, T1-weighted, and noncontrast T2-weighted fluid-attenuated inversion recovery (FLAIR) acquisitions. Disease progression assessment relies on changes in tumor diameter, which correlate poorly with survival. To improve treatment monitoring in glioblastoma, we investigated serial voxel-wise comparison of anatomically-aligned FLAIR signal as an early predictor of GBM progression. MATERIALS AND METHODS We analyzed longitudinal normalized FLAIR images (rFLAIR) from 52 subjects using voxel-wise Parametric Response Mapping (PRM) to monitor volume fractions of increased (PRMrFLAIR+), decreased (PRMrFLAIR-), or unchanged (PRMrFLAIR0) rFLAIR intensity. We determined response by rFLAIR between pretreatment and 10 weeks posttreatment. Risk of disease progression in a subset of subjects (N = 26) with stable disease or partial response as defined by Response Assessment in Neuro-Oncology (RANO) criteria was assessed by PRMrFLAIR between weeks 10 and 20 and continuously until the PRMrFLAIR+ exceeded a defined threshold. RANO defined criteria were compared with PRM-derived outcomes for tumor progression detection. RESULTS Patient stratification for progression-free survival (PFS) and overall survival (OS) was achieved at week 10 using RANO criteria (PFS: p <0.0001; OS: p <0.0001), relative change in FLAIR-hyperintense volume (PFS: p = 0.0011; OS: p <0.0001), and PRMrFLAIR+ (PFS: p <0.01; OS: p <0.001). PRMrFLAIR+ also stratified responding patients' progression between weeks 10 and 20 (PFS: p <0.05; OS: p = 0.01) while changes in FLAIR-volume measurements were not predictive. As a continuous evaluation, PRMrFLAIR+ exceeding 10% stratified patients for PFA after 5.6 months (p<0.0001), while RANO criteria did not stratify patients until 15.4 months (p <0.0001). CONCLUSION PRMrFLAIR may provide an early biomarker of disease progression in glioblastoma.
Collapse
|
13
|
Tangyoosuk T, Lertbutsayanukul C, Jittapiromsak N. Utility of diffusion-weighted magnetic resonance imaging in predicting the treatment response of nasopharyngeal carcinoma. Neuroradiol J 2021; 35:477-485. [PMID: 34730049 PMCID: PMC9437492 DOI: 10.1177/19714009211055191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Predicting the treatment response in patients with nasopharyngeal carcinoma (NPC) is challenging. This study evaluated the utility of diffusion-weighted imaging (DWI) in predicting the treatment response in patients with NPC. METHODS We prospectively enrolled 33 patients with newly diagnosed NPC who underwent magnetic resonance imaging with the propeller DWI and apparent diffusion coefficient (ADC) map before and at 5 weeks after chemoradiation. The following ADC values of the primary tumor were calculated: pre-treatment ADC (pre-ADC), pre-treatment ADC ratio (pre-ADC ratio), ADC change (▵ADC), ADC change ratio (▵ADC ratio), and percentage of ADC change (▵%ADC). The correlations between these parameters and treatment outcomes were explored, and the patients were classified as good responders (complete response) and poor responders (stable disease, partial response, or progressive disease) based on the Response Evaluation Criteria in Solid Tumors, version 1.1. RESULTS The ▵ADC, ▵ADC ratio, and ▵%ADC were significantly lower in the poor-responder group (n = 12) than in the good-responder group (n = 21; p = 0.001, p = 0.002, and p = 0.004, respectively). There was no significant difference between groups in the pre-ADC and pre-ADC ratios (p = 0.602 and p = 0.685, respectively). The optimal ▵ADC, ▵ADC ratio, and ▵%ADC cutoff values for predicting poor response were >0.65 mm2/sec, 0.28, and 60%, respectively (sensitivity: 83.3%, 75%, and 83.3%; specificity: 71.4%, 85.7%, and 71.4%, respectively). CONCLUSION The ▵ADC, ▵ADC ratio, and ▵%ADC obtained during the pre-treatment and mid-treatment periods could be potential biomarkers for predicting treatment response in patients with NPC.
Collapse
Affiliation(s)
- Thidaporn Tangyoosuk
- Department of Radiology, Faculty of Medicine, Division of Diagnostic Radiology, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chawalit Lertbutsayanukul
- Department of Radiology, Faculty of Medicine, Division of Radiation Oncology, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nutchawan Jittapiromsak
- Department of Radiology, Faculty of Medicine, Division of Diagnostic Radiology, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
14
|
Rodrigues A, Loman K, Nawrocki J, Hoang JK, Chang Z, Mowery YM, Oyekunle T, Niedzwiecki D, Brizel DM, Craciunescu O. Establishing ADC-Based Histogram and Texture Features for Early Treatment-Induced Changes in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:708398. [PMID: 34540674 PMCID: PMC8444263 DOI: 10.3389/fonc.2021.708398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to assess baseline variability in histogram and texture features derived from apparent diffusion coefficient (ADC) maps from diffusion-weighted MRI (DW-MRI) examinations and to identify early treatment-induced changes to these features in patients with head and neck squamous cell carcinoma (HNSCC) undergoing definitive chemoradiation. Patients with American Joint Committee on Cancer Stage III–IV (7th edition) HNSCC were prospectively enrolled on an IRB-approved study to undergo two pre-treatment baseline DW-MRI examinations, performed 1 week apart, and a third early intra-treatment DW-MRI examination during the second week of chemoradiation. Forty texture and six histogram features were derived from ADC maps. Repeatability of the features from the baseline ADC maps was assessed with the intra-class correlation coefficient (ICC). A Wilcoxon signed-rank test compared average baseline and early treatment feature changes. Data from nine patients were used for this study. Comparison of the two baseline ADC maps yielded 11 features with an ICC ≥ 0.80, indicating that these features had excellent repeatability: Run Gray-Level Non-Uniformity, Coarseness, Long Zone High Gray-Level, Variance (Histogram Feature), Cluster Shade, Long Zone, Variance (Texture Feature), Run Length Non-Uniformity, Correlation, Cluster Tendency, and ADC Median. The Wilcoxon signed-rank test resulted in four features with significantly different early treatment-induced changes compared to the baseline values: Run Gray-Level Non-Uniformity (p = 0.005), Run Length Non-Uniformity (p = 0.005), Coarseness (p = 0.006), and Variance (Histogram) (p = 0.006). The feasibility of histogram and texture analysis as a potential biomarker is dependent on the baseline variability of each metric, which disqualifies many features.
Collapse
Affiliation(s)
- Anna Rodrigues
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - Kelly Loman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - Jeff Nawrocki
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - Jenny K Hoang
- Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - Zheng Chang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - Taofik Oyekunle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - Donna Niedzwiecki
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - David M Brizel
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States.,Department of Head and Neck Surgery and Communication Sciences, Duke University Medical Center, Durham, NC, United States
| | - Oana Craciunescu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
15
|
van Houdt PJ, Yang Y, van der Heide UA. Quantitative Magnetic Resonance Imaging for Biological Image-Guided Adaptive Radiotherapy. Front Oncol 2021; 10:615643. [PMID: 33585242 PMCID: PMC7878523 DOI: 10.3389/fonc.2020.615643] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
MRI-guided radiotherapy systems have the potential to bring two important concepts in modern radiotherapy together: adaptive radiotherapy and biological targeting. Based on frequent anatomical and functional imaging, monitoring the changes that occur in volume, shape as well as biological characteristics, a treatment plan can be updated regularly to accommodate the observed treatment response. For this purpose, quantitative imaging biomarkers need to be identified that show changes early during treatment and predict treatment outcome. This review provides an overview of the current evidence on quantitative MRI measurements during radiotherapy and their potential as an imaging biomarker on MRI-guided radiotherapy systems.
Collapse
Affiliation(s)
- Petra J van Houdt
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yingli Yang
- Department of Radiation Oncology, University of California, Los Angeles, CA, United States
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
16
|
Cancer Detection and Quantification of Treatment Response Using Diffusion-Weighted MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Ross BD, Chenevert TL, Meyer CR. Retrospective Registration in Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
18
|
Otazo R, Lambin P, Pignol JP, Ladd ME, Schlemmer HP, Baumann M, Hricak H. MRI-guided Radiation Therapy: An Emerging Paradigm in Adaptive Radiation Oncology. Radiology 2020; 298:248-260. [PMID: 33350894 DOI: 10.1148/radiol.2020202747] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radiation therapy (RT) continues to be one of the mainstays of cancer treatment. Considerable efforts have been recently devoted to integrating MRI into clinical RT planning and monitoring. This integration, known as MRI-guided RT, has been motivated by the superior soft-tissue contrast, organ motion visualization, and ability to monitor tumor and tissue physiologic changes provided by MRI compared with CT. Offline MRI is already used for treatment planning at many institutions. Furthermore, MRI-guided linear accelerator systems, allowing use of MRI during treatment, enable improved adaptation to anatomic changes between RT fractions compared with CT guidance. Efforts are underway to develop real-time MRI-guided intrafraction adaptive RT of tumors affected by motion and MRI-derived biomarkers to monitor treatment response and potentially adapt treatment to physiologic changes. These developments in MRI guidance provide the basis for a paradigm change in treatment planning, monitoring, and adaptation. Key challenges to advancing MRI-guided RT include real-time volumetric anatomic imaging, addressing image distortion because of magnetic field inhomogeneities, reproducible quantitative imaging across different MRI systems, and biologic validation of quantitative imaging. This review describes emerging innovations in offline and online MRI-guided RT, exciting opportunities they offer for advancing research and clinical care, hurdles to be overcome, and the need for multidisciplinary collaboration.
