1
|
Chouvenc T. How do termite baits work? implication of subterranean termite colony demography on the successful implementation of baits. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae243. [PMID: 39425941 DOI: 10.1093/jee/toae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
In 1995, the launch of the first commercial chitin synthesis inhibitor (CSI) bait led to the transformation of the subterranean termite control industry around the world. Their slow mode of action, which relies on both their ability to be transferred among nestmates and termite molting biology, has made them cost-effective solutions for subterranean termite colony elimination while minimizing the introduction of pesticides into the soil toward an environmentally sustainable strategy. However, despite successful commercial implementations, the acceptance of their use varies within the pest control industry around the world. Notably, the nuanced complexity of how CSI baits lead to colony elimination upon feeding by termite foragers has, in part, remained elusive for the past 3 decades, allowing for long-lasting misconceptions to persist. A recent series of studies has since provided complementary elements of understanding how CSI baits utilize termites' inherent colony demography, behavior, and physiology to trigger colony elimination after a characteristic succession of events within the colony collapse process. I here provide a synthetic overview of subterranean termite colony characteristics when exposed to CSI baits using Coptotermes (Wasmann) (Blattodea: Heterotermitidae) as a primary model system. The changes in colony demography through the colony collapse reflect how the mode of action of CSI baits makes them a prime solution for sustainable subterranean termite pest management. Following decades of innovation, ongoing interactions among termite researchers, bait product manufacturers, and pest management providers must continue to bring solutions to existing and emerging termite pest problems around the world.
Collapse
Affiliation(s)
- Thomas Chouvenc
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Ft. Lauderdale, FL, USA
| |
Collapse
|
2
|
Lin WJ, Chiu CI, Li HF. Divergent effects of climatic factors on termite body size: alate versus worker castes. ENVIRONMENTAL ENTOMOLOGY 2024:nvae088. [PMID: 39361681 DOI: 10.1093/ee/nvae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Body size is an important functional trait to animals. Caste division of eusocial insects can exert a profound influence on their interactions with environment. We investigate the intra-specific variation of body size between caste within Odontotermes formosanus (Shiraki) (Blattodea: Termitidae), the most common and widely distributed termite species in Taiwan Island. By utilizing specimens from the NCHU Termite Collection and WorldClim data, we describe the body size distribution pattern of O. formosanus on two castes, worker and alate, and relationship with climatic factors is examined. The body size of workers is positively correlated with latitude and elevation. The body size of alates does not correlate with latitude but is positively correlated with elevation. Temperature factors negatively affect the body size of both castes. Precipitation has a positive effect on the body size of alates and no effect on workers. Additionally, humidity and temperature fluctuations over time have divergent effects on the body size of alates and workers. The results provide evidence of trait evolution decoupling at the intraspecific level, which may be shaped by climatic factors.
Collapse
Affiliation(s)
- Wen-Jun Lin
- Department of Entomology, National Chung Hsing University, Taiwan
| | - Chun-I Chiu
- Department of Entomology and Plant Pathology, Chiang Mai University, Thailand
| | - Hou-Feng Li
- Department of Entomology, National Chung Hsing University, Taiwan
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Cheng L, Pei J, Chen X, Shi F, Bao Z, Hou Q, Zhi L, Zong S, Tao J. Cold tolerance and metabolism of red-haired pine bark beetle Hylurgus ligniperda (Coleoptera: Curculionidae) during the overwintering period. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae137. [PMID: 38956822 DOI: 10.1093/jee/toae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Hylurgus ligniperda invaded Shandong, China, through imported forest timber, posing a threat to China's forest health. Exotic insects with broad environmental tolerance, including low temperatures, may have a better chance of surviving the winters and becoming invasive. Understanding the cold-tolerance strategies of H. ligniperda may help to design sustainable pest management approaches. In this study, we aim to investigate the cold-tolerance ability and relevant physiological indicators in overwintering H. ligniperda adults to determine any possible overwintering strategies. Supercooling points (SCPs) for adults H. ligniperda differed significantly across months and reached the lowest level in the mid- and post-overwintering period, the minimum SCPs -6.45 ± 0.18 °C. As the cold exposure temperature decreased, the survival rate of adults gradually decreased, and no adult survived more than 1 day at -15 °C, and the LLT50 for 1 day was -7.1 °C. Since H. ligniperda adults can survive internal ice formation, they are freeze-tolerant insects. Throughout the overwintering period, the SCPs and the water, protein, sorbitol, and glycerol content in adults decreased initially and then increased. We reported significant correlations between total protein, sorbitol, trehalose, and glycerol content in the beetles and SCPs. Glycogen, lipid, protein, trehalose, and sorbitol content in adult beetles may directly affect their cold-tolerance capacity and survival during winter. This study provides a physiological and biochemical basis for further study of metabolism and cold-tolerance strategies in H. ligniperda adults, which may help predict population dynamics and distribution potential of pests.
