1
|
Zhang W, Chen L, Ma A, Jiang W, Xu M, Bai X, Zhou J, Tang S. Proteomic analysis illustrates the potential involvement of dysregulated ribosome-related pathways and disrupted metabolism during retinoic acid-induced cleft palate development. BMC Med Genomics 2024; 17:280. [PMID: 39614345 DOI: 10.1186/s12920-024-02054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Recent studies have unveiled disrupted metabolism in the progression of cleft palate (CP), a congenital anomaly characterized by defective fusion of facial structures. Nonetheless, the precise composition of this disrupted metabolism remains elusive, prompting us to identify these components and elucidate primary metabolic irregularities contributing to CP pathogenesis. We established a murine CP model by retinoic acid (RA) treatment and analyzed control and RA-treated embryonic palatal tissues by LC-MS-based proteomic approach. We identified 220 significantly upregulated and 224 significantly downregulated proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these differentially expressed proteins (DEPs) were involved in translation, ribosome assembly, mitochondrial function, mRNA binding, as well as key metabolic pathways like oxidative phosphorylation (OXPHOS), glycolysis/gluconeogenesis, and amino acid biosynthesis. These findings suggest that dysregulated ribosome-related pathways and disrupted metabolism play a critical role in CP development. Protein-protein interaction analysis using the STRING database revealed a tightly connected network of DEPs. Furthermore, we identified the top 10 hub proteins in CP using the Cytohubba plugin in Cytoscape. These hub proteins, including RPL8, RPS11, ALB, PA2G4, RPL23, RPS6, CCT7, EGFR, HSPD1, and RPS28, are potentially key regulators of CP pathogenesis. In conclusion, our comprehensive proteomic analysis provides insights into the molecular alterations associated with RA-induced CP in Kun Ming mice. These findings suggest potential therapeutic targets and pathways to understand and prevent congenital craniofacial anomalies.
Collapse
Affiliation(s)
- Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Liyun Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Aiwei Ma
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Wenshi Jiang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Mengjing Xu
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Xujue Bai
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital, Changsha, Hunan, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China.
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China.
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China.
- , No.69, Dongxia North Road, Jinping District, Shantou, 515000, Guangdong, China.
| |
Collapse
|
2
|
Hozyasz KK, Mostowska A, Wójcicki P, Lasota A, Zadurska M, Dunin-Wilczyńska I, Jagodziński PP. Nucleotide Variants of the BH4 Biosynthesis Pathway Gene GCH1 and the Risk of Orofacial Clefts. Mol Neurobiol 2016; 53:769-776. [PMID: 26215833 PMCID: PMC4703629 DOI: 10.1007/s12035-015-9342-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/07/2015] [Indexed: 11/26/2022]
Abstract
A deficiency of GTP cyclohydrolase, encoded by the GCH1 gene, results in two neurological diseases: hyperphenylalaninaemia type HPABH4B and DOPA-responsive dystonia. Genes involved in neurotransmitter metabolism and motor systems may contribute to palatogenesis. The purpose of the study was to analyse polymorphic variants of the GCH1 gene as risk factors for non-syndromic cleft lip with or without cleft palate (NSCL/P). Genotyping of nine polymorphisms was conducted in a group of 281 NSCL/P patients and 574 controls. The GCH1 variant rs17128077 was associated with a 1.7-fold higher risk for NSCL/P (95 %CI = 1.224-2.325; p = 0.001). We also found a significant correlation between the rs8004018 and rs17128050 variants and an increased risk of oral clefts (p trend = 0.003 and 0.004, respectively). The best evidence of the global haplotype association was observed for rs17128050 and rs8004018 (p corr = 0.0152). This study demonstrates that the risk of NSCL/P is associated with variants of the GCH1 gene related to BH4 metabolism and provides some evidence of the relationships between morphological/functional shifts in the central nervous system and orofacial clefts.
Collapse
Affiliation(s)
- Kamil K Hozyasz
- Department of Paediatrics, Institute of Mother and Child, 17a Kasprzaka Str., 01-211, Warsaw, Poland.
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Agnieszka Lasota
- Department of Jaw Orthopaedics, Medical University of Lublin, Lublin, Poland
| | - Małgorzata Zadurska
- Department of Orthodontics, Institute of Dentistry, The Medical University of Warsaw, Warsaw, Poland
| | | | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Plasma metabonomics study of the patients with acute anterior uveitis based on ultra-performance liquid chromatography-mass spectrometry. Graefes Arch Clin Exp Ophthalmol 2014; 252:925-34. [PMID: 24705912 DOI: 10.1007/s00417-014-2619-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 02/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND The identification of the biomarkers of patients with acute anterior uveitis (AAU) may allow for a less invasive and more accurate diagnosis, as well as serving as a predictor in AAU progression and treatment response. The aim of this study was to identify the potential biomarkers and the metabolic pathways from plasma in patients with AAU. METHODS Both plasma metabolic biomarkers and metabolic pathways in the AAU patients versus healthy volunteers were investigated using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and a metabonomics approach. The principal component analysis (PCA) was used to separate AAU patients from healthy volunteers as well as to identify the different biomarkers between the two groups. Metabolic compounds were matched to the KEGG, METLIN, and HMDB databases, and metabolic pathways associated with AAU were identified. RESULTS The PCA for UPLC-MS data shows that the metabolites in AAU patients were significantly different from those of healthy volunteers. Of the 4,396 total features detected by UPLC-MS, 102 features were significantly different between AAU patients and healthy volunteers according to the variable importance plot (VIP) values (greater than two) of partial least squares discriminate analysis (PLS-DA). Thirty-three metabolic compounds were identified and were considered as potential biomarkers. Meanwhile, ten metabolic pathways were found that were related to the AAU according to the identified biomarkers. CONCLUSIONS These data suggest that metabolomics study can identify potential metabolites that differ between AAU patients and healthy volunteers. Based on the PCA, PLS-DA, several potential metabolic biomarkers and pathways in AAU patients were found and identified. In addition, the UPLC-MS technique combined with metabonomics could be a suitable systematic biology tool in research in clinical problems in ophthalmology, and can provide further insight into the pathophysiology of AAU.