Collapse
Affiliation(s)
- Ricardo Otazo
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| | - Philippe Lambin
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| | - Jean-Philippe Pignol
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| | - Mark E Ladd
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| | - Heinz-Peter Schlemmer
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| | - Michael Baumann
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| | - Hedvig Hricak
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| |
Collapse
|
19
|
Diffusion-weighted magnetic resonance imaging (DWMRI) of head and neck squamous cell carcinoma: could it be an imaging biomarker for prediction of response to chemoradiation therapy. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2020. [DOI: 10.1186/s43055-020-00323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Chemoradiation therapy (CRT) has become a primary definitive treatment modality for head and neck squamous cell carcinoma (HNSCC); however, not all patients respond completely to treatment. Ability to identify those patients, who would not achieve complete response, before or early during the course of CRT will allow treatment modifications to improve outcome and overall survival. The aim of this prospective study was to assess the usefulness of diffusion-weighted imaging (DWI) in prediction of early therapeutic response of HNSCC after CRT.
Results
Local control was achieved in 22 patients out of 46 patients with pathologically proven HNSCC treated by chemoradiation therapy and local failure was detected in 24 patients out of 46 patients. Pretreatment mean apparent diffusion coefficient (ADCpre) was significantly higher in local failure group (1.1 ± 0.2 × 10−3 mm2/s) than local control group (0.89 ± 0.1 × 10−3 mm2/s). An optimal cut-off value of more than 0.94 × 10−3 mm2/s was predictive of local failure with sensitivity 83.33%, specificity 59.9%, PPV 69%, NPV 76.5%. Early intra-treatment percentage change of ADC (ΔADC) was significantly lower in local failure group (21.8% ± 21.3) than in local control group (45.2% ± 27.8). An optimal cut-off value of ≤ 33% was predictive of local failure after CRT with sensitivity of 71.34%, specificity of 60%, PPV of 62.5%, and NPV of 69.2%.
Conclusions
Diffusion-weighted MRI could be a potential predictive biomarker for therapeutic response of HNSCC to CRT. Primary tumors with higher pretreatment mean ADC, and a smaller early intratreatment percentage increase of mean ADC would be more likely to fail treatment.
Collapse
|
20
|
Paterson C, Hargreaves S, Rumley CN. Functional Imaging to Predict Treatment Response in Head and Neck Cancer: How Close are We to Biologically Adaptive Radiotherapy? Clin Oncol (R Coll Radiol) 2020; 32:861-873. [PMID: 33127234 DOI: 10.1016/j.clon.2020.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
It is increasingly recognised that head and neck cancer represents a spectrum of disease with a differential response to standard treatments. Although prognostic factors are well established, they do not reliably predict response. The ability to predict response early during radiotherapy would allow adaptation of treatment: intensifying treatment for those not responding adequately or de-intensifying remaining therapy for those likely to achieve a complete response. Functional imaging offers such an opportunity. Changes in parameters obtained with functional magnetic resonance imaging or positron emission tomography-computed tomography during treatment have been found to be predictive of disease control in head and neck cancer. Although many questions remain unanswered regarding the optimal implementation of these techniques, current, maturing and future studies may provide the much-needed homogeneous cohorts with larger sample sizes and external validation of parameters. With a stepwise and collaborative approach, we may be able to develop imaging biomarkers that allow us to deliver personalised, biologically adaptive radiotherapy for head and neck cancer.
Collapse
Affiliation(s)
- C Paterson
- Beatson West of Scotland Cancer Centre, Glasgow, UK.
| | | | - C N Rumley
- Department of Radiation Oncology, Townsville University Hospital, Douglas, Australia; South Western Clinical School, University of New South Wales, Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| |
Collapse
|
21
|
Yan D, Chen S, Krauss DJ, Deraniyagala R, Chen P, Ye H, Wilson G. Inter/intra-tumoral dose response variations assessed using FDG-PET/CT feedback images: Impact on tumor control and treatment dose prescription. Radiother Oncol 2020; 154:235-242. [PMID: 33035624 DOI: 10.1016/j.radonc.2020.09.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To quantify inter/intra-tumoral variations of baseline metabolic activity and dose response. To evaluate their impact on tumor control and treatment dose prescription strategies. METHODS AND MATERIALS Tumor voxel baseline metabolic activity, SUV0, and dose response matrix, DRM, quantified using the pre-treatment and weekly FDG-PET/CT imaging feedback for each of 34 HNSCC patients (25 HPV+ and 9 HVP-) were evaluated. Inter/intra-tumoral variations of tumor voxel (SUV0, DRM) for each of the HPV- and HPV+ tumor groups were quantified and used to evaluate the variations of individual tumor control probabilities and the efficiency of uniform vs non-uniform treatment dose prescription strategies. RESULTS Tumor voxel dose response variation of all tumor voxels assessed using FDG-PET/CT imaging feedback had the mean(CV) = 0.47(47%), which was consistent with those of previously published in vitro tumor clonogenic assay. The HPV- tumors had the mean(CV) dose response, 0.53(49%), significantly larger than those of the HPV+ tumors, 0.45(43%). However, their baseline SUVs were opposite, 6.5(56%) vs 7.7(65%). Comparing to the inter-tumoral variations, both HPV-/+ tumor groups showed larger intra-tumoral variations, (53%, 58%) vs (20%, 31%) for the baseline SUV and (38%, 37%) vs (31%, 21%) for the dose response. Due to the large dose response variations, treatment dose to control the tumor voxels has very broad range with CV of TCD50 = 97% for the HPV- and 67% for the HPV+ tumor group respectively. As a consequence, heterogeneous prescription dose could potentially reduce the treatment integral dose for 92% of the HPV+ tumors and 78% of the HPV- tumors. CONCLUSIONS The study demonstrates that tumor dose response assessed using FDG-PET/CT feedback images had a similar distribution to those assessed conventionally using in vitro tumor clonogenic assay. Inter-tumoral dose response variation seems larger for HPV- tumors, but intra-tumoral dose response variations are similar for both HPV groups. These variations cause very large variation on the individual tumor control probability and limit the efficacy of dose escalation and de-escalation in conventional clinical practice. On the other hand, heterogeneous dose prescription guided by metabolic imaging feedback has a potential advantage in radiotherapy.
Collapse
Affiliation(s)
- Di Yan
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA.
| | - Shupeng Chen
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA
| | - Daniel J Krauss
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA
| | - Rohan Deraniyagala
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA
| | - Peter Chen
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA
| | - Hong Ye
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA
| | - George Wilson
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA
| |
Collapse
|
22
|
Muirhead R, Bulte D, Cooke R, Chu KY, Durrant L, Goh V, Jacobs C, Ng SM, Strauss VY, Virdee PS, Qi C, Hawkins MA. A Prospective Study of Diffusion-weighted Magnetic Resonance Imaging as an Early Prognostic Biomarker in Chemoradiotherapy in Squamous Cell Carcinomas of the Anus. Clin Oncol (R Coll Radiol) 2020; 32:874-883. [PMID: 33023818 DOI: 10.1016/j.clon.2020.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/15/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
AIMS The use of diffusion-weighted magnetic resonance imaging (DW-MRI) as a prognostic marker of treatment response would enable early individualisation of treatment. We aimed to quantify the changes in mean apparent diffusion coefficient (ΔADCmean) between a DW-MRI at diagnosis and on fraction 8-10 of chemoradiotherapy (CRT) as a biomarker for cellularity, and correlate these with anal squamous cell carcinoma recurrence. MATERIALS AND METHODS This prospective study recruited patients with localised anal cancer between October 2014 and November 2017. DW-MRI was carried out at diagnosis and after fraction 8-10 of radical CRT. A region of interest was delineated for all primary tumours and any lymph nodes >2 cm on high-resolution T2-weighted images and propagated to the ADC map. Routine clinical follow-up was collected from Nation Health Service electronic systems. RESULTS Twenty-three of 29 recruited patients underwent paired DW-MRI scans. Twenty-six regions of interest were delineated among the 23 evaluable patients. The median (range) tumour volume was 13.6 cm3 (2.8-84.9 cm3). Ten of 23 patients had lesions with ΔADCmean ≤ 20%. With a median follow-up of 41.2 months, four patients either failed to have a complete response to CRT or subsequently relapsed. Three of four patients with disease relapse had lesions demonstrating ΔADCmean <20%, the other patient with persistent disease had ΔADCmean of 20.3%. CONCLUSIONS We demonstrated a potential correlation between patients with ΔADCmean <20% and disease relapse. Further investigation of the prognostic merit of DW-MRI change is needed in larger, prospective cohorts.