Collapse
Affiliation(s)
- Ling Cheng
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Jiahe Pei
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Xuesong Chen
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Zhashenjiacan Bao
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Qidi Hou
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Lingxu Zhi
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Hernández-Teixidor D, Pérez-Morín A, Pestano J, Mora D, Fajardo S. The destructive subterranean termite Reticulitermes flavipes (Blattodea: Rhinotermitidae) can colonize arid territories. PeerJ 2024; 12:e16936. [PMID: 38435985 PMCID: PMC10909367 DOI: 10.7717/peerj.16936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
Reticulitermes flavipes, one of the most destructive subterranean termite species, has been detected for the first time in an arid territory: Lanzarote (Canary Islands, Spain). This invasive species was introduced into several countries but never such a dry region. Although there are places with presence of this termite at similar or even higher temperatures, none has annual rainfall (10.1 mm) as low as Lanzarote. On this island it is present in semi-desert, near an affected urban area. Distribution, genetic, climate and host-plant data are evaluated to track and understand its invasion process in the archipelago.
Collapse
Affiliation(s)
- David Hernández-Teixidor
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Aura Pérez-Morín
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Juan Pestano
- Tragsatec, La Laguna, Tenerife, Canary Islands, Spain
| | | | - Silvia Fajardo
- Servicio de Biodiversidad, Consejería de Transición Ecológica, Lucha Contra el Cambio Climático y Planificación Territorial, Gobierno de Canarias, Santa Cruz de Tenerife, Tenerife, Canary Islands, Spain
| |
Collapse
|
5
|
Gu S, Qi T, Rohr JR, Liu X. Meta-analysis reveals less sensitivity of non-native animals than natives to extreme weather worldwide. Nat Ecol Evol 2023; 7:2004-2027. [PMID: 37932385 DOI: 10.1038/s41559-023-02235-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023]
Abstract
Extreme weather events (EWEs; for example, heatwaves, cold spells, storms, floods and droughts) and non-native species invasions are two major threats to global biodiversity and are increasing in both frequency and consequences. Here we synthesize 443 studies and apply multilevel mixed-effects metaregression analyses to compare the responses of 187 non-native and 1,852 native animal species across terrestrial, freshwater and marine ecosystems to different types of EWE. Our results show that marine animals, regardless of whether they are non-native or native, are overall insensitive to EWEs, except for negative effects of heatwaves on native mollusks, corals and anemone. By contrast, terrestrial and freshwater non-native animals are only adversely affected by heatwaves and storms, respectively, whereas native animals negatively respond to heatwaves, cold spells and droughts in terrestrial ecosystems and are vulnerable to most EWEs except cold spells in freshwater ecosystems. On average, non-native animals displayed low abundance in terrestrial ecosystems, and decreased body condition and life history traits in freshwater ecosystems, whereas native animals displayed declines in body condition, life history traits, abundance, distribution and recovery in terrestrial ecosystems, and community structure in freshwater ecosystems. By identifying areas with high overlap between EWEs and EWE-tolerant non-native species, we also provide locations where native biodiversity might be adversely affected by their joint effects and where EWEs might facilitate the establishment and/or spread of non-native species under continuing global change.
