1
|
Carroll SH, Schafer S, Dalessandro E, Ho TV, Chai Y, Liao EC. Neural crest and periderm-specific requirements of Irf6 during neural tube and craniofacial development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598425. [PMID: 38915513 PMCID: PMC11195129 DOI: 10.1101/2024.06.11.598425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
IRF6 is a key genetic determinant of syndromic and non-syndromic cleft lip and palate. The ability to interrogate post-embryonic requirements of Irf6 has been hindered, as global Irf6 ablation in the mouse causes neonatal lethality. Prior work analyzing Irf6 in mouse models defined its role in the embryonic surface epithelium and periderm where it is required to regulate cell proliferation and differentiation. Several reports have also described Irf6 gene expression in other cell types, such as muscle, and neuroectoderm. However, analysis of a functional role in non-epithelial cell lineages has been incomplete due to the severity and lethality of the Irf6 knockout model and the paucity of work with a conditional Irf6 allele. Here we describe the generation and characterization of a new Irf6 floxed mouse model and analysis of Irf6 ablation in periderm and neural crest lineages. This work found that loss of Irf6 in periderm recapitulates a mild Irf6 null phenotype, suggesting that Irf6-mediated signaling in periderm plays a crucial role in regulating embryonic development. Further, conditional ablation of Irf6 in neural crest cells resulted in an anterior neural tube defect of variable penetrance. The generation of this conditional Irf6 allele allows for new insights into craniofacial development and new exploration into the post-natal role of Irf6.
Collapse
Affiliation(s)
- Shannon H Carroll
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
| | - Sogand Schafer
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| |
Collapse
|
2
|
João AL, Cunha N, Cordeiro AI, Lopes MJP. [Artículo traducido] Síndrome de Van der Woude y alopecia areata: más que una asociación fortuita? ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:T921-T922. [PMID: 37748732 DOI: 10.1016/j.ad.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 09/27/2023] Open
Affiliation(s)
- A L João
- Dermatology Department, Centro Hospitalar Universitário de Lisboa Central - Lisboa, Portugal.
| | - N Cunha
- Dermatology Department, Centro Hospitalar Universitário de Lisboa Central - Lisboa, Portugal
| | - A I Cordeiro
- Pediatrics Department, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - M J Paiva Lopes
- Dermatology Department, Centro Hospitalar Universitário de Lisboa Central - Lisboa, Portugal
| |
Collapse
|
3
|
João AL, Cunha N, Cordeiro AI, Paiva Lopes MJ. Van der Woude Syndrome and Alopecia Areata: More Than a Fortuitous Association? ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:921-922. [PMID: 36740176 DOI: 10.1016/j.ad.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- A L João
- Dermatology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal.
| | - N Cunha
- Dermatology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - A I Cordeiro
- Pediatrics Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - M J Paiva Lopes
- Dermatology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| |
Collapse
|
4
|
Parisi L, Mockenhaupt C, Rihs S, Mansour F, Katsaros C, Degen M. Consistent downregulation of the cleft lip/palate-associated genes IRF6 and GRHL3 in carcinomas. Front Oncol 2022; 12:1023072. [PMID: 36457487 PMCID: PMC9706198 DOI: 10.3389/fonc.2022.1023072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2023] Open
Abstract
Interferon Regulatory Factor 6 (IRF6) and Grainyhead Like Transcription Factor 3 (GRHL3) are transcription factors that orchestrate gene regulatory networks required for the balance between keratinocyte differentiation and proliferation. Absence of either protein results in the lack of a normal stratified epidermis with keratinocytes failing to stop proliferating and to terminally differentiate. Numerous pathological variants within IRF6 and GRHL3 have been identified in orofacial cleft-affected individuals and expression of the two transcription factors has been found to be often dysregulated in cancers. However, whether orofacial cleft-associated IRF6 and GRHL3 variants in patients might also affect their cancer risk later in life, is not clear yet. The fact that the role of IRF6 and GRHL3 in cancer remains controversial makes this question even more challenging. Some studies identified IRF6 and GRHL3 as oncogenes, while others could attribute tumor suppressive functions to them. Trying to solve this apparent conundrum, we herein aimed to characterize IRF6 and GRHL3 function in various types of