Collapse
Affiliation(s)
- R Muirhead
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - D Bulte
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - R Cooke
- Radiotherapy Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - K-Y Chu
- Radiotherapy Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford, UK
| | - L Durrant
- Radiotherapy Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford, UK
| | - V Goh
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - C Jacobs
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - S M Ng
- Oncology Clinical Trials Office, Department of Oncology, University of Oxford, Oxford, UK
| | - V Y Strauss
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK
| | - P S Virdee
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK
| | - C Qi
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK
| | - M A Hawkins
- Radiotherapy Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
23
|
Gao Y, Zhou Z, Han F, Zhong X, Yang Y, Hu P. 3D isotropic resolution diffusion‐prepared magnitude‐stabilized bSSFP imaging with high geometric fidelity at 1.5 Tesla. Med Phys 2020; 47:3511-3519. [DOI: 10.1002/mp.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/18/2020] [Accepted: 04/14/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yu Gao
- Department of Radiological Sciences University of California Los Angeles CA USA
- Physics and Biology in Medicine IDP University of California Los Angeles CA USA
| | - Ziwu Zhou
- Department of Radiological Sciences University of California Los Angeles CA USA
| | - Fei Han
- Department of Radiological Sciences University of California Los Angeles CA USA
| | - Xiaodong Zhong
- MR R&D Collaborations Siemens Healthcare Los Angeles CA USA
| | - Yingli Yang
- Physics and Biology in Medicine IDP University of California Los Angeles CA USA
- Department of Radiation Oncology University of California Los Angeles CA USA
| | - Peng Hu
- Department of Radiological Sciences University of California Los Angeles CA USA
- Physics and Biology in Medicine IDP University of California Los Angeles CA USA
| |
Collapse
|
24
|
Shukla M, Forghani R, Agarwal M. Patient-Centric Head and Neck Cancer Radiation Therapy: Role of Advanced Imaging. Neuroimaging Clin N Am 2020; 30:341-357. [PMID: 32600635 DOI: 10.1016/j.nic.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The traditional 'one-size-fits-all' approach to H&N cancer therapy is archaic. Advanced imaging can identify radioresistant areas by using biomarkers that detect tumor hypoxia, hypercellularity etc. Highly conformal radiotherapy can target resistant areas with precision. The critical information that can be gleaned about tumor biology from these advanced imaging modalities facilitates individualized radiotherapy. The tumor imaging world is pushing its boundaries. Molecular imaging can now detect protein expression and genotypic variations across tumors that can be exploited for tailoring treatment. The exploding field of radiomics and radiogenomics extracts quantitative, biologic and genetic information and further expands the scope of personalized therapy.
Collapse
Affiliation(s)
- Monica Shukla
- Department of Radiation Oncology, Froedtert and Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Reza Forghani
- Augmented Intelligence & Precision Health Laboratory, Department of Radiology, Research Institute of McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Mohit Agarwal
- Department of Radiology, Section of Neuroradiology, Froedtert and Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
25
|
Brenet E, Barbe C, Hoeffel C, Dubernard X, Merol JC, Fath L, Servagi-Vernat S, Labrousse M. Predictive Value of Early Post-Treatment Diffusion-Weighted MRI for Recurrence or Tumor Progression of Head and Neck Squamous Cell Carcinoma Treated with Chemo-Radiotherapy. Cancers (Basel) 2020; 12:cancers12051234. [PMID: 32422975 PMCID: PMC7281260 DOI: 10.3390/cancers12051234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/14/2022] Open
Abstract
Aims: To investigate the predictive capacity of early post-treatment diffusion-weighted magnetic resonance imaging (MRI) for recurrence or tumor progression in patients with no tumor residue after chemo-radiotherapy (CRT) for head and neck squamous cell carcinoma, and, to assess the predictive capacity of pre-treatment diffusion-weighted MRI for persistent tumor residue post-CRT. Materials and Method: A single center cohort study was performed in one French hospital. All patients with squamous cell carcinoma receiving CRT (no surgical indication) were included. Two diffusion-weighted MRI were performed: one within 8 days before CRT and one 3 months after completing CRT with determination of median tumor apparent diffusion coefficient (ADC). Main outcome: The primary endpoint was progression-free survival. Results: 59 patients were included prior to CRT and 46 (78.0%) completed CRT. A post-CRT tumor residue was found in 19/46 (41.3%) patients. In univariate analysis, initial ADC was significantly lower in patients with residue post CRT (0.56 ± 0.11 versus 0.79 ± 0.13; p < 0.001). When initial ADC was dichotomized at the median, initial ADC lower than 0.7 was significantly more frequent in patients with residue post CRT (73.7% versus 11.1%, p < 0.0001). In multivariate analysis, only initial ADC lower than 0.7 was significantly associated with tumor residue (OR = 22.6; IC [4.9–103.6], p < 0.0001). Among 26 patients without tumor residue after CRT and followed up until 12 months, 6 (23.1%) presented recurrence or progression. Only univariate analysis was performed due to a small number of events. The only factor significantly associated with disease progression or early recurrence was the delta ADC (p = 0.0009). When ADC variation was dichotomized at the median, patients with ADC variation greater than 0.7 had time of disease-free survival significantly longer than patients with ADC variation lower than 0.7 (377.5 [286–402] days versus 253 [198–370], p < 0.0001). Conclusion and relevance: Diffusion-weighted MRI could be a technique that enables differentiation of patients with high potential for early recurrence for whom intensive post-CRT monitoring is mandatory. Prospective studies with more inclusions would be necessary to validate our results.
Collapse
Affiliation(s)
- Esteban Brenet
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Robert Debré University Hospital, 51100 Reims, France; (X.D.); (J.-C.M.); (M.L.)
- Correspondence:
| | - Coralie Barbe
- Clinical Research Unit, Robert Debré University Hospital, 51100 Reims, France;
| | - Christine Hoeffel
- Department of Radiology, Robert Debré University Hospital, 51100 Reims, France;
| | - Xavier Dubernard
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Robert Debré University Hospital, 51100 Reims, France; (X.D.); (J.-C.M.); (M.L.)
| | - Jean-Claude Merol
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Robert Debré University Hospital, 51100 Reims, France; (X.D.); (J.-C.M.); (M.L.)
| | - Léa Fath
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital of Strasbourg, 67000 Strasbourg, France;
| | | | - Marc Labrousse
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Robert Debré University Hospital, 51100 Reims, France; (X.D.); (J.-C.M.); (M.L.)
| |
Collapse
|
26
|
Paudyal R, Konar AS, Obuchowski NA, Hatzoglou V, Chenevert TL, Malyarenko DI, Swanson SD, LoCastro E, Jambawalikar S, Liu MZ, Schwartz LH, Tuttle RM, Lee N, Shukla-Dave A. Repeatability of Quantitative Diffusion-Weighted Imaging Metrics in Phantoms, Head-and-Neck and Thyroid Cancers: Preliminary Findings. ACTA ACUST UNITED AC 2020; 5:15-25. [PMID: 30854438 PMCID: PMC6403035 DOI: 10.18383/j.tom.2018.00044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to establish the repeatability measures of quantitative Gaussian and non-Gaussian diffusion metrics using diffusion-weighted imaging (DWI) data from phantoms and patients with head-and-neck and papillary thyroid cancers. The Quantitative Imaging Biomarker Alliance (QIBA) DWI phantom and a novel isotropic diffusion kurtosis imaging phantom were scanned at 3 different sites, on 1.5T and 3T magnetic resonance imaging systems, using standardized multiple b-value DWI acquisition protocol. In the clinical component of this study, a total of 60 multiple b-value DWI data sets were analyzed for test–retest, obtained from 14 patients (9 head-and-neck squamous cell carcinoma and 5 papillary thyroid cancers). Repeatability of quantitative DWI measurements was assessed by within-subject coefficient of variation (wCV%) and Bland–Altman analysis. In isotropic diffusion kurtosis imaging phantom vial with 2% ceteryl alcohol and behentrimonium chloride solution, the mean apparent diffusion (Dapp × 10−3 mm2/s) and kurtosis (Kapp, unitless) coefficient values were 1.02 and 1.68 respectively, capturing in vivo tumor cellularity and tissue microstructure. For the same vial, Dapp and Kapp mean wCVs (%) were ≤1.41% and ≤0.43% for 1.5T and 3T across 3 sites. For pretreatment head-and-neck squamous cell carcinoma, apparent diffusion coefficient, D, D*, K, and f mean wCVs (%) were 2.38%, 3.55%, 3.88%, 8.0%, and 9.92%, respectively; wCVs exhibited a higher trend for papillary thyroid cancers. Knowledge of technical precision and bias of quantitative imaging metrics enables investigators to properly design and power clinical trials and better discern between measurement variability versus biological change.
