1
|
Formisano L, El-Nakhel C, Corrado G, De Pascale S, Rouphael Y. Biochemical, Physiological, and Productive Response of Greenhouse Vegetables to Suboptimal Growth Environment Induced by Insect Nets. BIOLOGY 2020; 9:biology9120432. [PMID: 33266064 PMCID: PMC7761298 DOI: 10.3390/biology9120432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/28/2022]
Abstract
Simple Summary Global warming jeopardizes agriculture, which must satisfy the demands of the world’s expanding population for both staple and high-quality products while ensuring increased sustainability. Environmental and regulatory pressure has prompted farmers to convert their production strategies towards sustainable agriculture systems, by introducing for instance, integrated pest management strategies. Insect nets are a suitable tool for pest control but require careful assessment of their effects on the generated microclimate. The low porosity, mandatory for proper exclusion, results in suboptimal airflow and in temperature rise with detrimental effects on crop production and quality. The biochemical and morpho-physiological changes induced by high-temperature impact vegetable crop performance and product quality in advanced growing systems, and also represent a challenge for the most impoverished developing countries of the world, which rely on local horticultural products as a key source of dietary diversity. Abstract Environmental pressure poses a major challenge to the agricultural sector, which requires the development of cultivation techniques that can effectively reduce the impact of abiotic stress affecting crop yield and quality (e.g., thermal stress, wind, and hail) and of biotic factors, such as insect pests. The increased consumer interest in premium-quality vegetables requires the implementation of sustainable integrated pest management (IPM) strategies towards an ever-increasing insect pressure, also boosted by cultivation under protected structures. In this respect, insect nets represent an excellent, eco-friendly solution. This review aims to provide an integrative investigation of the effects of the insect screens in agriculture. Attention is dedicated to the impact on growth, yield, and quality of vegetables, focusing on the physiological and biochemical mechanisms of response to heat stress induced by insect screens. The performance of insect nets depends on many factors—foremost, on the screen mesh, with finer mesh being more effective as a barrier. However, finer mesh nets impose high-pressure drops and restrict airflow by reducing ventilation, which can result in a detrimental effect on crop growth and yield due to high temperatures. The predicted outcomes are wide ranging, because heat stress can impact (i) plant morpho-physiological attributes; (ii) biochemical and molecular properties through changes in the primary and secondary metabolisms; (iii) enzymatic activity, chloroplast proteins, and photosynthetic and respiratory processes; (iv) flowering and fruit settings; (v) the accumulation of reactive oxygen species (ROSs); and (vi) the biosynthesis of secondary biomolecules endowed with antioxidant capacity.
Collapse
|
2
|
Agrafioti P, Faliagka S, Lampiri E, Orth M, Pätzel M, Katsoulas N, Athanassiou CG. Evaluation of Silica-Coated Insect Proof Nets for the Control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1658. [PMID: 32847010 PMCID: PMC7557586 DOI: 10.3390/nano10091658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
Insect proof nets are widely used in agriculture as mechanical and physical barriers to regulate pest populations in a greenhouse. However, their integration in the greenhouse ventilation openings is highly associated with the decrease of air flow and the adequate ventilation. Thus, there is need for alternative pest management tools that do not impair adequate ventilation. In the present study, we tested four net formulations of relatively large mesh size coated with SiO2 nanoparticles, namely, ED3, ED3-P, ED5, and ED5-P to evaluate their insecticidal properties against adults of Aphis fabae and Sitophilus oryzae and larvae of Tribolium confusum. ED3 and ED5 nets were coated with SiO2 nanoparticles of different diameter, while in the case of ED3-P and ED5-P, paraffin was added to increase the mass of the deposited particles on the net's surface. In the first series of bioassays, the knockdown and mortality rates of these species were evaluated after exposure to the aforementioned net formulations for 5, 10, 15, 20, 25, 30, 60, 90, and 180 min. In the second series of bioassays, knockdown and mortality of these species were recorded after 1, 7, and 10 days of post-exposure to the nets for different time intervals (15, 30, and 60 min). Based on our results, all nets significantly affected A. fabae, since all insects were dead at the 1-day post-exposure period to the silica-treated nets. Conversely, at the same interval, no effect on either S. oryzae adults or T. confusum larvae was observed. However, in the case of S. oryzae, the efficacy of all nets reached 100% 7 days after the exposure, even for adults that had been initially exposed for 15 min to the treated nets. Among the species tested, T. confusum larvae exhibited the lowest mortality rate, which did not exceed 34% at the 10 days of post-exposure interval. Our work underlines the efficacy of treated nets in pest management programs, under different application scenarios, at the pre- and post-harvest stages of agricultural commodities.