carcinomas. We screened multiple cancer and normal cell lines for their expression, and subsequently proceeded with functional assays in cancer cell lines. Our data uncovered consistent downregulation of IRF6 and GRHL3 in all types of carcinomas analyzed. Reduced levels of IRF6 and GRHL3 were found to be associated with several tumorigenic properties, such as enhanced cell proliferation, epithelial mesenchymal transition, migration and reduced differentiation capacity. Based on our findings, IRF6 and GRHL3 can be considered as tumor suppressor genes in various carcinomas, which makes them potential common etiological factors for cancer and CLP in a fraction of CLP-affected patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Balasubramanian M, Livesey H, Iroegbu U. Van der Woude syndrome: Presentation of child with duodenal atresia with an interferon regulatory factor 6 variant. JOURNAL OF CLEFT LIP PALATE AND CRANIOFACIAL ANOMALIES 2022. [DOI: 10.4103/jclpca.jclpca_35_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Girousi E, Muerner L, Parisi L, Rihs S, von Gunten S, Katsaros C, Degen M. Lack of IRF6 Disrupts Human Epithelial Homeostasis by Altering Colony Morphology, Migration Pattern, and Differentiation Potential of Keratinocytes. Front Cell Dev Biol 2021; 9:718066. [PMID: 34660580 PMCID: PMC8514984 DOI: 10.3389/fcell.2021.718066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Variants within the gene encoding for the transcription factor Interferon Regulatory Factor 6 (IRF6) are associated with syndromic and non-syndromic Cleft Lip/Palate (CLP) cases. IRF6 plays a vital role in the regulation of the proliferation/differentiation balance in keratinocytes and is involved in wound healing and migration. Since a fraction of CLP patients undergoing corrective cleft surgery experience wound healing complications, IRF6 represents an interesting candidate gene linking the two processes. However, Irf6 function has been mainly studied in mice and knowledge on IRF6 in human cells remains sparse. Here, we aimed to elucidate the role of IRF6 in human postnatal skin- and oral mucosa-derived keratinocytes. To do so, we applied CRISPR/Cas9 to ablate IRF6 in two TERT-immortalized keratinocyte cultures, which we used as model cell lines. We show that IRF6 controls the appearance of single cells and colonies, with the latter being less cohesive in its absence. Consequently, IRF6 knockout keratinocytes often moved as single cells instead of a collective epithelial sheet migration but maintained their epithelial character. Lack of IRF6 triggered severe keratinocyte differentiation defects, which were already apparent in the stratum spinosum and extended to the stratum corneum in 3D organotypic skin cultures, while it did not alter their growth rate. Finally, proteomics revealed that most of the differentially expressed proteins in the absence of IRF6 could be associated with differentiation, cell-cell adhesion as well as immune response. Our data expand the knowledge on IRF6 in human postnatal keratinocytes, which will help to better understand IRF6-related pathologies.
Collapse
Affiliation(s)
- Eleftheria Girousi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Lukas Muerner
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Silvia Rihs
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | | | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
El Yaagoubi OM, Oularbi L, Bouyahya A, Samaki H, El Antri S, Aboudkhil S. The role of the ubiquitin-proteasome pathway in skin cancer development: 26S proteasome-activated NF-κB signal transduction. Cancer Biol Ther 2021; 22:479-492. [PMID: 34583610 DOI: 10.1080/15384047.2021.1978785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Ubiquitin-Proteasome System plays a central role in signal transduction associated with stress, in the skin in particular by the control of NF-κB pathways. Under normal conditions, the inhibitory protein IκB is phosphorylated by kinases, then ubiquitinated and ends up at the proteasome to be degraded. The present short review discusses recent progress in the inhibition of NF-κB activation by proteasome inhibitors prevents the degradation of protein IκB, which accumulates in the cytosol, and there by the activation of NF-κB. Moreover, would not only limit the expression of adhesion molecules and cytokines involved in metastatic processes, but also increase the sensitivity of cancer cells to apoptosis. Considering this fact, the activity of NF-κB is regulated by the phosphorylation and proteasome-dependent degradation of its inhibitor Iκb. In this scenario, the use of a proteasome inhibitor might be an effective strategy in the treatment of skin cancer with constitutive activation of NF-κB.