Collapse
Affiliation(s)
- Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Nancy A Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Scott D Swanson
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Eve LoCastro
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Michael Z Liu
- Department of Radiology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Lawrence H Schwartz
- Department of Radiology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | | | - Nancy Lee
- Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
27
|
Chung SR, Choi YJ, Suh CH, Lee JH, Baek JH. Diffusion-weighted Magnetic Resonance Imaging for Predicting Response to Chemoradiation Therapy for Head and Neck Squamous Cell Carcinoma: A Systematic Review. Korean J Radiol 2020; 20:649-661. [PMID: 30887747 PMCID: PMC6424826 DOI: 10.3348/kjr.2018.0446] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/11/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To systematically review the evaluation of the diagnostic accuracy of pre-treatment apparent diffusion coefficient (ADC) and change in ADC during the intra- or post-treatment period, for the prediction of locoregional failure in patients with head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS Ovid-MEDLINE and Embase databases were searched up to September 8, 2018, for studies on the use of diffusion-weighted magnetic resonance imaging for the prediction of locoregional treatment response in patients with HNSCC treated with chemoradiation or radiation therapy. Risk of bias was assessed by using the Quality Assessment Tool for Diagnostic Accuracy Studies-2. RESULTS Twelve studies were included in the systematic review, and diagnostic accuracy assessment was performed using seven studies. High pre-treatment ADC showed inconsistent results with the tendency for locoregional failure, whereas all studies evaluating changes in ADC showed consistent results of a lower rise in ADC in patients with locoregional failure compared to those with locoregional control. The sensitivities and specificities of pre-treatment ADC and change in ADC for predicting locoregional failure were relatively high (range: 50-100% and 79-96%, 75-100% and 69-95%, respectively). Meta-analytic pooling was not performed due to the apparent heterogeneity in these values. CONCLUSION High pre-treatment ADC and low rise in early intra-treatment or post-treatment ADC with chemoradiation, could be indicators of locoregional failure in patients with HNSCC. However, as the studies are few, heterogeneous, and at high risk for bias, the sensitivity and specificity of these parameters for predicting the treatment response are yet to be determined.
Collapse
Affiliation(s)
- Sae Rom Chung
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young Jun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Chong Hyun Suh
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Department of Radiology, Namwon Medical Center, Namwon, Korea
| | - Jeong Hyun Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jung Hwan Baek
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
28
|
Touska P, Connor SEJ. Recent advances in MRI of the head and neck, skull base and cranial nerves: new and evolving sequences, analyses and clinical applications. Br J Radiol 2019; 92:20190513. [PMID: 31529977 PMCID: PMC6913354 DOI: 10.1259/bjr.20190513] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
MRI is an invaluable diagnostic tool in the investigation and management of patients with pathology of the head and neck. However, numerous technical challenges exist, owing to a combination of fine anatomical detail, complex geometry (that is subject to frequent motion) and susceptibility effects from both endogenous structures and exogenous implants. Over recent years, there have been rapid developments in several aspects of head and neck imaging including higher resolution, isotropic 3D sequences, diffusion-weighted and diffusion-tensor imaging as well as permeability and perfusion imaging. These have led to improvements in anatomic, dynamic and functional imaging. Further developments using contrast-enhanced 3D FLAIR for the delineation of endolymphatic structures and black bone imaging for osseous structures are opening new diagnostic avenues. Furthermore, technical advances in compressed sensing and metal artefact reduction have the capacity to improve imaging speed and quality, respectively. This review explores novel and evolving MRI sequences that can be employed to evaluate diseases of the head and neck, including the skull base.
Collapse
Affiliation(s)
- Philip Touska
- Department of Radiology, Guy’s and St. Thomas’ NHS Foundation Trust, Guy’s Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom
| | | |
Collapse
|
29
|
Das IJ, McGee KP, Tyagi N, Wang H. Role and future of MRI in radiation oncology. Br J Radiol 2018; 92:20180505. [PMID: 30383454 DOI: 10.1259/bjr.20180505] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Technical innovations and developments in areas such as disease localization, dose calculation algorithms, motion management and dose delivery technologies have revolutionized radiation therapy resulting in improved patient care with superior outcomes. A consequence of the ability to design and accurately deliver complex radiation fields is the need for improved target visualization through imaging. While CT imaging has been the standard of care for more than three decades, the superior soft tissue contrast afforded by MR has resulted in the adoption of this technology in radiation therapy. With the development of real time MR imaging techniques, the problem of real time motion management is enticing. Currently, the integration of an MR imaging and megavoltage radiation therapy treatment delivery system (MR-linac or MRL) is a reality that has the potential to provide improved target localization and real time motion management during treatment. Higher magnetic field strengths provide improved image quality potentially providing the backbone for future work related to image texture analysis-a field known as Radiomics-thereby providing meaningful information on the selection of future patients for radiation dose escalation, motion-managed treatment techniques and ultimately better patient care. On-going advances in MRL technologies promise improved real time soft tissue visualization, treatment margin reductions, beam optimization, inhomogeneity corrected dose calculation, fast multileaf collimators and volumetric arc radiation therapy. This review article provides rationale, advantages and disadvantages as well as ideas for future research in MRI related to radiation therapy mainly in adoption of MRL.
Collapse
Affiliation(s)
- Indra J Das
- 1 Department of Radiation Oncology, NYU Langone Medical Center , New York, NY , USA
| | - Kiaran P McGee
- 2 Department of Radiology, Mayo Clinic , Rochester, MN , USA
| | - Neelam Tyagi
- 3 Department of Medical Physics, Memorial Sloan-Kettering Cancer Center , New York, NY , USA
| | - Hesheng Wang
- 1 Department of Radiation Oncology, NYU Langone Medical Center , New York, NY , USA
| |
Collapse
|
30
|
Martens RM, Noij DP, Ali M, Koopman T, Marcus JT, Vergeer MR, de Vet H, de Jong MC, Leemans CR, Hoekstra OS, de Bree R, de Graaf P, Boellaard R, Castelijns JA. Functional imaging early during (chemo)radiotherapy for response prediction in head and neck squamous cell carcinoma; a systematic review. Oral Oncol 2018; 88:75-83. [PMID: 30616800 DOI: 10.1016/j.oraloncology.2018.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
This systematic review gives an extensive overview of the current state of functional imaging during (chemo)radiotherapy to predict locoregional control (LRC) and overall survival (OS) for head and neck squamous cell carcinoma. MEDLINE and EMBASE were searched for literature until April 2018 assessing the predictive performance of functional imaging (computed tomography perfusion (CTp), MRI and positron-emission tomography (PET)) within 4 weeks after (chemo)radiotherapy initiation. Fifty-two studies (CTp: n = 4, MRI: n = 19, PET: n = 26, MRI/PET: n = 3) were included involving 1623 patients. Prognostic information was extracted according the PRISMA protocol. Pooled estimation and subgroup analyses were performed for comparable parameters and outcome. However, the heterogeneity of included studies limited the possibility for comparison. Early tumoral changes from (chemo)radiotherapy can be captured by functional MRI and 18F-FDG-PET and could allow for personalized treatment adaptation. Lesions showed potentially prognostic intratreatment changes in perfusion, diffusion and metabolic activity. Intratreatment ADCmean increase (decrease of diffusion restriction) and low SUVmax (persistent low or decrease of 18F-FDG uptake) were most predictive of LRC. Intratreatment persistent high or increase of perfusion on CT/MRI (i.e. blood flow, volume, permeability) also predicted LRC. Low SUVmax and total lesion glycolysis (TLG) predicted favorable OS. The optimal timing to perform functional imaging to predict LRC or OS was 2-3 weeks after treatment initiation.
Collapse
Affiliation(s)
- Roland M Martens
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands.