Collapse
Affiliation(s)
- Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Differential Selection on Caste-Associated Genes in a Subterranean Termite. INSECTS 2022; 13:insects13030224. [PMID: 35323522 PMCID: PMC8955789 DOI: 10.3390/insects13030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Analyzing the information-rich content of RNA can help uncover genetic events associated with social insect castes or other social polymorphisms. Here, we exploit a series of cDNA libraries previously derived from whole-body tissue of different castes as well as from three behaviourally distinct populations of the Eastern subterranean termite Reticulitermes flavipes. We found that the number (~0.5 M) of single nucleotide variants (SNVs) was roughly equal between nymph, worker and soldier caste libraries, but dN/dS (ratio of nonsynonymous to synonymous substitutions) analysis suggested that some of these variants confer a caste-specific advantage. Specifically, the dN/dS ratio was high (~4.3) for genes expressed in the defensively specialized soldier caste, relative to genes expressed by other castes (~1.7−1.8) and regardless of the North American population (Toronto, Raleigh, Boston) from which the castes were sampled. The populations, meanwhile, did show a large difference in SNV count but not in the manner expected from known demographic and behavioural differences; the highly invasive unicolonial population from Toronto was not the least diverse and did not show any other unique substitution patterns, suggesting any past bottleneck associated with invasion or with current unicoloniality has become obscured at the RNA level. Our study raises two important hypotheses relevant to termite sociobiology. First, the positive selection (dN/dS > 1) inferred for soldier-biased genes is presumably indirect and of the type mediated through kin selection, and second, the behavioural changes that accompany some social insect urban invasions (i.e., ‘unicoloniality’) may be detached from the loss-of-diversity expected from invasion bottlenecks.
Collapse
|
7
|
Arango RA, Schoville SD, Currie CR, Carlos-Shanley C. Experimental Warming Reduces Survival, Cold Tolerance, and Gut Prokaryotic Diversity of the Eastern Subterranean Termite, Reticulitermes flavipes (Kollar). Front Microbiol 2021; 12:632715. [PMID: 34079527 PMCID: PMC8166220 DOI: 10.3389/fmicb.2021.632715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/15/2021] [Indexed: 12/26/2022] Open
Abstract
Understanding the effects of environmental disturbances on insects is crucial in predicting the impact of climate change on their distribution, abundance, and ecology. As microbial symbionts are known to play an integral role in a diversity of functions within the insect host, research examining how organisms adapt to environmental fluctuations should include their associated microbiota. In this study, subterranean termites [Reticulitermes flavipes (Kollar)] were exposed to three different temperature treatments characterized as low (15°C), medium (27°C), and high (35°C). Results suggested that pre-exposure to cold allowed termites to stay active longer in decreasing temperatures but caused termites to freeze at higher temperatures. High temperature exposure had the most deleterious effects on termites with a significant reduction in termite survival as well as reduced ability to withstand cold stress. The microbial community of high temperature exposed termites also showed a reduction in bacterial richness and decreased relative abundance of Spirochaetes, Elusimicrobia, and methanogenic Euryarchaeota. Our results indicate a potential link between gut bacterial symbionts and termite's physiological response to environmental changes and highlight the need to consider microbial symbionts in studies relating to insect thermosensitivity.
Collapse
Affiliation(s)
- Rachel A. Arango
- USDA Forest Service, Forest Products Laboratory, Madison, WI, United States
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, United States
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
8
|
Wu D, Pietsch KA, Staab M, Yu M. Wood species identity alters dominant factors driving fine wood decomposition along a tree diversity gradient in subtropical plantation forests. Biotropica 2021. [DOI: 10.1111/btp.12906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Donghao Wu
- College of Life Sciences Zhejiang University Hangzhou China
| | - Katherina A. Pietsch
- Institute of Systematic Botany and Functional Biodiversity University of Leipzig Leipzig Germany
| | - Michael Staab
- Department of Nature Conservation and Landscape Ecology Albert‐Ludwigs‐University Freiburg Freiburg Germany
| | - Mingjian Yu
- College of Life Sciences Zhejiang University Hangzhou China
| |
Collapse
|
9
|
Perez R, Aron S. Adaptations to thermal stress in social insects: recent advances and future directions. Biol Rev Camb Philos Soc 2020; 95:1535-1553. [PMID: 33021060 DOI: 10.1111/brv.12628] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/20/2023]
Abstract
Thermal stress is a major driver of population declines and extinctions. Shifts in thermal regimes create new environmental conditions, leading to trait adaptation, population migration, and/or species extinction. Extensive research has examined thermal adaptations in terrestrial arthropods. However, little is known about social insects, despite their major role in ecosystems. It is only within the last few years that the adaptations of social insects to thermal stress have received attention. Herein, we discuss what is currently known about thermal tolerance and thermal adaptation in social insects - namely ants, termites, social bees, and social wasps. We describe the behavioural, morphological, physiological, and molecular adaptations that social insects have evolved to cope with thermal stress. We examine individual and collective responses to both temporary and persistent changes in thermal conditions and explore the extent to which individuals can exploit genetic variability to acclimatise. Finally, we consider the costs and benefits of sociality in the face of thermal stress, and we propose some future research directions that should advance our knowledge of individual and collective thermal adaptations in social insects.
