1
|
Jandova J, Galons JP, Dettman DL, Wondrak GT. Systemic deuteration of SCID mice using the water-isotopologue deuterium oxide (D 2 O) inhibits tumor growth in an orthotopic bioluminescent model of human pancreatic ductal adenocarcinoma. Mol Carcinog 2023; 62:598-612. [PMID: 36727657 PMCID: PMC10106369 DOI: 10.1002/mc.23509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/03/2023]
Abstract
Since its initial discovery as a natural isotopologue of dihydrogen oxide (1 H2 O), extensive research has focused on the biophysical, biochemical, and pharmacological effects of deuterated water (2 H2 O [D2 O, also referred to as "heavy water"]). Using a panel of cultured human pancreatic ductal adenocarcinoma (PDAC) cells we have profiled (i) D2 O-induced phenotypic antiproliferative and apoptogenic effects, (ii) redox- and proteotoxicity-directed stress response gene expression, and (iii) phosphoprotein-signaling related to endoplasmic reticulum (ER) and MAP-kinase stress response pathways. Differential array analysis revealed early modulation of stress response gene expression in both BxPC-3 and PANC-1 PDAC cells elicited by D2 O (90%; ≤6 h; upregulated: HMOX1, NOS2, CYP2E1, CRYAB, DDIT3, NFKBIA, PTGS1, SOD2, PTGS2; downregulated: RUNX1, MYC, HSPA8, HSPA1A) confirmed by independent RT-qPCR analysis. Immunoblot-analysis revealed rapid (≤6 h) onset of D2 O-induced MAP-kinase signaling (p-JNK, p-p38) together with ER stress response upregulation (p-eIF2α, ATF4, XBP1s, DDIT3/CHOP). Next, we tested the chemotherapeutic efficacy of D2 O-based drinking water supplementation in an orthotopic PDAC model employing firefly luciferase-expressing BxPC-3-FLuc cells in SCID mice. First, feasibility and time course of systemic deuteration (30% D2 O in drinking water; 21 days) were established using time-resolved whole-body proton magnetic resonance imaging and isotope-ratio mass spectrometry-based plasma (D/H)-analysis. D2 O-supplementation suppressed tumor growth by almost 80% with downregulated expression of PCNA, MYC, RUNX1, and HSP70 while increasing tumor levels of DDIT3/CHOP, HO-1, and p-eIF2α. Taken together, these data demonstrate for the first time that pharmacological induction of systemic deuteration significantly reduces orthotopic tumor burden in a murine PDAC xenograft model.
Collapse
Affiliation(s)
- Jana Jandova
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy & UA Cancer Center, The University of Arizona, Tucson, AZ, USA
| | | | - David L. Dettman
- Department of Geosciences, The University of Arizona, Tucson, AZ, USA
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy & UA Cancer Center, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Schaal JL, Bhattacharyya J, Brownstein J, Strickland KC, Kelly G, Saha S, Milligan J, Banskota S, Li X, Liu W, Kirsch DG, Zalutsky MR, Chilkoti A. Brachytherapy via a depot of biopolymer-bound 131I synergizes with nanoparticle paclitaxel in therapy-resistant pancreatic tumours. Nat Biomed Eng 2022; 6:1148-1166. [PMID: 36261625 PMCID: PMC10389695 DOI: 10.1038/s41551-022-00949-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
Locally advanced pancreatic tumours are highly resistant to conventional radiochemotherapy. Here we show that such resistance can be surmounted by an injectable depot of thermally responsive elastin-like polypeptide (ELP) conjugated with iodine-131 radionuclides (131I-ELP) when combined with systemically delivered nanoparticle albumin-bound paclitaxel. This combination therapy induced complete tumour regressions in diverse subcutaneous and orthotopic mouse models of locoregional pancreatic tumours. 131I-ELP brachytherapy was effective independently of the paclitaxel formulation and dose, but external beam radiotherapy (EBRT) only achieved tumour-growth inhibition when co-administered with nanoparticle paclitaxel. Histological analyses revealed that 131I-ELP brachytherapy led to changes in the expression of intercellular collagen and junctional proteins within the tumour microenvironment. These changes, which differed from those of EBRT-treated tumours, correlated with the improved delivery and accumulation of paclitaxel nanoparticles within the tumour. Our findings support the further translational development of 131I-ELP depots for the synergistic treatment of localized pancreatic cancer.