| | - Daniel P Noij
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Meedie Ali
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Thomas Koopman
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - J Tim Marcus
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Marije R Vergeer
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Henrica de Vet
- Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Marcus C de Jong
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - C René Leemans
- Department of Otolaryngology - Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Otto S Hoekstra
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Jonas A Castelijns
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Noij DP, Martens RM, Koopman T, Hoekstra OS, Comans EFI, Zwezerijnen B, de Bree R, de Graaf P, Castelijns JA. Use of Diffusion-Weighted Imaging and 18F-Fluorodeoxyglucose Positron Emission Tomography Combined With Computed Tomography in the Response Assessment for (Chemo)radiotherapy in Head and Neck Squamous Cell Carcinoma. Clin Oncol (R Coll Radiol) 2018; 30:780-792. [PMID: 30318343 DOI: 10.1016/j.clon.2018.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/12/2018] [Accepted: 08/20/2018] [Indexed: 11/12/2022]
Abstract
AIMS Our purpose was to assess the diagnostic accuracy and prognostic value of diffusion-weighted imaging (DWI) and 18F-fluorodeoxyglucose positron emission tomography combined with computed tomography (18F-FDG-PET/CT) carried out 3-6 months after (chemo)radiotherapy in head and neck squamous cell carcinoma. MATERIALS AND METHODS For this retrospective cohort study we included 82 patients with advanced-stage head and neck squamous cell carcinoma treated between 2012 and 2015. Primary tumours and lymph nodes were assessed separately. DWI was analysed qualitatively and quantitatively. 18F-FDG-PET/CT was evaluated using the Hopkins criteria. Dichotomous qualitative analysis was carried out for both modalities. Cox regression analysis was used for univariate analysis of recurrence-free survival (RFS). Significant univariate parameters were included in multivariate analysis. RESULTS In 12 patients, locoregional recurrence occurred. With all imaging strategies, either single-modality or multi-modality, a high negative predictive value (NPV) was achieved (94.3-100%). In response evaluation of the primary site, the preferred strategy is 18F-FDG-PET/CT only, which resulted in a sensitivity of 85.7%, specificity of 86.5%, positive predictive value (PPV) of 37.5% and NPV of 98.5%. For response evaluation of the neck, the best results were obtained with a sequential approach only including the second modality in positive reads of the first modality. It did not matter which modality was assessed first. This strategy for lymph node assessment resulted in a sensitivity, specificity, PPV and NPV of 83.3%, 95.6%, 62.5%, and 98.5%, respectively. After correction for received treatment and human papillomavirus status, primary tumour (P = 0.009) or lymph node (P < 0.001) Hopkins score ≥4 on 18F-FDG-PET/CT remained significant predictors of RFS. CONCLUSION For response evaluation of the primary tumour 18F-FDG-PET/CT only is the preferred strategy, whereas for the neck a sequential approach including both DWI and 18F-FDG-PET/CT resulted in the best diagnostic accuracy for follow-up after (chemo)radiotherapy. Qualitative analysis of 18F-FDG-PET/CT is a stronger predictor of RFS than DWI analysis.
Collapse
Affiliation(s)
- D P Noij
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands.
| | - R M Martens
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - T Koopman
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - O S Hoekstra
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - E F I Comans
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - B Zwezerijnen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - R de Bree
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands; Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - P de Graaf
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - J A Castelijns
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Hoff BA, Brisset JC, Galbán S, Van Dort M, Smith DC, Reichert ZR, Jacobson JA, Luker GD, Chenevert TL, Ross BD. Multimodal imaging provides insight into targeted therapy response in metastatic prostate cancer to the bone. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2018; 8:189-199. [PMID: 30042870 PMCID: PMC6056245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Metastatic prostate cancer to bone remains incurable, driving efforts to develop individualized, targeted therapies to improve clinical outcomes while limiting adverse side-effects. Due to the complexity in cellular signaling pathways and the interaction between cancer and its microenvironment, multiparametric imaging approaches for treatment response may improve understanding of the biological effects of therapy. An orthotopic model of castration resistant prostate cancer (CRPC) bone metastasis was treated with the tyrosine kinase inhibitor Cabozantinib (CABO). Response was assessed using CT to monitor bone volumes, 99mTc-MDP SPECT for bone metabolism, and anatomical and diffusion MRI for tumor volume and cell death. A concurrent clinical trial of CABO for CRPC patients also evaluated multimodality imaging in correlation with standard response criteria. Response in the preclinical study found significant slowing in tumor growth rate (P<0.01), rise in tumor apparent diffusion coefficient (ADC, P<0.001), and drop in 99mTc-MDP adsorption (P<0.05). Loss of bone volume did not slow with treatment, attributed to the highly aggressive and osteolytic nature of the PC3 cell line. Clinical trial analysis found only a single subject who progressed after 12 weeks of therapy. Imaging at 6 weeks corroborated the 12-week radiological assessment with positive response visible as increased ADC and decreased vascular metrics. Conversely, the subject who progressed at 12 weeks had no change in ADC, and substantial drops in vascular metrics. These results showcase a multifaceted translational imaging approach for detecting targeted treatment response with effective blockade of tumor vascularization, tumor cell kill, and reduced proliferation.
Collapse
Affiliation(s)
- Benjamin A Hoff
- Department of Radiology, University of MichiganAnn Arbor, Michigan, United States of America
| | - Jean-Christophe Brisset
- Department of Radiology, University of MichiganAnn Arbor, Michigan, United States of America
| | - Stefanie Galbán
- Department of Radiology, University of MichiganAnn Arbor, Michigan, United States of America
| | - Marcian Van Dort
- Department of Radiology, University of MichiganAnn Arbor, Michigan, United States of America
| | - David C Smith
- Department of Internal Medicine, University of MichiganAnn Arbor, Michigan, United States of America
| | - Zachery R Reichert
- Department of Internal Medicine, University of MichiganAnn Arbor, Michigan, United States of America
| | - Jon A Jacobson
- Department of Radiology, University of MichiganAnn Arbor, Michigan, United States of America
| | - Gary D Luker
- Department of Radiology, University of MichiganAnn Arbor, Michigan, United States of America
| | - Thomas L Chenevert
- Department of Radiology, University of MichiganAnn Arbor, Michigan, United States of America
| | - Brian D Ross
- Department of Radiology, University of MichiganAnn Arbor, Michigan, United States of America
| |
Collapse
|
33
|
He R, Moisan A, Detante O, Rémy C, Krainik A, Barbier EL, Lemasson B. Evaluation of Parametric Response Mapping to Assess Therapeutic Response to Human Mesenchymal Stem Cells after Experimental Stroke. Cell Transplant 2018; 26:1462-1471. [PMID: 28901185 PMCID: PMC5680978 DOI: 10.1177/0963689717721211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Stroke is the leading cause of disability in adults. After the very narrow time frame during which treatment by thrombolysis and mechanical thrombectomy is possible, cell therapy has huge potential for enhancing stroke recovery. Accurate analysis of the response to new therapy using imaging biomarkers is needed to assess therapeutic efficacy. The aim of this study was to compare 2 analysis techniques: the parametric response map (PRM), a voxel-based technique, and the standard whole-lesion approach. These 2 analyses were performed on data collected at 4 time points in a transient middle cerebral artery occlusion (MCAo) model, which was treated with human mesenchymal stem cells (hMSCs). The apparent diffusion coefficient (ADC), cerebral blood volume (CBV), and vessel size index (VSI) were mapped using magnetic resonance imaging (MRI). Two groups of rats received an intravenous injection of either 1 mL phosphate-buffered saline (PBS)-glutamine (MCAo-PBS, n = 10) or 3 million hMSCs (MCAo-hMSC, n = 10). One sham group was given PBS-glutamine (sham, n = 12). Each MRI parameter was analyzed by both the PRM and the whole-lesion approach. At day 9, 1 d after grafting, PRM revealed that hMSCs had reduced the fraction of decreased ADC (PRMADC−: MCAo-PBS 6.7% ± 1.7% vs. MCAo-hMSC 3.3% ± 2.4%), abolished the fraction of increased CBV (PRMCBV+: MCAo-PBS 16.1% ± 3.7% vs. MCAo-hMSC 6.4% ± 2.6%), and delayed the fraction of increased VSI (PRMVSI+: MCAo-PBS 17.5% ± 6.3% vs. MCAo-hMSC 5.4% ± 2.6%). The whole-lesion approach was, however, insensitive to these early modifications. PRM thus appears to be a promising technique for the detection of early brain changes following treatments such as cell therapy.
Collapse
Affiliation(s)
- Rui He
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France
| | - Anaïck Moisan
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France.,3 Cell Therapy and Engineering Unit, French Blood Company/CHU Grenoble Alpes, Hôpital Michallon, Saint-Ismier, France
| | - Olivier Detante
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France.,4 Department of Neurology, Stroke Unit, Hôpital Michallon, CHU Grenoble Alpes, Grenoble, France
| | - Chantal Rémy
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France
| | - Alexandre Krainik
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France.,5 Department of Neuroradiology and MRI, Hôpital Michallon, CHU Grenoble Alpes, Grenoble, France
| | - Emmanuel Luc Barbier
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France
| | - Benjamin Lemasson
- 1 Grenoble Institut des Neurosciences, GIN, Université Grenoble Alpes, Grenoble, France.,2 Inserm, U1216, Grenoble, France
| |
Collapse
|
34
|
Zhang SC, Zhou SH, Shang DS, Bao YY, Ruan LX, Wu TT. The diagnostic role of diffusion-weighted magnetic resonance imaging in hypopharyngeal carcinoma. Oncol Lett 2018; 15:5533-5544. [PMID: 29552192 PMCID: PMC5840528 DOI: 10.3892/ol.2018.8053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 12/29/2017] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to assess the role of diffusion-weighted magnetic resonance imaging (DWI) and apparent diffusion coefficient (ADC) values in hypopharyngeal carcinoma. A total of 40 hypopharyngeal carcinoma tissues and 15 benign lesion tissues were retrospectively analyzed. DWI, and T1- and T2-weighted magnetic resonance imaging (MRI) was performed. The sensitivity, specificity and accuracy of conventional MRI were 97.5, 66.7, and 89.1%, respectively. The mean ADC value [diffusion sensitive factor (b)=1,000× sec/mm2) for hypopharyngeal carcinomas was (1.0285±0.0328)×10−3 mm2/sec, which was significantly lower than the mean ADC value for benign lesions [(1.5333±0.1061)×10−3 mm2/sec; P<0.001]. Receiver operating characteristic (ROC) curve analysis revealed that the area under the curve (AUC) was 0.921 while the optimal threshold for the cut-off point of the ADC was 1.075×10−3 mm2/sec. The mean ADC value of the metastatic nodes was (0.9184±0.0538)×10−3 mm2/sec, lower than the mean value for the benign nodes [(1.2538±0.1145)×10−3 mm2/sec; P=0.005]. Two groups were created according to the mean of the ADC value of hypopharyngeal carcinomas [≤(1.0285±0.0328)×10−3 mm2/sec vs. >(1.0285±0.0328)×10−3 mm2/sec]. The 2-year survival rates of the two groups were 55.6 and 100.0%, respectively (P=0.024). ADC values may aid in distinguishing hypopharyngeal carcinomas from benign lesions and differentiating metastatic lymph nodes of hypopharyngeal squamous cell carcinomas from reactive cervical lymph nodes. In conclusion, mean ADC values may be useful prognostic factors in univariate analysis of hypopharyngeal carcinoma.