Collapse
Affiliation(s)
- Ouadie Mohamed El Yaagoubi
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Larbi Oularbi
- Laboratory of Materials, Membranes, and Environment, Faculty of Science and Technology-Mohammedia, Hassan II University, Casablanca, Morocco.,Supramolecular Nanomaterials Group (SNG), Mohammed VI Polytechnic University, Benguerir Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.,Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Hamid Samaki
- National Institute of Social Action (INAS), Tangier, Morocco
| | - Said El Antri
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Souad Aboudkhil
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
8
|
Parisi L, Knapp PO, Girousi E, Rihs S, La Scala GC, Schnyder I, Stähli A, Sculean A, Bosshardt DD, Katsaros C, Degen M. A Living Cell Repository of the Cranio-/Orofacial Region to Advance Research and Promote Personalized Medicine. Front Cell Dev Biol 2021; 9:682944. [PMID: 34179013 PMCID: PMC8222786 DOI: 10.3389/fcell.2021.682944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of congenital anomalies in newborns is estimated to be as high as 6%, many of which involving the cranio-/orofacial region. Such malformations, including several syndromes, are usually identified prenatally, at birth, or rarely later in life. The lack of clinically relevant human cell models of these often very rare conditions, the societal pressure to avoid the use of animal models and the fact that the biological mechanisms between rodents and human are not necessarily identical, makes studying cranio-/orofacial anomalies challenging. To overcome these limitations, we are developing a living cell repository of healthy and diseased cells derived from the cranio-/orofacial region. Ultimately, we aim to make patient-derived cells, which retain the molecular and genetic characteristics of the original anomaly or disease in vitro, available for the scientific community. We report our efforts in establishing a human living cell bank derived from the cranio-/orofacial region of otherwise discarded tissue samples, detail our strategy, processes and quality checks. Such specific cell models have a great potential for discovery and translational research and might lead to a better understanding and management of craniofacial anomalies for the benefit of all affected individuals.
Collapse
Affiliation(s)
- Ludovica Parisi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Patrick O Knapp
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Eleftheria Girousi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Silvia Rihs
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Giorgio C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Dieter D Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Robert K. Schenk Laboratory of Oral Histology, Dental Research Center, University of Bern, Bern, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Vieira AR. A Need for Updating the Research Agenda for Cleft Lip and Palate and Extending the Cleft Team Model to Dental Medicine. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.678477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Care for individuals born with cleft lip and palate is done by a team approach, including dental medicine. However, oral health is not integrated in other situations that affect overall health. This perspective essay makes the case for a universal team approach, having dental medicine integrated regardless of the overall health issue, much like how cleft lip and palate is managed. Furthermore, future research agenda on the etiology of cleft lip and palate in particular will need to be adjusted for a major roadblock: the lack of more sophisticated clinical descriptions for the cases ascertained at birth.
Collapse
|
10
|
Degen M, Girousi E, Feldmann J, Parisi L, La Scala GC, Schnyder I, Schaller A, Katsaros C. A Novel Van der Woude Syndrome-Causing IRF6 Variant Is Subject to Incomplete Non-sense-Mediated mRNA Decay Affecting the Phenotype of Keratinocytes. Front Cell Dev Biol 2020; 8:583115. [PMID: 33117810 PMCID: PMC7552806 DOI: 10.3389/fcell.2020.583115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/03/2020] [Indexed: 01/02/2023] Open
Abstract
Van der Woude syndrome (VWS) is a genetic syndrome that leads to typical phenotypic traits, including lower lip pits and cleft lip/palate (CLP). The majority of VWS-affected patients harbor a pathogenic variant in the gene encoding for the transcription factor interferon regulatory factor 6 (IRF6), a crucial regulator of orofacial development, epidermal differentiation and tissue repair. However, most of the underlying mechanisms leading from pathogenic IRF6 gene variants to phenotypes observed in VWS remain poorly understood and elusive. The availability of one VWS individual within our cohort of CLP patients allowed us to identify a novel VWS-causing IRF6 variant and to functionally characterize it. Using VWS patient-derived keratinocytes, we reveal that most of the mutated IRF6_VWS transcripts are subject to a non-sense-mediated mRNA decay mechanism, resulting in IRF6 haploinsufficiency. While moderate levels of IRF6_VWS remain detectable in the VWS keratinocytes, our data illustrate that the IRF6_VWS protein, which lacks part of its protein-binding domain and its whole C-terminus, is noticeably less stable than its wild-type counterpart. Still, it maintains transcription factor function. As we report and characterize a so far undescribed VWS-causing IRF6 variant, our results shed light on the physiological as well as pathological role of IRF6 in keratinocytes. This acquired knowledge is essential for a better understanding of the molecular mechanisms leading to VWS and CLP.