Collapse
|
4
|
Mooney MP, Cooper GM, Marazita ML. Cleft Palate-Craniofacial Journal 50th anniversary editorial board commentary: anatomy, basic sciences, and genetics--then and now. Cleft Palate Craniofac J 2014; 51:253-6. [PMID: 24617328 DOI: 10.1597/14-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To celebrate the 50th year of the Cleft Palate-Craniofacial Journal we look back to where we started in 1964 and where we are now, and we speculate about directions for the future in a "Then and Now" editorial series. This editorial examines changing trends and perspectives in anatomical, basic science, and genetic studies published in this 50-year interval. In volume 1 there were 45 total papers, seven (16%) of which were peer-reviewed basic science and genetic articles published: four in anatomy, three in craniofacial biology, and none in genetics. In contrast, in volume 50, of 113 articles there were 47 (42%) peer-reviewed basic science and genetic articles published: 30 in anatomy, five in craniofacial biology, and 12 in genetics. Topical analysis of published manuscripts then and now reveal that similar topics in anatomy and craniofacial biology are still being researched today (e.g., phenotypic variability, optimal timing of surgery, presurgical orthopedics, bone grafting); whereas, most of the more recent papers use advanced technology to address old questions. In contrast, genetic publications have clearly increased in frequency during the last 50 years, which parallels advances in the field during this time. However, all of us have noticed that the more "cutting-edge" papers in these areas are not being submitted for publication to the journal, but instead to discipline-specific journals. Concerted efforts are therefore indicated to attract and publish these cutting-edge papers in order to keep the Cleft Palate-Craniofacial Journal in the forefront of orofacial cleft and craniofacial anomaly research and to provide a valuable service to American Cleft Palate-Craniofacial Association members.
Collapse
|
5
|
Hozyasz KK, Mostowska A, Wójcicki P, Lasota A, Wołkowicz A, Dunin-Wilczyńska I, Jagodziński PP. Association of common variants in PAH and LAT1 with non-syndromic cleft lip with or without cleft palate (NSCL/P) in the Polish population. Arch Oral Biol 2014; 59:363-9. [PMID: 24606907 DOI: 10.1016/j.archoralbio.2014.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common structural malformation with a complex and multifactorial aetiology. Associations of abnormalities in phenylalanine metabolism and orofacial clefts have been suggested. METHODS Eight single nucleotide polymorphisms (SNPs) of genes encoding phenylalanine hydroxylase (PAH) and large neutral l-amino acid transporter type 1 (LAT1), as well as the PAH mutation that is most common in the Polish population (rs5030858; R408W), were investigated in 263 patients with NSCL/P and 270 matched controls using high resolution melting curve analysis (HRM). RESULTS We found that two polymorphic variants of PAH appear to be risk factors for NSCL/P. The odds ratio (OR) for individuals with the rs7485331 A allele (AC or AA) compared to CC homozygotes was 0.616 (95% confidence interval [CI]=0.437-0.868; p=0.005) and this association remains statistically significant after multiple testing correction. The PAH rs12425434, previously associated with schizophrenia, was borderline associated with orofacial clefts. Moreover, haplotype analysis of polymorphisms in the PAH gene revealed a 4-marker combination that was significantly associated with NSCL/P. The global p-value for a haplotype comprised of SNPs rs74385331, rs12425434, rs1722392, and the mutation rs5030858 was 0.032, but this association did not survive multiple testing correction. CONCLUSION This study suggests the involvement of the PAH gene in the aetiology of NSCL/P in the tested population. Further replication will be required in separate cohorts to confirm the consistency of the observed association.
Collapse
Affiliation(s)
- Kamil K Hozyasz
- Department of Paediatrics, Institute of Mother and Child, Warsaw, Poland.
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Wójcicki
- University Clinic of Medical Academy, Wroclaw, Poland; Department of Plastic Surgery, Specialist Medical Center, Polanica Zdroj, Poland
| | - Agnieszka Lasota
- Department of Jaw Orthopaedics, Medical University of Lublin, Lublin, Poland
| | - Anna Wołkowicz
- Department of Paediatrics, Institute of Mother and Child, Warsaw, Poland
| | | | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|