Collapse
Affiliation(s)
- Si-Cong Zhang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Department of Otolaryngology, People's Hospital of Cixi City, Cixi, Zhejiang 315300, P.R. China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - De-Sheng Shang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ling-Xiang Ruan
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ting-Ting Wu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
35
|
Zhu T, Das S, Wong TZ. Integration of PET/MR Hybrid Imaging into Radiation Therapy Treatment. Magn Reson Imaging Clin N Am 2017; 25:377-430. [PMID: 28390536 DOI: 10.1016/j.mric.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hybrid PET/MR imaging is in early development for treatment planning. This article briefly reviews research and clinical applications of PET/MR imaging in radiation oncology. With improvements in workflow, more specific tracers, and fast and robust acquisition protocols, PET/MR imaging will play an increasingly important role in better target delineation for treatment planning and have clear advantages in the evaluation of tumor response and in a better understanding of tumor heterogeneity. With advances in treatment delivery and the potential of integrating PET/MR imaging with research on radiomics for radiation oncology, quantitative and physiologic information could lead to more precise and personalized RT.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599, USA
| | - Shiva Das
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599, USA
| | - Terence Z Wong
- Department of Radiology, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599, USA.
| |
Collapse
|
36
|
Nabavizadeh SA, Chawla S, Agarwal M, Mohan S. Chapter 8 On the Horizon: Advanced Imaging Techniques to Improve Noninvasive Assessment of Cervical Lymph Nodes. Semin Ultrasound CT MR 2017; 38:542-556. [PMID: 29031370 DOI: 10.1053/j.sult.2017.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conventional imaging modalities are limited in the evaluation of lymph nodes as they predominantly rely on size and morphology, which have suboptimal sensitivity and specificity for malignancy. In this review we will explore the role of "on the horizon" advanced imaging modalities that can look beyond the size and morphologic features of a cervical lymph node and explore its molecular nature and can aid in personalizing therapy rather than use the "one-size-fits-all" approach.
Collapse
Affiliation(s)
- Seyed Ali Nabavizadeh
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Sanjeev Chawla
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mohit Agarwal
- Division of Neuroradiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | - Suyash Mohan
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
37
|
Lausch A, Yeung TPC, Chen J, Law E, Wang Y, Urbini B, Donelli F, Manco L, Fainardi E, Lee TY, Wong E. A generalized parametric response mapping method for analysis of multi-parametric imaging: A feasibility study with application to glioblastoma. Med Phys 2017; 44:6074-6084. [PMID: 28875538 DOI: 10.1002/mp.12562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/25/2017] [Accepted: 08/25/2017] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Parametric response map (PRM) analysis of functional imaging has been shown to be an effective tool for early prediction of cancer treatment outcomes and may also be well-suited toward guiding personalized adaptive radiotherapy (RT) strategies such as sub-volume boosting. However, the PRM method was primarily designed for analysis of longitudinally acquired pairs of single-parameter image data. The purpose of this study was to demonstrate the feasibility of a generalized parametric response map analysis framework, which enables analysis of multi-parametric data while maintaining the key advantages of the original PRM method. METHODS MRI-derived apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) maps acquired at 1 and 3-months post-RT for 19 patients with high-grade glioma were used to demonstrate the algorithm. Images were first co-registered and then standardized using normal tissue image intensity values. Tumor voxels were then plotted in a four-dimensional Cartesian space with coordinate values equal to a voxel's image intensity in each of the image volumes and an origin defined as the multi-parametric mean of normal tissue image intensity values. Voxel positions were orthogonally projected onto a line defined by the origin and a pre-determined response vector. The voxels are subsequently classified as positive, negative or nil, according to whether projected positions along the response vector exceeded a threshold distance from the origin. The response vector was selected by identifying the direction in which the standard deviation of tumor image intensity values was maximally different between responding and non-responding patients within a training dataset. Voxel classifications were visualized via familiar three-class response maps and then the fraction of tumor voxels associated with each of the classes was investigated for predictive utility analogous to the original PRM method. Independent PRM and MPRM analyses of the contrast-enhancing lesion (CEL) and a 1 cm shell of surrounding peri-tumoral tissue were performed. Prediction using tumor volume metrics was also investigated. Leave-one-out cross validation (LOOCV) was used in combination with permutation testing to assess preliminary predictive efficacy and estimate statistically robust P-values. The predictive endpoint was overall survival (OS) greater than or equal to the median OS of 18.2 months. RESULTS Single-parameter PRM and multi-parametric response maps (MPRMs) were generated for each patient and used to predict OS via the LOOCV. Tumor volume metrics (P ≥ 0.071 ± 0.01) and single-parameter PRM analyses (P ≥ 0.170 ± 0.01) were not found to be predictive of OS within this study. MPRM analysis of the peri-tumoral region but not the CEL was found to be predictive of OS with a classification sensitivity, specificity and accuracy of 80%, 100%, and 89%, respectively (P = 0.001 ± 0.01). CONCLUSIONS The feasibility of a generalized MPRM analysis framework was demonstrated with improved prediction of overall survival compared to the original single-parameter method when applied to a glioblastoma dataset. The proposed algorithm takes the spatial heterogeneity in multi-parametric response into consideration and enables visualization. MPRM analysis of peri-tumoral regions was shown to have predictive potential supporting further investigation of a larger glioblastoma dataset.
Collapse
Affiliation(s)
- Anthony Lausch
- Department of Medical Biophysics, Western University, London, ON, Canada, N6A 3K7
| | | | - Jeff Chen
- Department of Medical Biophysics, Western University, London, ON, Canada, N6A 3K7.,Department of Physics and Engineering, London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada, N7A 4L6
| | - Elton Law
- Imaging, Robarts Research Institute, London, ON, Canada, N6A 5B7
| | - Yong Wang
- Imaging, Robarts Research Institute, London, ON, Canada, N6A 5B7
| | - Benedetta Urbini
- Oncology Unit, Specialized Medical Department, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, Ferrara, 44121, Italy
| | - Filippo Donelli
- Section of Diagnostic Imaging, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, 44121, Italy
| | - Luigi Manco
- School in Medical Physics, University of Bologna, Bologna, 40126, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Diagnostic Imaging, Azienda Ospedaliero-Universitaria Careggi, Florence, 50139, Italy
| | - Ting-Yim Lee
- Department of Medical Biophysics, Western University, London, ON, Canada, N6A 3K7.,Imaging, Robarts Research Institute, London, ON, Canada, N6A 5B7
| | - Eugene Wong
- Department of Medical Biophysics, Western University, London, ON, Canada, N6A 3K7
| |
Collapse
|
38
|
Volume fractions of DCE-MRI parameter as early predictor of histologic response in soft tissue sarcoma: A feasibility study. Eur J Radiol 2017; 95:228-235. [PMID: 28987672 DOI: 10.1016/j.ejrad.2017.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/01/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To find early predictors of histologic response in soft tissue sarcoma through volume transfer constant (Ktrans) analysis based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS 11 Patients with soft tissue sarcoma of the lower extremity that underwent preoperative chemoradiotherapy followed by limb salvage surgery were included in this retrospective study. For each patient, DCE-MRI data sets were collected before and two weeks after therapy initiation, and histologic tumor cell necrosis rate (TCNR) was reported at surgery. The DCE-MRI volumes were aligned by registration. Then, the aligned volumes were used to obtain the Ktrans variation map. Accordingly, three sub-volumes (with increased, decreased or unchanged Ktrans) were defined and identified, and fractions of the sub-volumes, denoted as F+, F- and F0, respectively, were calculated. The predictive ability of volume fractions was determined by using area under a receiver operating characteristic curve (AUC). Linear regression analysis was performed to investigate the relationship between TCNR and volume fractions. In addition, the Ktrans values of the sub-volumes were compared. RESULTS The AUC for F- (0.896) and F0 (0.833) were larger than that for change of tumor longest diameter ΔD (0.625) and the change of mean KtransΔKtrans¯ (0.792). Moreover, the regression results indicated that TCNR was directly proportional to F0 (R2=0.75, P=0.0003), while it was inversely proportional to F- (R2=0.77, P=0.0002). However, TCNR had relatively weak linear relationship with ΔKtrans¯ (R2=0.64, P=0.0018). Additionally, TCNR did not have linear relationship with DD (R2=0.16, P=0.1246). CONCLUSION The volume fraction F- and F0 have potential as early predictors of soft tissue sarcoma histologic response.