Collapse
Affiliation(s)
- Paraskevi Agrafioti
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str., 38446 Volos, Magnesia, Greece; (E.L.); (C.G.A.)
| | - Sofia Faliagka
- Laboratory of Agricultural Constructions and Environmental Control, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou Street, 38446 Volos Magnesia, Greece; (S.F.); (N.K.)
| | - Evagelia Lampiri
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str., 38446 Volos, Magnesia, Greece; (E.L.); (C.G.A.)
| | - Merle Orth
- Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-St. 1, 52074 Aachen, Germany; (M.O.); (M.P.)
| | - Mark Pätzel
- Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-St. 1, 52074 Aachen, Germany; (M.O.); (M.P.)
| | - Nikolaos Katsoulas
- Laboratory of Agricultural Constructions and Environmental Control, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou Street, 38446 Volos Magnesia, Greece; (S.F.); (N.K.)
| | - Christos G. Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str., 38446 Volos, Magnesia, Greece; (E.L.); (C.G.A.)
| |
Collapse
|
3
|
Identification of Novel Pesticides for Use against Glasshouse Invertebrate Pests in UK Tomatoes and Peppers. INSECTS 2015; 6:464-77. [PMID: 26463197 PMCID: PMC4553492 DOI: 10.3390/insects6020464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 11/29/2022]
Abstract
To inform current and future pesticide availability to glasshouse vegetable growers, the current project trialled more than twenty products, including existing industry standards, against four key pests of glasshouse tomatoes and bell peppers. These included experimental conventional chemical pesticides as well as alternative biopesticide and biorational products based on phytochemicals, microbials and physically-acting substances. The results suggest that certain biopesticide products, particularly botanicals, provide good levels of pest control, with the same being true of experimental conventional chemical pesticides not yet recommended for use against these pests on these crops. Efforts are on-going to ensure that results of the current project translate to industry benefit via new pesticide approvals.
Collapse
|
4
|
Scientific Opinion on the risk to plant health posed by Tomato spotted wilt virus to the EU territory with identification and evaluation of risk reduction options. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.3029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
5
|
Ferral J, Chavez-Nuñez L, Euan-Garcia M, Ramirez-Sierra MJ, Najera-Vazquez MR, Dumonteil E. Comparative field trial of alternative vector control strategies for non-domiciliated Triatoma dimidiata. Am J Trop Med Hyg 2010; 82:60-6. [PMID: 20064997 DOI: 10.4269/ajtmh.2010.09-0380] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Chagas disease is a major vector-borne disease, and regional initiatives based on insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is a challenge. We performed a proof-of-concept field trial to test alternative strategies in rural Yucatan, Mexico. Follow-up of house infestation for two seasons following the interventions confirmed that insecticide spraying should be performed annually for the effective control of Triatoma dimidiata; however, it also confirmed that insect screens or long-lasting impregnated curtains may represent good alternative strategies for the sustained control of these vectors. Ecosystemic peridomicile management would be an excellent complementary strategy to improve the cost-effectiveness of interventions. Because these strategies would also be effective against other vector-borne diseases, such as malaria or dengue, they could be integrated within a multi-disease control program.
Collapse
Affiliation(s)
- Jhibran Ferral
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatan, Mexico
| | | | | | | | | | | |
Collapse
|
6
|
Barbu C, Dumonteil E, Gourbière S. Optimization of control strategies for non-domiciliated Triatoma dimidiata, Chagas disease vector in the Yucatán Peninsula, Mexico. PLoS Negl Trop Dis 2009; 3:e416. [PMID: 19365542 PMCID: PMC2664331 DOI: 10.1371/journal.pntd.0000416] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 03/17/2009] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Chagas disease is the most important vector-borne disease in Latin America. Regional initiatives based on residual insecticide spraying have successfully controlled domiciliated vectors in many regions. Non-domiciliated vectors remain responsible for a significant transmission risk, and their control is now a key challenge for disease control. METHODOLOGY/PRINCIPAL FINDINGS A mathematical model was developed to predict the temporal variations in abundance of non-domiciliated vectors inside houses. Demographic parameters were estimated by fitting the model to two years of field data from the Yucatan peninsula, Mexico. The predictive value of the model was tested on an independent data set before simulations examined the efficacy of control strategies based on residual insecticide spraying, insect screens, and bednets. The model accurately fitted and predicted field data in the absence and presence of insecticide spraying. Pyrethroid spraying was found effective when 50 mg/m(2) were applied yearly within a two-month period matching the immigration season. The >80% reduction in bug abundance was not improved by larger doses or more frequent interventions, and it decreased drastically for different timing and lower frequencies of intervention. Alternatively, the use of insect screens consistently reduced bug abundance proportionally to the reduction of the vector immigration rate. CONCLUSION/SIGNIFICANCE Control of non-domiciliated vectors can hardly be achieved by insecticide spraying, because it would require yearly application and an accurate understanding of the temporal pattern of immigration. Insect screens appear to offer an effective and sustainable alternative, which may be part of multi-disease interventions for the integrated control of neglected vector-borne diseases.