Collapse
Affiliation(s)
- Jeffrey L Schaal
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jayanta Bhattacharyya
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Jeremy Brownstein
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Kyle C Strickland
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Garrett Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Soumen Saha
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joshua Milligan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Samagya Banskota
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Wenge Liu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Michael R Zalutsky
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Lee W, Il An G, Park H, Sarkar S, Ha YS, Huynh PT, Bhise A, Bhatt N, Ahn H, Pandya DN, Kim JY, Kim S, Jun E, Kim SC, Lee KC, Yoo J. Imaging Strategy that Achieves Ultrahigh Contrast by Utilizing Differential Esterase Activity in Organs: Application in Early Detection of Pancreatic Cancer. ACS NANO 2021; 15:17348-17360. [PMID: 34405675 DOI: 10.1021/acsnano.1c05165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most nanoparticles show much higher uptake in mononuclear phagocyte system (MPS) organs than in tumors, which has been a long-lasting dilemma in nanomedicine. Here, we report an imaging strategy that selectively decreases MPS organ uptakes by utilizing the differential esterase activity in tumors and other organs. When an esterase-labile radiotracer loaded liposome was injected into the body, radioactivity was rapidly excreted from the liver and spleen after breakage of the ester bond by esterase. However, the lipophilic radiotracer delivered to the tumor remained in the tumor with minimal bond cleavage. The underlying mechanism was fully characterized in vitro and in vivo in colon tumor models. As a proof of concept, the liposomal radiotracer was further optimized for the early detection of pancreatic cancer. The folate-coated liposomal radiotracer showed highly selective tumor uptake. At 4 h postinjection, a pancreatic tumor a few millimeters in size was unambiguously visualized in orthotopic tumor models by PET imaging. At 24 h, an exceptionally high tumor-to-background ratio was achieved, enabling the visualization of tumors alone with minimal background noise. More than 9% of the total radioactivity was found in the tumor. Utilizing our imaging strategy, various tumor imaging agents can be developed for sensitive detection with ultrahigh contrast.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Gwang Il An
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyun Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Swarbhanu Sarkar
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yeong Su Ha
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Phuong Tu Huynh
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Abhinav Bhise
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Nikunj Bhatt
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Heesu Ahn
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Darpan N Pandya
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Seokho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Eunsung Jun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Republic of Korea
| | - Song Cheol Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
4
|
Navarro-Marchal SA, Griñán-Lisón C, Entrena JM, Ruiz-Alcalá G, Tristán-Manzano M, Martin F, Pérez-Victoria I, Peula-García JM, Marchal JA. Anti-CD44-Conjugated Olive Oil Liquid Nanocapsules for Targeting Pancreatic Cancer Stem Cells. Biomacromolecules 2021; 22:1374-1388. [PMID: 33724003 DOI: 10.1021/acs.biomac.0c01546] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The latest trends in cancer research and nanomedicine focus on using nanocarriers to target cancer stem cells (CSCs). Specifically, lipid liquid nanocapsules are usually developed as nanocarriers for lipophilic drug delivery. Here, we developed olive oil liquid NCs (O2LNCs) functionalized by covalent coupling of an anti-CD44-fluorescein isothiocyanate antibody (αCD44). First, O2LNCs are formed by a core of olive oil surrounded by a shell containing phospholipids, a nonionic surfactant, and deoxycholic acid molecules. Then, O2LNCs were coated with an αCD44 antibody (αCD44-O2LNC). The optimization of an αCD44 coating procedure, a complete physicochemical characterization, as well as clear evidence of their efficacy in vitro and in vivo were demonstrated. Our results indicate the high targeted uptake of these αCD44-O2LNCs, and the increased antitumor efficacy (up to four times) of paclitaxel-loaded-αCD44-O2LNC compared to free paclitaxel in pancreatic CSCs (PCSCs). Also, αCD44-O2LNCs were able to selectively target PCSCs in an orthotopic xenotransplant in vivo model.