Collapse
|
39
|
Choi SJ, Kim J, Kim HS, Park H. Parametric response mapping of dynamic CT: enhanced prediction of survival in hepatocellular carcinoma patients treated with transarterial chemoembolization. Abdom Radiol (NY) 2017; 42:1871-1879. [PMID: 28204855 DOI: 10.1007/s00261-017-1082-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE The aim of this study was to evaluate the prognostic significance of parametric response mapping (PRM) analysis for hepatocellular carcinoma (HCC) patients undergoing transarterial chemoembolization (TACE). METHODS We recruited 65 HCC patients who underwent TACE. These patients underwent longitudinal multiphasic CT before and after TACE. We applied PRM analysis to the baseline CT before TACE and first/second follow-up CTs. The results of PRM analyses were used to stratify patients into responders and non-responders. Overall survival was compared between the two groups. An independent survival analysis using conventional radiological assessments was performed, and the results were compared with PRM results. Univariate and multivariate analyses were performed to identify clinical factors affecting survival. RESULTS The PRM analyses demonstrated that the responding group had a median survival of 529 days, while the non-responding group had a median survival of 263 days [hazard ratio (HR) 12.9, p < 0.05 for differences in survival]. The manual analyses indicated median survivals of 491 and 329 days for the responding and non-responding groups, respectively (HR 2.7, p < 0.05). Tumor size, albumin level, and PRM values were found to be significantly related to overall survival after univariate and multivariate analyses. CONCLUSIONS The PRM analysis could be a better predictor of overall survival for patients with HCC undergoing TACE than conventional radiological assessments.
Collapse
Affiliation(s)
- Seung Joon Choi
- Department of Radiology, Gachon University Gil Hospital, Incheon, Korea
| | - Jonghoon Kim
- Department of Electronic Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
| | - Hyung Sik Kim
- Department of Radiology, Gachon University Gil Hospital, Incheon, Korea
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.
| |
Collapse
|
40
|
State of the art MRI in head and neck cancer. Clin Radiol 2017; 73:45-59. [PMID: 28655406 DOI: 10.1016/j.crad.2017.05.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022]
Abstract
Head and neck cancer affects more than 11,000 new patients per year in the UK1 and imaging has an important role in the diagnosis, treatment planning, and assessment, and post-treatment surveillance of these patients. The anatomical detail produced by magnetic resonance imaging (MRI) is ideally suited to staging and follow-up of primary tumours and cervical nodal metastases in the head and neck; however, anatomical images have limitations in cancer imaging and so increasingly functional-based MRI techniques, which provide molecular, metabolic, and physiological information, are being incorporated into MRI protocols. This article reviews the state of the art of these functional MRI techniques with emphasis on those that are most relevant to the current management of patients with head and neck cancer.
Collapse
|
41
|
Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with head and neck tumors, a systematic review and meta-analysis. PLoS One 2017; 12:e0177986. [PMID: 28542474 PMCID: PMC5443521 DOI: 10.1371/journal.pone.0177986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/06/2017] [Indexed: 12/30/2022] Open
Abstract
Background Novel advanced MRI techniques are investigated in patients treated for head and neck tumors as conventional anatomical MRI is unreliable to differentiate tumor from treatment related imaging changes. Purpose As the diagnostic accuracy of MRI techniques to detect tumor residual or recurrence during or after treatment is variable reported in the literature, we performed a systematic meta-analysis. Data sources Pubmed, EMBASE and Web of Science were searched from their first record to September 23th 2014. Study selection Studies reporting diagnostic accuracy of anatomical, ADC, perfusion or spectroscopy to identify tumor response confirmed by histology or follow-up in treated patients for head and neck tumors were selected by two authors independently. Data analysis Two authors independently performed data extraction including true positives, false positives, true negatives, false negatives and general study characteristics. Meta-analysis was performed using bivariate random effect models when ≥5 studies per test were included. Data synthesis We identified 16 relevant studies with anatomical MRI and ADC. No perfusion or spectroscopy studies were identified. Pooled analysis of anatomical MRI of the primary site (11 studies, N = 854) displayed a sensitivity of 84% (95%CI 72–92) and specificity of 82% (71–89). ADC of the primary site (6 studies, N = 287) showed a pooled sensitivity of 89% (74–96) and specificity of 86% (69–94). Limitations Main limitation are the low, but comparable quality of the included studies and the variability between the studies. Conclusions The higher diagnostic accuracy of ADC values over anatomical MRI for the primary tumor location emphases the relevance to include DWI with ADC for response evaluation of treated head and neck tumor patients.
Collapse
|
42
|
Wong KH, Panek R, Bhide SA, Nutting CM, Harrington KJ, Newbold KL. The emerging potential of magnetic resonance imaging in personalizing radiotherapy for head and neck cancer: an oncologist's perspective. Br J Radiol 2017; 90:20160768. [PMID: 28256151 DOI: 10.1259/bjr.20160768] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Head and neck cancer (HNC) is a challenging tumour site for radiotherapy delivery owing to its complex anatomy and proximity to organs at risk (OARs) such as the spinal cord and optic apparatus. Despite significant advances in radiotherapy planning techniques, radiation-induced morbidities remain substantial. Further improvement would require high-quality imaging and tailored radiotherapy based on intratreatment response. For these reasons, the use of MRI in radiotherapy planning for HNC is rapidly gaining popularity. MRI provides superior soft-tissue contrast in comparison with CT, allowing better definition of the tumour and OARs. The lack of additional radiation exposure is another attractive feature for intratreatment monitoring. In addition, advanced MRI techniques such as diffusion-weighted, dynamic contrast-enhanced and intrinsic susceptibility-weighted MRI techniques are capable of characterizing tumour biology further by providing quantitative functional parameters such as tissue cellularity, vascular permeability/perfusion and hypoxia. These functional parameters are known to have radiobiological relevance, which potentially could guide treatment adaptation based on their changes prior to or during radiotherapy. In this article, we first present an overview of the applications of anatomical MRI sequences in head and neck radiotherapy, followed by the potentials and limitations of functional MRI sequences in personalizing therapy.
Collapse
Affiliation(s)
- Kee H Wong
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Rafal Panek
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Shreerang A Bhide
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Christopher M Nutting
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Kevin J Harrington
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Katie L Newbold
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| |
Collapse
|
43
|
Yamamoto T, Kent MS, Wisner ER, Johnson LR, Stern JA, Qi L, Fujita Y, Boone JM. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model. Med Phys 2017; 43:3998. [PMID: 27370118 PMCID: PMC5438244 DOI: 10.1118/1.4953188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose: Radiotherapy (RT) that selectively avoids irradiating highly functional
lung
regions may reduce pulmonary toxicity, which is substantial in lung
cancer RT.
Single-energy computed
tomography
(CT)
pulmonary perfusion imaging has several advantages
(e.g., higher resolution) over other modalities and has great potential for
widespread clinical implementation, particularly in RT. The purpose of this study
was to establish proof-of-principle for single-energy CT perfusion
imaging. Methods: Single-energy CT perfusion imaging is based on the following:
(1) acquisition of end-inspiratory breath-hold CT scans before and
after intravenous injection of iodinated contrast agents, (2)
deformable image
registration (DIR) for spatial mapping of
those two CT
image
data sets,
and (3) subtraction of the precontrast image
data set
from the postcontrast image
data set,
yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for
regional perfusion. In a protocol approved by the institutional animal care and
use committee, the authors acquired CT scans in the prone position for a total of 14
anesthetized canines (seven canines with normal lungs and seven
canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy
of DIR was evaluated based on the target registration error (TRE) of 50 anatomic
pulmonary landmarks per subject for 10 randomly selected subjects as well as on
singularities (i.e., regions where the displacement vector field is not
bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory
image were corrected for variation in the lung inflation level
between the precontrast and postcontrast end-inspiratory CT scans, using a
model built from two additional precontrast CT scans at
end-expiration and midinspiration. The authors also assessed spatial heterogeneity
and gravitationally directed gradients of regional perfusion for normal
lung
subjects and diseased lung subjects using a two-sample two-tailed
t-test. Results: The mean TRE (and standard deviation) was 0.6 ± 0.7 mm (smaller than the voxel
dimension) for DIR between pre contrast and postcontrast end-inspiratory
CT
image
data sets.