Collapse
Affiliation(s)
- Corentin Barbu
- UMR 5244 CNRS-EPHE-UPVD, Laboratoire de Biologie et d'Ecologie Tropicale et Méditerranéenne, Université de Perpignan Via Domitia, Perpignan, France
| | - Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Sébastien Gourbière
- UMR 5244 CNRS-EPHE-UPVD, Laboratoire de Biologie et d'Ecologie Tropicale et Méditerranéenne, Université de Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
7
|
Bethke JA, Cloyd RA. Pesticide use in ornamental production: what are the benefits? PEST MANAGEMENT SCIENCE 2009; 65:345-350. [PMID: 19165759 DOI: 10.1002/ps.1695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pest control in ornamental production is challenging owing to the diversity of crops grown, the desired aesthetic perfection, the potential economic loss due to failure and the multitude of arthropod pests encountered. Agricultural crops of less value per acre, such as row crops, can tolerate a certain level of damage from arthropod pests without compromising yields. Damage thresholds for ornamentals, however, are essentially zero. Pesticides are a viable method of protection for such a crop in lieu of alternatives. Therefore, the purpose of this paper is to emphasize the importance of pesticides to the ornamental industry. Pesticides provide many benefits to ornamental producers, including: (1) consistent availability; (2) rapid kill; (3) reliable and consistent control; (4) increased crop production and quality; (5) they may be used to prevent movement of invasive pests; (6) they are less expensive (in general) than alternatives; (7) they may reduce plant pathogenic transmission; (8) they may be used in conjunction with natural enemies. Pesticide use will continue to be a significant strategy for dealing with arthropod pests so that ornamental producers can stay competitive in both national and international markets.
Collapse
Affiliation(s)
- James A Bethke
- University of California Cooperative Extension, 334 Via Vera Cruz, San Marcos, CA 66506-4004, USA.
| | | |
Collapse
|
8
|
Abstract
Thrips are among the stealthiest of insect invaders due to their small size and cryptic habits. Many invasive thrips are notorious for causing extensive crop damage, vectoring viral diseases, and permanently destabilizing IPM systems owing to irruptive outbreaks that require remediation with insecticides, leading to the development of insecticide resistance. Several challenges surface when attempting to manage incursive thrips species. Foremost among these is early recognition, followed by rapid and accurate identification of emergent pest species, elucidation of the region of origin, development of a management program, and the closing of conduits for global movement of thrips. In this review, we examine factors facilitating invasion by thrips, damage caused by these insects, pre- and post-invasion management tactics, and challenges looming on the horizon posed by invasive Thysanoptera, which continually challenge the development of sustainable management practices.
Collapse
Affiliation(s)
- Joseph G Morse
- Department of Entomology, University of California, Riverside, 92521, USA.
| | | |
Collapse
|
9
|
Daughtrey ML, Benson DM. Principles of plant health management for ornamental plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:141-69. [PMID: 16078880 DOI: 10.1146/annurev.phyto.43.040204.140007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Economic, environmental, and technological influences complicate the task of achieving disease-free products in the ornamentals industry. Integrated pest management (IPM) is a cornerstone of floriculture and nursery crop production: strategies include sanitation, clean stock, host resistance, and control through biological, cultural, environmental, chemical, and regulatory means. Sanitation measures and cultural controls must keep pace with new production technologies. Clean stock programs are used for many crops that are propagated vegetatively. Breeding, selection, and biotechnology provide crops resistant to pathogens. Offshore production for economic competitiveness can introduce pathogens that make regulatory programs necessary. New biocontrol and chemical products continue to improve control while meeting the requirement for minimal environmental impact. Continual introduction of new crops and new production technologies creates new opportunities for pathogens to exploit, such that new disease management tactics must be discovered and old ones rediscovered to achieve optimum health management for ornamentals.
Collapse
Affiliation(s)
- Margery L Daughtrey
- Department of Plant Pathology, Cornell University, Long Island Horticultural Research & Extension Center, Riverhead, New York 11901, USA.
| | | |
Collapse
|
10
|
Berlinger MJ, Taylor RAJ, Lebiush-Mordechi S, Shalhevet S, Spharim I. Efficiency of insect exclusion screens for preventing whitefly transmission of tomato yellow leaf curl virus of tomatoes in Israel. BULLETIN OF ENTOMOLOGICAL RESEARCH 2002; 92:367-373. [PMID: 12241562 DOI: 10.1079/ber2002180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is the most frequently occurring virus in tomatoes in the Middle East, and the most harmful one. It is transmitted solely by the whitefly Bemisia tabaci (Gennadius). Within 4-6h of inoculative feeding, a whitefly can transmit TYLCV to a healthy plant with 80% probability. The symptoms are apparent after two to three weeks whereupon fruit-set is effectively terminated. The only means of controlling TYLCV is by controlling the whitefly. Until 1990 this was exclusively by insecticides. Starting in 1990, growers of greenhouse tomatoes in Israel began adopting insect exclusion screens to prevent inoculation of TYLCV. This article reports on the methods used in the search for efficient screening materials and presents data on their relative efficiencies in excluding B. tabaci and several other greenhouse pests. Ten materials were tested, of which five were found to be effective in excluding B. tabaci under laboratory conditions. This number was reduced to three following field trials and trials in commercial tomato greenhouses. These materials are now in widespread use in Israel: by 2000 practically all table tomatoes in Israel were grown under exclusion screens. The use of exclusion screens has been shown to be an economically viable pest management method.
Collapse
Affiliation(s)
- M J Berlinger
- Entomology Laboratory, Gilat Regional Experiment Station, Mobile Post Negev 852801, Israel
| | | | | | | | | |
Collapse
|