Collapse
Affiliation(s)
- Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain.,Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain
| | - José-Manuel Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, Armilla, 18100 Granada, Spain.,Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, Armilla, 18100 Granada, Spain
| | - Gloria Ruiz-Alcalá
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain
| | - José Manuel Peula-García
- Biocolloids and Fluids Physics Group, Faculty of Sciences, University of Granada, 18014 Granada, Spain.,Department of Applied Physics II, University of Málaga, 29071 Málaga, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
5
|
Deng Z, Xu X, Garzon-Muvdi T, Xia Y, Kim E, Belcaid Z, Luksik A, Maxwell R, Choi J, Wang H, Yu J, Iordachita I, Lim M, Wong JW, Wang KKH. In Vivo Bioluminescence Tomography Center of Mass-Guided Conformal Irradiation. Int J Radiat Oncol Biol Phys 2019; 106:612-620. [PMID: 31738948 DOI: 10.1016/j.ijrobp.2019.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 01/21/2023]
Abstract
PURPOSE The cone-beam computed tomography (CBCT)-guided small animal radiation research platform (SARRP) has provided unique opportunities to test radiobiologic hypotheses. However, CBCT is less adept to localize soft tissue targets growing in a low imaging contrast environment. Three-dimensional bioluminescence tomography (BLT) provides strong image contrast and thus offers an attractive solution. We introduced a novel and efficient BLT-guided conformal radiation therapy and demonstrated it in an orthotopic glioblastoma (GBM) model. METHODS AND MATERIALS A multispectral BLT system was integrated with SARRP for radiation therapy (RT) guidance. GBM growth curve was first established by contrast CBCT/magnetic resonance imaging (MRI) to derive equivalent sphere as approximated gross target volume (aGTV). For BLT, mice were subject to multispectral bioluminescence imaging, followed by SARRP CBCT imaging and optical reconstruction. The CBCT image was acquired to generate anatomic mesh for the reconstruction and RT planning. To ensure high accuracy of the BLT-reconstructed center of mass (CoM) for target localization, we optimized the optical absorption coefficients μa by minimizing the distance between the CoMs of BLT reconstruction and contrast CBCT/MRI-delineated GBM volume. The aGTV combined with the uncertainties of BLT CoM localization and target volume determination was used to generate estimated target volume (ETV). For conformal irradiation procedure, the GBM was first localized by the predetermined ETV centered at BLT-reconstructed CoM, followed by SARRP radiation. The irradiation accuracy was qualitatively confirmed by pathologic staining. RESULTS Deviation between CoMs of BLT reconstruction and contrast CBCT/MRI-imaged GBM is approximately 1 mm. Our derived ETV centered at BLT-reconstructed CoM covers >95% of the tumor volume. Using the second-week GBM as an example, the ETV-based BLT-guided irradiation can cover 95.4% ± 4.7% tumor volume at prescribed dose. The pathologic staining demonstrated the BLT-guided irradiated area overlapped well with the GBM location. CONCLUSIONS The BLT-guided RT enables 3-dimensional conformal radiation for important orthotopic tumor models, which provides investigators a new preclinical research capability.