No singularities were observed in the displacement vector fields. The mean HU
enhancement (and standard deviation) was 37.3 ± 10.5 HU for normal lung subjects and 30.7
± 13.5 HU for diseased lung subjects. Spatial heterogeneity of regional perfusion was
found to be higher for diseased lung subjects than for normal lung subjects, i.e., a
mean coefficient of variation of 2.06 vs 1.59 (p = 0.07). The
average gravitationally directed gradient was strong and significant
(R2 = 0.99, p < 0.01) for
normal lung dogs, whereas it was moderate and nonsignificant
(R2 = 0.61, p = 0.12) for diseased
lung
dogs. Conclusions: This canine study demonstrated the accuracy of DIR with subvoxel TREs on average,
higher spatial heterogeneity of regional perfusion for diseased
lung
subjects than for normal lung subjects, and a strong gravitationally directed gradient
for normal lung subjects, providing proof-of-principle for single-energy
CT
pulmonary perfusion imaging. Further studies such as
comparison with other perfusion imaging modalities will be necessary
to validate the physiological significance.
Collapse
Affiliation(s)
- Tokihiro Yamamoto
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California 95817
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California 95616
| | - Erik R Wisner
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California 95616
| | - Lynelle R Johnson
- Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California 95616
| | - Joshua A Stern
- Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California 95616
| | - Lihong Qi
- Department of Public Health Sciences, University of California Davis, Davis, California 95616
| | - Yukio Fujita
- Department of Radiation Oncology, Tokai University, Isehara, Kanagawa 259-1193, Japan
| | - John M Boone
- Department of Radiology, University of California Davis School of Medicine, Sacramento, California 95817
| |
Collapse
|
44
|
Galbán CJ, Hoff BA, Chenevert TL, Ross BD. Diffusion MRI in early cancer therapeutic response assessment. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3458. [PMID: 26773848 PMCID: PMC4947029 DOI: 10.1002/nbm.3458] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 05/05/2023]
Abstract
Imaging biomarkers for the predictive assessment of treatment response in patients with cancer earlier than standard tumor volumetric metrics would provide new opportunities to individualize therapy. Diffusion-weighted MRI (DW-MRI), highly sensitive to microenvironmental alterations at the cellular level, has been evaluated extensively as a technique for the generation of quantitative and early imaging biomarkers of therapeutic response and clinical outcome. First demonstrated in a rodent tumor model, subsequent studies have shown that DW-MRI can be applied to many different solid tumors for the detection of changes in cellularity as measured indirectly by an increase in the apparent diffusion coefficient (ADC) of water molecules within the lesion. The introduction of quantitative DW-MRI into the treatment management of patients with cancer may aid physicians to individualize therapy, thereby minimizing unnecessary systemic toxicity associated with ineffective therapies, saving valuable time, reducing patient care costs and ultimately improving clinical outcome. This review covers the theoretical basis behind the application of DW-MRI to monitor therapeutic response in cancer, the analytical techniques used and the results obtained from various clinical studies that have demonstrated the efficacy of DW-MRI for the prediction of cancer treatment response. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | | | - B. D. Ross
- Correspondence to: B. D. Ross, University of Michigan School of Medicine, Center for Molecular Imaging and Department of Radiology, Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| |
Collapse
|
45
|
Tourell MC, Shokoohmand A, Landgraf M, Holzapfel NP, Poh PSP, Loessner D, Momot KI. The distribution of the apparent diffusion coefficient as an indicator of the response to chemotherapeutics in ovarian tumour xenografts. Sci Rep 2017; 7:42905. [PMID: 28220831 PMCID: PMC5318900 DOI: 10.1038/srep42905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) was used to evaluate the effects of single-agent and combination treatment regimens in a spheroid-based animal model of ovarian cancer. Ovarian tumour xenografts grown in non-obese diabetic/severe-combined-immunodeficiency (NOD/SCID) mice were treated with carboplatin or paclitaxel, or combination carboplatin/paclitaxel chemotherapy regimens. After 4 weeks of treatment, tumours were extracted and underwent DW-MRI, mechanical testing, immunohistochemical and gene expression analyses. The distribution of the apparent diffusion coefficient (ADC) exhibited an upward shift as a result of each treatment regimen. The 99-th percentile of the ADC distribution (“maximum ADC”) exhibited a strong correlation with the tumour size (r2 = 0.90) and with the inverse of the elastic modulus (r2 = 0.96). Single-agent paclitaxel (n = 5) and combination carboplatin/paclitaxel (n = 2) treatment regimens were more effective in inducing changes in regions of higher cell density than single-agent carboplatin (n = 3) or the no-treatment control (n = 5). The maximum ADC was a good indicator of treatment-induced cell death and changes in the extracellular matrix (ECM). Comparative analysis of the tumours’ ADC distribution, mechanical properties and ECM constituents provides insights into the molecular and cellular response of the ovarian tumour xenografts to chemotherapy. Increased sample sizes are recommended for future studies. We propose experimental approaches to evaluation of the timeline of the tumour’s response to treatment.
Collapse
Affiliation(s)
- Monique C Tourell
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia
| | - Ali Shokoohmand
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia.,Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Marietta Landgraf
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia
| | - Nina P Holzapfel
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia
| | - Patrina S P Poh
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniela Loessner
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia
| | - Konstantin I Momot
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia
| |
Collapse
|
46
|
Dickerson E, Srinivasan A. Advanced Imaging Techniques of the Skull Base. Radiol Clin North Am 2017; 55:189-200. [DOI: 10.1016/j.rcl.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
The diffusion-weighted magnetic resonance imaging (DWI) predicts the early response of esophageal squamous cell carcinoma to concurrent chemoradiotherapy. Radiother Oncol 2016; 121:246-251. [DOI: 10.1016/j.radonc.2016.10.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
|
48
|
Qiu B, Wang D, Yang H, Xie W, Liang Y, Cai P, Chen Z, Liu M, Fu J, Xie C, Liu H. Combined modalities of magnetic resonance imaging, endoscopy and computed tomography in the evaluation of tumor responses to definitive chemoradiotherapy in esophageal squamous cell carcinoma. Radiother Oncol 2016; 121:239-245. [DOI: 10.1016/j.radonc.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/31/2016] [Accepted: 09/11/2016] [Indexed: 11/26/2022]
|
49
|
King AD, Thoeny HC. Functional MRI for the prediction of treatment response in head and neck squamous cell carcinoma: potential and limitations. Cancer Imaging 2016; 16:23. [PMID: 27542718 PMCID: PMC4992206 DOI: 10.1186/s40644-016-0080-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/02/2016] [Indexed: 12/27/2022] Open
Abstract
Pre-treatment or early intra-treatment prediction of patients with head and neck squamous cell carcinomas (HNSCC) who are likely to have tumours that are resistant to chemoradiotherapy (CRT) would enable treatment regimens to be changed at an early time point, or allow patients at risk of residual disease to be targeted for more intensive post-treatment investigation. Research into the potential advantages of using functional-based magnetic resonance imaging (MRI) sequences before or during cancer treatments to predict treatment response has been ongoing for several years. In regard to HNSCC, the reported results from functional MRI research are promising but they have yet to be transferred to the clinical domain. This article will review the functional MRI literature in HNSCC to determine the current status of the research and try to identify areas that are close to application in clinical practice. This review will focus on diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE–MRI) and briefly include proton magnetic resonance spectroscopy (1H-MRS)and blood oxygen level dependent (BOLD) MRI.
Collapse
Affiliation(s)
- Ann D King
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong S.A.R. China.
| | - Harriet C Thoeny
- Department of Radiology, Neuroradiology and Nuclear Medicine, Inselspital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| |
Collapse
|
50
|
Yuan J, Lo G, King AD. Functional magnetic resonance imaging techniques and their development for radiation therapy planning and monitoring in the head and neck cancers. Quant Imaging Med Surg 2016; 6:430-448. [PMID: 27709079 PMCID: PMC5009093 DOI: 10.21037/qims.2016.06.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/27/2016] [Indexed: 01/05/2023]
Abstract
Radiation therapy (RT), in particular intensity-modulated radiation therapy (IMRT), is becoming a more important nonsurgical treatment strategy in head and neck cancer (HNC). The further development of IMRT imposes more critical requirements on clinical imaging, and these requirements cannot be fully fulfilled by the existing radiotherapeutic imaging workhorse of X-ray based imaging methods. Magnetic resonance imaging (MRI) has increasingly gained more interests from radiation oncology community and holds great potential for RT applications, mainly due to its non-ionizing radiation nature and superior soft tissue image contrast. Beyond anatomical imaging, MRI provides a variety of functional imaging techniques to investigate the functionality and metabolism of living tissue. The major purpose of this paper is to give a concise and timely review of some advanced functional MRI techniques that may potentially benefit conformal, tailored and adaptive RT in the HNC. The basic principle of each functional MRI technique is briefly introduced and their use in RT of HNC is described. Limitation and future development of these functional MRI techniques for HNC radiotherapeutic applications are discussed. More rigorous studies are warranted to translate the hypotheses into credible evidences in order to establish the role of functional MRI in the clinical practice of head and neck radiation oncology.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Medical Physics and Research, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR, China
| | - Gladys Lo
- Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR, China
| | - Ann D. King
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|