Collapse
Affiliation(s)
- Martin Degen
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Eleftheria Girousi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Julia Feldmann
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Giorgio C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - André Schaller
- Division of Human Genetics, Bern University Hospital, Bern, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Yang K, Dong XY, Wu J, Zhu JJ, Tan Y, Yan YS, Lin L, Zhang DL. A clinical and multi‑omics study of Van der Woude syndrome in three generations of a Chinese family. Mol Med Rep 2020; 22:2925-2931. [PMID: 32945398 PMCID: PMC7457716 DOI: 10.3892/mmr.2020.11365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022] Open
Abstract
Previous studies have suggested that pathogenic variants in interferon regulatoryse factor 6 (IRF6) can account for almost 70% of familial Van der Woude Syndrome (VWS) cases. However, gene modifiers that account for the phenotypic variability of IRF6 in the context of VWS remain poorly characterized. The aim of this study was to report a family with VWS with variable expressivity and to identify the genetic cause. A 4-month-old boy initially presented with cleft palate and bilateral lower lip pits. Examination of his family history identified similar, albeit milder, clinical features in another four family members, including bilateral lower lip pits and/or hypodontia. Peripheral blood samples of eight members in this three-generation family were subsequently collected, and whole-exome sequencing was performed to detect pathogenic variants. A heterozygous missense IRF6 variant with a c.1198C>T change in exon 9 (resulting in an R400W change at the amino acid level) was detected in five affected subjects, but not in the other three unaffected subjects. Moreover, subsequent structural analysis was indicative of damaged stability to the structure in the mutant IRF protein. Whole-transcriptome sequencing, expression analysis and Gene Ontology enrichment analysis were conducted on two groups of patients with phenotypic diversity from the same family. These analyses identified significant differentially expressed genes and enriched pathways in these two groups. Altogether, these findings provide insight into the mechanism underlying the variable expressivity of VWS.
Collapse
Affiliation(s)
- Kai Yang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Xing-Yue Dong
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Jue Wu
- Department of Translational Medicine Laboratory, First Medical Center of People's Liberation Army General Hospital, Beijing 100039, P.R. China
| | - Jian-Jiang Zhu
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing 100080, P.R. China
| | - Ya Tan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - You-Sheng Yan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Dong-Liang Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
12
|
Rhea L, Canady FJ, Le M, Reeb T, Canady JW, Kacmarynski DSF, Avvari R, Biggs LC, Dunnwald M. Interferon regulatory factor 6 is required for proper wound healing in vivo. Dev Dyn 2019; 249:509-522. [PMID: 31724286 DOI: 10.1002/dvdy.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Van der Woude syndrome (VWS) is the most common form of syndromic orofacial cleft caused predominantly by mutations in Interferon Regulatory Factor 6 (IRF6). We previously reported that individuals with VWS have increased risk of wound healing complications following cleft repair compared with individuals with nonsyndromic orofacial clefts (nonsyndromic cleft lip and palate-NSCLP). In vitro, absence of IRF6 leads to impaired keratinocyte migration and embryonic wound healing. However, there is currently no data on tissue repair in adult animals and cells with reduced levels of IRF6 like in VWS. RESULTS Excisional wounds of Irf6+/- and wild-type animals were analyzed 4 and 7 days post-wounding. Although all wounds were reepithelialized after 7 days, the epidermal and wound volume of repaired wounds was larger in Irf6+/- . These data were supported by increased keratinocyte proliferation in the neoformed epidermis and a less mature granulation tissue with increased cytokine levels. This effect was not cell autonomous, as Irf6+/- neonatal keratinocytes in vitro did not exhibit defects in scratch wound closure or proliferation. Keratinocytes from individuals with VWS also migrated similarly to keratinocytes from NSCLP individuals. CONCLUSIONS These data support a role for IRF6 in wound healing by regulating keratinocyte proliferation, granulation tissue maturation, and cytokine levels.