Collapse
Affiliation(s)
- Zijian Deng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiangkun Xu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuanxuan Xia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eileen Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zineb Belcaid
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Luksik
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Russell Maxwell
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Choi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jingjing Yu
- School of Physics and Information Technology, Shaanxi Normal University, Shanxi, China
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ken Kang-Hsin Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
6
|
Meganck JA, Liu B. Dosimetry in Micro-computed Tomography: a Review of the Measurement Methods, Impacts, and Characterization of the Quantum GX Imaging System. Mol Imaging Biol 2018; 19:499-511. [PMID: 27957647 PMCID: PMC5498628 DOI: 10.1007/s11307-016-1026-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose X-ray micro-computed tomography (μCT) is a widely used imaging modality in preclinical research with applications in many areas including orthopedics, pulmonology, oncology, cardiology, and infectious disease. X-rays are a form of ionizing radiation and, therefore, can potentially induce damage and cause detrimental effects. Previous reviews have touched on these effects but have not comprehensively covered the possible implications on study results. Furthermore, interpreting data across these studies is difficult because there is no widely accepted dose characterization methodology for preclinical μCT. The purpose of this paper is to ensure in vivo μCT studies can be properly designed and the data can be appropriately interpreted. Procedures Studies from the scientific literature that investigate the biological effects of radiation doses relevant to μCT were reviewed. The different dose measurement methodologies used in the peer-reviewed literature were also reviewed. The CT dose index 100 (CTDI100) was then measured on the Quantum GX μCT instrument. A low contrast phantom, a hydroxyapatite phantom, and a mouse were also imaged to provide examples of how the dose can affect image quality. Results Data in the scientific literature indicate that scenarios exist where radiation doses used in μCT imaging are high enough to potentially bias experimental results. The significance of this effect may relate to the study outcome and tissue being imaged. CTDI100 is a reasonable metric to use for dose characterization in μCT. Dose rates in the Quantum GX vary based on the amount of material in the beam path and are a function of X-ray tube voltage. The CTDI100 in air for a Quantum GX can be as low as 5.1 mGy for a 50 kVp scan and 9.9 mGy for a 90 kVp scan. This dose is low enough to visualize bone both in a mouse image and in a hydroxyapatite phantom, but applications requiring higher resolution in a mouse or less noise in a low-contrast phantom benefit from longer scan times with increased dose. Conclusions Dose management should be considered when designing μCT studies. Dose rates in the Quantum GX are compatible with longitudinal μCT imaging.
Collapse
Affiliation(s)
- Jeffrey A Meganck
- Research and Development, Life Sciences Technology, PerkinElmer, 68 Elm Street, Hopkinton, MA, 01748, USA.
| | - Bob Liu
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Weitz JR, Makhmutova M, Almaça J, Stertmann J, Aamodt K, Brissova M, Speier S, Rodriguez-Diaz R, Caicedo A. Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity. Diabetologia 2018; 61:182-192. [PMID: 28884198 PMCID: PMC5868749 DOI: 10.1007/s00125-017-4416-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/14/2017] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Tissue-resident macrophages sense the microenvironment and respond by producing signals that act locally to maintain a stable tissue state. It is now known that pancreatic islets contain their own unique resident macrophages, which have been shown to promote proliferation of the insulin-secreting beta cell. However, it is unclear how beta cells communicate with islet-resident macrophages. Here we hypothesised that islet macrophages sense changes in islet activity by detecting signals derived from beta cells. METHODS To investigate how islet-resident macrophages respond to cues from the microenvironment, we generated mice expressing a genetically encoded Ca2+ indicator in myeloid cells. We produced living pancreatic slices from these mice and used them to monitor macrophage responses to stimulation of acinar, neural and endocrine cells. RESULTS Islet-resident macrophages expressed functional purinergic receptors, making them exquisite sensors of interstitial ATP levels. Indeed, islet-resident macrophages responded selectively to ATP released locally from beta cells that were physiologically activated with high levels of glucose. Because ATP is co-released with insulin and is exclusively secreted by beta cells, the activation of purinergic receptors on resident macrophages facilitates their awareness of beta cell secretory activity. CONCLUSIONS/INTERPRETATION Our results indicate that islet macrophages detect ATP as a proxy signal for the activation state of beta cells. Sensing beta cell activity may allow macrophages to adjust the secretion of factors to promote a stable islet composition and size.
Collapse
Affiliation(s)
- Jonathan R Weitz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA
- Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Madina Makhmutova
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA
| | - Julia Stertmann
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kristie Aamodt
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA.
