1
|
Avornyo A, Thanigaivelan A, Krishnamoorthy R, Hassan SW, Banat F. Ag-CuO-Decorated Ceramic Membranes for Effective Treatment of Oily Wastewater. MEMBRANES 2023; 13:176. [PMID: 36837679 PMCID: PMC9967170 DOI: 10.3390/membranes13020176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Although ultrafiltration is a reliable method for separating oily wastewater, the process is limited by problems of low flux and membrane fouling. In this study, for the first time, commercial TiO2/ZrO2 ceramic membranes modified with silver-functionalized copper oxide (Ag-CuO) nanoparticles are reported for the improved separation performance of emulsified oil. Ag-CuO nanoparticles were synthesized via hydrothermal technique and dip-coated onto commercial membranes at varying concentrations (0.1, 0.5, and 1.0 wt.%). The prepared membranes were further examined to understand the improvements in oil-water separation due to Ag-CuO coating. All modified ceramic membranes exhibited higher hydrophilicity and decreased porosity. Additionally, the permeate flux, oil rejection, and antifouling performance of the Ag-CuO-coated membranes were more significantly improved than the pristine commercial membrane. The 0.5 wt.% modified membrane exhibited a 30% higher water flux (303.63 L m-2 h-1) and better oil rejection efficiency (97.8%) for oil/water separation among the modified membranes. After several separation cycles, the 0.5 wt.% Ag-CuO-modified membranes showed a constant permeate flux with an excellent oil rejection of >95% compared with the unmodified membrane. Moreover, the corrosion resistance of the coated membrane against acid, alkali, actual seawater, and oily wastewater was remarkable. Thus, the Ag-CuO-modified ceramic membranes are promising for oil separation applications due to their high flux, enhanced oil rejection, better antifouling characteristics, and good stability.
Collapse
Affiliation(s)
- Amos Avornyo
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Arumugham Thanigaivelan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Shadi W. Hassan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
2
|
Tiburcio SRG, Macrae A, Peixoto RS, da Costa Rachid CTC, Mansoldo FRP, Alviano DS, Alviano CS, Ferreira DF, de Queiroz Venâncio F, Ferreira DF, Vermelho AB. Sulphate-reducing bacterial community structure from produced water of the Periquito and Galo de Campina onshore oilfields in Brazil. Sci Rep 2021; 11:20311. [PMID: 34645885 PMCID: PMC8514479 DOI: 10.1038/s41598-021-99196-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Sulphate-reducing bacteria (SRB) cause fouling, souring, corrosion and produce H2S during oil and gas production. Produced water obtained from Periquito (PQO) and Galo de Campina (GC) onshore oilfields in Brazil was investigated for SRB. Produced water with Postgate B, Postgate C and Baars media was incubated anaerobically for 20 days. DNA was extracted, 16S rDNA PCR amplified and fragments were sequenced using Illumina TruSeq. 4.2 million sequence reads were analysed and deposited at NCBI SAR accession number SRP149784. No significant differences in microbial community composition could be attributed to the different media but significant differences in the SRB were observed between the two oil fields. The dominant bacterial orders detected from both oilfields were Desulfovibrionales, Pseudomonadales and Enterobacteriales. The genus Pseudomonas was found predominantly in the GC oilfield and Pleomorphominas and Shewanella were features of the PQO oilfield. 11% and 7.6% of the sequences at GC and PQO were not classified at the genus level but could be partially identified at the order level. Relative abundances changed for Desulfovibrio from 29.8% at PQO to 16.1% at GC. Clostridium varied from 2.8% at PQO and 2.4% at GC. These data provide the first description of SRB from onshore produced water in Brazil and reinforce the importance of Desulfovibrionales, Pseudomonadales, and Enterobacteriales in produced water globally. Identifying potentially harmful microbes is an important first step in developing microbial solutions that prevent their proliferation.
Collapse
Affiliation(s)
- Samyra Raquel Gonçalves Tiburcio
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Andrew Macrae
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Raquel Silva Peixoto
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Felipe Raposo Passos Mansoldo
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy Lab, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniela Sales Alviano
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Celuta Sales Alviano
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Davis Fernandes Ferreira
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | | | | | - Alane Beatriz Vermelho
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy Lab, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|