Collapse
Affiliation(s)
- Lindsey Rhea
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | | | - Marc Le
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa
| | - Tanner Reeb
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa.,Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa
| | - John W Canady
- Department of Otolaryngology, Head and Neck Surgery, The University of Iowa, Iowa City, Iowa.,Department of Surgery, The University of Iowa, Iowa City, Iowa
| | - Deborah S F Kacmarynski
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa.,Department of Otolaryngology, Head and Neck Surgery, The University of Iowa, Iowa City, Iowa
| | - Rishika Avvari
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa
| | - Leah C Biggs
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa
| | - Martine Dunnwald
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa.,Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
13
|
Lin-Shiao E, Lan Y, Welzenbach J, Alexander KA, Zhang Z, Knapp M, Mangold E, Sammons M, Ludwig KU, Berger SL. p63 establishes epithelial enhancers at critical craniofacial development genes. SCIENCE ADVANCES 2019; 5:eaaw0946. [PMID: 31049400 PMCID: PMC6494499 DOI: 10.1126/sciadv.aaw0946] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/19/2019] [Indexed: 05/15/2023]
Abstract
The transcription factor p63 is a key mediator of epidermal development. Point mutations in p63 in patients lead to developmental defects, including orofacial clefting. To date, knowledge on how pivotal the role of p63 is in human craniofacial development is limited. Using an inducible transdifferentiation model, combined with epigenomic sequencing and multicohort meta-analysis of genome-wide association studies data, we show that p63 establishes enhancers at craniofacial development genes to modulate their transcription. Disease-specific substitution mutation in the DNA binding domain or sterile alpha motif protein interaction domain of p63, respectively, eliminates or reduces establishment of these enhancers. We show that enhancers established by p63 are highly enriched for single-nucleotide polymorphisms associated with nonsyndromic cleft lip ± cleft palate (CL/P). These orthogonal approaches indicate a strong molecular link between p63 enhancer function and CL/P, illuminating molecular mechanisms underlying this developmental defect and revealing vital regulatory elements and new candidate causative genes.
Collapse
Affiliation(s)
- Enrique Lin-Shiao
- Departments of Cell and Developmental Biology and Epigenetics Institute, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics, Biomedical Sciences Graduate Program, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Departments of Cell and Developmental Biology and Epigenetics Institute, Philadelphia, PA 19104, USA
| | - Julia Welzenbach
- Institute of Human Genetics, University Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Katherine A Alexander
- Departments of Cell and Developmental Biology and Epigenetics Institute, Philadelphia, PA 19104, USA
| | - Zhen Zhang
- Departments of Cell and Developmental Biology and Epigenetics Institute, Philadelphia, PA 19104, USA
| | - Michael Knapp
- Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, University Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Morgan Sammons
- Departments of Cell and Developmental Biology and Epigenetics Institute, Philadelphia, PA 19104, USA
| | - Kerstin U Ludwig
- Institute of Human Genetics, University Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Shelley L Berger
- Departments of Cell and Developmental Biology and Epigenetics Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Degen M, Wiederkehr A, La Scala GC, Carmann C, Schnyder I, Katsaros C. Keratinocytes Isolated From Individual Cleft Lip/Palate Patients Display Variations in Their Differentiation Potential in vitro. Front Physiol 2018; 9:1703. [PMID: 30555344 PMCID: PMC6281767 DOI: 10.3389/fphys.2018.01703] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/12/2018] [Indexed: 01/12/2023] Open
Abstract
To gain more understanding of the complex molecular processes underlying cleft lip/palate (CLP), we established a unique human cell bank, consisting of keratinocytes and corresponding fibroblasts from individual CLP patients as a new study tool. After their careful characterization, we used such patient-derived cell cultures as well as control keratinocytes for in vitro differentiation and proliferation assays. Foreskin-derived control cells as a group showed significant higher induction of the late differentiation markers Loricrin and Filaggrin than the group of CLP patients-derived keratinocytes. Additionally, we detected great variations between individual CLP keratinocyte cell cultures in regard to their potential to terminally differentiate as assessed by the induction of Loricrin and Filaggrin. Primary patient cell cultures that did not properly differentiate, exhibited high proliferation rates. Moreover, we could correlate the expression levels of transcription factor IRF6 to the ability of individual cell cultures to terminally differentiate. Using clinically relevant, patient-derived cells, our results suggest that some of the genetic predispositions causing CLP might also lead to deficiencies in keratinocyte differentiation manifested in in vitro assays.
Collapse
Affiliation(s)
- Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Astrid Wiederkehr
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Giorgio C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Christina Carmann
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|