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA.
- Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
8
|
Zhang B, Wong JW, Iordachita II, Reyes J, Nugent K, Tran PT, Tuttle SW, Koumenis C, Wang KKH. Evaluation of On- and Off-Line Bioluminescence Tomography System for Focal Irradiation Guidance. Radiat Res 2016; 186:592-601. [PMID: 27869556 DOI: 10.1667/rr14423.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In response to the limitations of computed tomography (CT) and cone-beam CT (CBCT) in irradiation guidance, especially for soft-tissue targets without the use of contrast agents, our group developed a solution that implemented bioluminescence tomography (BLT) as the image-guidance modality for preclinical radiation research. However, adding such a system to existing small animal irradiators is no small task. A potential solution is to utilize an off-line BLT system in close proximity to the irradiator, with stable and effective animal transport between the two systems. In this study, we investigated the localization accuracy of an off-line BLT system when used for the small animal radiation research platform (SARRP) and compared the results with those of an on-line system. The CBCT was equipped on both the off-line BLT system and the SARRP, with a distance of 5 m between them. To evaluate the setup error during animal transport between the two systems, the mice underwent CBCT imaging on the SARRP and were then transported to the off-line system for a second CBCT imaging session. The normalized intensity difference of the two images and the corresponding histogram and correlation were computed to evaluate if the transport process perturbed animal positioning. Strong correlation (correlation coefficients >0.95) between the SARRP and the off-line mouse CBCT was observed. The offset of the implanted light source center can be maintained within 0.2 mm during transport. To compare the target localization accuracy using the on-line SARRP BLT and the off-line system, a self-illuminated bioluminescent source was implanted in the abdomen of anesthetized mice. In addition to the application for dose calculation, CBCT imaging was also employed to generate the mesh grid of the imaged mouse for BLT reconstruction. Two scenarios were devised and compared, which involved localization of the luminescence source based on either: 1. on-line SARRP bioluminescence image and CBCT; or 2. off-line bioluminescence image and SARRP CBCT. The first scenario is assumed to have the least setup error, because no animal transport was involved. The second scenario examines if an off-line BLT system, with the mesh generated from the SARRP CBCT, can be used to guide SARRP irradiation when there is minimal target contrast in CBCT. Stability during animal transport between the two systems was maintained. The center of mass (CoM) of the light source reconstructed by the off-line BLT had an offset of 1.0 ± 0.4 mm from the true CoM derived from the SARRP CBCT. These results are comparable to the offset of 1.0 ± 0.2 mm using on-line BLT. With CBCT information provided by the SARRP and effective animal immobilization during transport, these findings support the utilization of an off-line BLT-guided system, in close proximity to the SARRP, for accurate soft-tissue target localization. In addition, a dedicated standalone BLT system for our partner site at the University of Pennsylvania was introduced in this study.
Collapse
Affiliation(s)
- Bin Zhang
- a Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - John W Wong
- a Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Iulian I Iordachita
- b Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland
| | - Juvenal Reyes
- a Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Katriana Nugent
- a Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Phuoc T Tran
- a Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland.,c Departments of Oncology and Urology, Johns Hopkins University, Baltimore, Maryland
| | - Stephen W Tuttle
- d Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Constantinos Koumenis
- d Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ken Kang-Hsin Wang
- a Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
9
|
Zhang B, Wang KKH, Yu J, Eslami S, Iordachita I, Reyes J, Malek R, Tran PT, Patterson MS, Wong JW. Bioluminescence Tomography-Guided Radiation Therapy for Preclinical Research. Int J Radiat Oncol Biol Phys 2015; 94:1144-53. [PMID: 26876954 DOI: 10.1016/j.ijrobp.2015.11.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/26/2015] [Accepted: 11/29/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm. METHODS AND MATERIALS The BLT system was designed to dock with the SARRP for image acquisition and to be detached before radiation delivery. A 3-mirror system was devised to reflect the bioluminescence emitted from the subject to a stationary charge-coupled device (CCD) camera. Multispectral BLT and the incomplete variables truncated conjugate gradient method with a permissible region shrinking strategy were used as the optimization scheme to reconstruct bioluminescent source distributions. To validate BLT targeting accuracy, a small cylindrical light source with high CBCT contrast was placed in a phantom and also in the abdomen of a mouse carcass. The center of mass (CoM) of the source was recovered from BLT and used to guide radiation delivery. The accuracy of the BLT-guided targeting was validated with films and compared with the CBCT-guided delivery. In vivo experiments were conducted to demonstrate BLT localization capability for various source geometries. RESULTS Online BLT was able to recover the CoM of the embedded light source with an average accuracy of 1 mm compared to that with CBCT localization. Differences between BLT- and CBCT-guided irradiation shown on the films were consistent with the source localization revealed in the BLT and CBCT images. In vivo results demonstrated that our BLT system could potentially be applied for multiple targets and tumors. CONCLUSIONS The online BLT/CBCT/SARRP system provides an effective solution for soft tissue targeting, particularly for small, nonpalpable, or orthotopic tumor models.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ken Kang-Hsin Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Jingjing Yu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland; School of Physics and Information Technology, Shaanxi Normal University, Shaanxi, China
| | - Sohrab Eslami
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland
| | - Juvenal Reyes
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Reem Malek
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Oncology and Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | - Michael S Patterson
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - John W Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Butterworth KT, Redmond KM, McMahon SJ, Cole AJ, Jain S, McCarthy HO, O'Sullivan JM, Hounsell AR, Prise KM. Conventional in vivo irradiation procedures are insufficient to accurately determine tumor responses to non-uniform radiation fields. Int J Radiat Biol 2014; 91:257-61. [PMID: 25347147 DOI: 10.3109/09553002.2014.980468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE To determine differences in overall tumor responses measured by volumetric assessment and bioluminescence imaging (BLI) following exposure to uniform and non-uniform radiation fields in an ectopic prostate tumor model. MATERIALS AND METHODS Bioluminescent human prostate tumor xenografts were established by subcutaneous implantation into male mice. Tumors were irradiated with uniform or non-uniform field configurations using conventional in vivo irradiation procedures performed using a 225 kVp generator with custom lead shielding. Tumor responses were measured using Vernier calipers and by BLI using an in vivo imaging system. Survival was defined as the time to quadroupling of pre-treatment tumor volume. RESULTS The correlation between BLI and tumor volume measurements was found to be different for un-irradiated (R = 0.61), uniformly irradiated (R = 0.34) and partially irradiated (R = 0.30) tumors. Uniformly irradiated tumors resulted in an average tumor growth delay of 60 days with median survival of 75 days, compared to partially irradiated tumors which showed an average growth delay of 24 days and median survival of 38 days. CONCLUSIONS Correlation between BLI and tumor volume measurements is lower for partially irradiated tumors than those exposed to uniform dose distributions. The response of partially irradiated tumors suggests non-uniformity in response beyond physical dose distribution within the target volume. Dosimetric uncertainty associated with conventional in vivo irradiation procedures prohibits their ability to accurately determine tumor response to non-uniform radiation fields and stresses the need for image guided small animal radiation research platforms.
Collapse
Affiliation(s)
- Karl T Butterworth
- Centre for Cancer Research and Cell Biology, Queen's University Belfast , Belfast
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang L, Yang H, Palmbos PL, Ney G, Detzler TA, Coleman D, Leflein J, Davis M, Zhang M, Tang W, Hicks JK, Helchowski CM, Prasad J, Lawrence TS, Xu L, Yu X, Canman CE, Ljungman M, Simeone DM. ATDC/TRIM29 phosphorylation by ATM/MAPKAP kinase 2 mediates radioresistance in pancreatic cancer cells. Cancer Res 2014; 74:1778-88. [PMID: 24469230 DOI: 10.1158/0008-5472.can-13-2289] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by therapeutic resistance for which the basis is poorly understood. Here, we report that the DNA and p53-binding protein ATDC/TRIM29, which is highly expressed in PDAC, plays a critical role in DNA damage signaling and radioresistance in pancreatic cancer cells. Ataxia-telangiectasia group D-associated gene (ATDC) mediated resistance to ionizing radiation in vitro and in vivo in mouse xenograft assays. ATDC was phosphorylated directly by MAPKAP kinase 2 (MK2) at Ser550 in an ATM-dependent manner. Phosphorylation at Ser-550 by MK2 was required for the radioprotective function of ATDC. Our results identify a DNA repair pathway leading from MK2 and ATM to ATDC, suggesting its candidacy as a therapeutic target to radiosensitize PDAC and improve the efficacy of DNA-damaging treatment.
Collapse
Affiliation(s)
- Lidong Wang
- Authors' Affiliations: Departments of Surgery, Radiation Oncology, Pharmacology, Internal Medicine and Molecular and Integrative Physiology, Translational Oncology Program, and Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu FF, Okunieff P, Bernhard EJ, Stone HB, Yoo S, Coleman CN, Vikram B, Brown M, Buatti J, Guha C. Lessons learned from radiation oncology clinical trials. Clin Cancer Res 2013; 19:6089-100. [PMID: 24043463 DOI: 10.1158/1078-0432.ccr-13-1116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A workshop entitled "Lessons Learned from Radiation Oncology Trials" was held on December 7-8, 2011, in Bethesda, MD, to present and discuss some of the recently conducted radiation oncology clinical trials with a focus on those that failed to refute the null hypothesis. The objectives of this workshop were to summarize and examine the questions that these trials provoked, to assess the quality and limitations of the preclinical data that supported the hypotheses underlying these trials, and to consider possible solutions to these challenges for the design of future clinical trials. Several themes emerged from the discussions: (i) opportunities to learn from null-hypothesis trials through tissue and imaging studies; (ii) value of preclinical data supporting the design of combinatorial therapies; (iii) significance of validated biomarkers; (iv) necessity of quality assurance in radiotherapy delivery; (v) conduct of sufficiently powered studies to address the central hypotheses; and (vi) importance of publishing results of the trials regardless of the outcome. The fact that well-designed hypothesis-driven clinical trials produce null or negative results is expected given the limitations of trial design and complexities of cancer biology. It is important to understand the reasons underlying such null results, however, to effectively merge the technologic innovations with the rapidly evolving biology for maximal patient benefit through the design of future clinical trials.
Collapse
Affiliation(s)
- Fei-Fei Liu
- Authors' Affiliations: Department of Radiation Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, Florida; Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda; Molecular Radiation Therapeutics Branch, Division of Cancer Treatment and Diagnosis, and Clinical Radiation Oncology Branch, National Cancer Institute, Rockville, Maryland; Department of Radiation Oncology, Stanford University, Palo Alto, California; Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa; and Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kahn J, Tofilon PJ, Camphausen K. Preclinical models in radiation oncology. Radiat Oncol 2012; 7:223. [PMID: 23270380 PMCID: PMC3549821 DOI: 10.1186/1748-717x-7-223] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 11/10/2022] Open
Abstract
As the incidence of cancer continues to rise, the use of radiotherapy has emerged as a leading treatment modality. Preclinical models in radiation oncology are essential tools for cancer research and therapeutics. Various model systems have been used to test radiation therapy, including in vitro cell culture assays as well as in vivo ectopic and orthotopic xenograft models. This review aims to describe such models, their advantages and disadvantages, particularly as they have been employed in the discovery of molecular targets for tumor radiosensitization. Ultimately, any model system must be judged by its utility in developing more effective cancer therapies, which is in turn dependent on its ability to simulate the biology of tumors as they exist in situ. Although every model has its limitations, each has played a significant role in preclinical testing. Continued advances in preclinical models will allow for the identification and application of targets for radiation in the clinic.
Collapse
Affiliation(s)
- Jenna Kahn
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
14
|
José A, Sobrevals L, Ivorra A, Fillat C. Irreversible electroporation shows efficacy against pancreatic carcinoma without systemic toxicity in mouse models. Cancer Lett 2012; 317:16-23. [DOI: 10.1016/j.canlet.2011.11.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/11/2011] [Accepted: 11/02/2011] [Indexed: 02/07/2023]
|
15
|
Development of a novel preclinical pancreatic cancer research model: bioluminescence image-guided focal irradiation and tumor monitoring of orthotopic xenografts. Transl Oncol 2012; 5:77-84. [PMID: 22496923 DOI: 10.1593/tlo.11316] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 02/07/2023] Open
Abstract
PURPOSE We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. RESULTS Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. CONCLUSIONS We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response.
Collapse
|
16
|
Xi G, Mania-Farnell B, Rajaram V, Mayanil CS, Soares MB, Tomita T, Goldman S. Efficacy of interstitial continuous vincristine infusion in a bioluminescent rodent intracranial tumor model. J Neurooncol 2011; 106:261-70. [PMID: 21842443 DOI: 10.1007/s11060-011-0680-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/30/2011] [Indexed: 12/24/2022]
Abstract
Interstitial chemotherapeutic drug infusion can bypass the blood-brain barrier, and provide high regional drug concentrations without systemic exposure. However, toxicity and efficacy for drugs administered via interstitial continuous (i.c.) infusion have not been characterized. In the current study, vincristine (VIN) was infused into the right frontal lobes of healthy Fisher 344 rats at 30, 45, 60, and 120 μg/ml over a period of 7 days at 1 μl/h, using an Alzet osmotic pump to evaluate toxicity. C6 rat glioblastoma cells transduced with a luciferase gene were inoculated into the right frontal lobe of a second group of rats. VIN was administered to tumor bearing rats via i.c. infusion 7 days later and tumor growth was monitored by bioluminescence intensity (BLI) to assess VIN efficacy, intravenous (i.v.) drug administration was used as a comparison drug delivery method. The results suggested that VIN toxicity is dose-dependent. Efficacy studies showed increased BLI, which correlates with histopathological tumor size, in saline-infused and i.v.-treated tumor-bearing rats. These rats survived an average of 28 ± 0.85 days and 33 ± 1.38 days, respectively. Both groups had large tumors at the time of death. Animals treated with VIN via i.c. infusion survived until day 90, the observation endpoint for this study. This was significantly longer than average survival times in the previous two groups. These results demonstrate that VIN via i.c. infusion is effective in reducing C6 glioblastoma tumors and prolonging rodent survival time compared to i.v. injection and suggest that chemotherapeutic drug administration via i.c. infusion may be a promising strategy for treating malignant brain tumors.
Collapse
Affiliation(s)
- Guifa Xi
- Neurosurgical Department, Children's Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer 2011; 105:628-39. [PMID: 21772330 PMCID: PMC3188925 DOI: 10.1038/bjc.2011.240] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
18
|
Close DM, Xu T, Sayler GS, Ripp S. In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. SENSORS 2010; 11:180-206. [PMID: 22346573 PMCID: PMC3274065 DOI: 10.3390/s110100180] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 12/06/2010] [Accepted: 12/23/2010] [Indexed: 02/08/2023]
Abstract
In vivo bioluminescent imaging (BLI) is increasingly being utilized as a method for modern biological research. This process, which involves the noninvasive interrogation of living animals using light emitted from luciferase-expressing bioreporter cells, has been applied to study a wide range of biomolecular functions such as gene function, drug discovery and development, cellular trafficking, protein-protein interactions, and especially tumorigenesis, cancer treatment, and disease progression. This article will review the various bioreporter/biosensor integrations of BLI and discuss how BLI is being applied towards a new visual understanding of biological processes within the living organism.
Collapse
Affiliation(s)
- Dan M Close
- The Center for Environmental Biotechnology, 676 Dabney Hall, The University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | |
Collapse
|