Collapse
Affiliation(s)
- Rémy Perez
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
10
|
Extended winters entail long-term costs for insect offspring reared in an overwinter burrow. J Therm Biol 2018; 74:116-122. [PMID: 29801616 DOI: 10.1016/j.jtherbio.2018.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 12/11/2022]
Abstract
Winter imposes an ecological challenge to animals living in colder climates, especially if these adverse conditions coincide with reproduction and offspring rearing. To overcome this challenge, some insects burrow in the soil to protect adults, larvae, or eggs from negative effects of winter. However, whether this protection is effective against any long-term consequences of changes in winter duration is unclear. Here, we investigated the long-term effects of winter length variation on eggs of the European earwig Forficula auricularia. In this insect, females construct and maintain a burrow between late autumn and spring, in which they provide extensive forms of care to their eggs and then juveniles. We experimentally maintained earwig females under two winter durations of either four or six weeks and examined the resulting effects in terms of 1) hatching date, 2) developmental time of juveniles until adulthood, 3) adult mass at emergence, and 4) investment of adult offspring females in three key immune parameters: hemocyte concentration, phenoloxidase, and prophenoloxidase activities. Because earwigs' resistance against pathogens relies on their social environment, effects of winter length on immunity were tested on females exposed to different social environments: with familiar conspecifics, unfamiliar conspecifics, or in isolation. Our results reveal that after the winter treatments, eggs reared in short winters hatched earlier and the emerging juveniles reached adulthood faster than juveniles from eggs exposed to long winters. We also showed that prophenoloxidase was 30% higher in females from the long compared to short winter treatment, regardless of social environment. Finally, we found that hemocyte counts where twice as high in short compared to long winter females, but only with unfamiliar conspecifics. Overall, our study reveals that maintaining and caring for eggs in a burrow does not prevent the costs associated with increased winter duration.
Collapse
|
11
|
Baudier KM, O'Donnell S. Weak links: how colonies counter the social costs of individual variation in thermal physiology. CURRENT OPINION IN INSECT SCIENCE 2017; 22:85-91. [PMID: 28805644 DOI: 10.1016/j.cois.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
Social insect nestmates often differ in thermal tolerance (the range of temperatures at which an individual functions). Worker thermal physiology can covary with body size, development, genetics and gene expression. Because colonies rely on the integration of diverse colony members, individual thermal tolerance differences can affect group performance. The weak link hypothesis states that if workers differ in thermal sensitivity, then in variable thermal environments colonies can incur performance costs due to thermal stress effects on the most thermally sensitive worker types. We discuss possible adaptive colony responses that ameliorate the costs of thermal weak links. Individual differences in thermal tolerance have profound implications for the effects of temperature variation and climate change on animal societies. Social implications of worker weak links potentially drive macroecological patterns in caste ergonomics.
Collapse
Affiliation(s)
| | - Sean O'Donnell
- Department of Biology, Drexel University, Philadelphia, PA, USA; Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Buczkowski G, Bertelsmeier C. Invasive termites in a changing climate: A global perspective. Ecol Evol 2017; 7:974-985. [PMID: 28168033 PMCID: PMC5288252 DOI: 10.1002/ece3.2674] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/05/2016] [Accepted: 11/20/2016] [Indexed: 11/06/2022] Open
Abstract
Termites are ubiquitous insects in tropical, subtropical, and warm temperate regions and play an important role in ecosystems. Several termite species are also significant economic pests, mainly in urban areas where they attack human-made structures, but also in natural forest habitats. Worldwide, approximately 28 termite species are considered invasive and have spread beyond their native ranges, often with significant economic consequences. We used predictive climate modeling to provide the first global risk assessment for 13 of the world's most invasive termites. We modeled the future distribution of 13 of the most serious invasive termite species, using two different Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5, and two projection years (2050 and 2070). Our results show that all but one termite species are expected to significantly increase in their global distribution, irrespective of the climatic scenario and year. The range shifts by species (shift vectors) revealed a complex pattern of distributional changes across latitudes rather than simple poleward expansion. Mapping of potential invasion hotspots in 2050 under the RCP 4.5 scenario revealed that the most suitable areas are located in the tropics. Substantial parts of all continents had suitable environmental conditions for more than four species simultaneously. Mapping of changes in the number of species revealed that areas that lose many species (e.g., parts of South America) are those that were previously very species-rich, contrary to regions such as Europe that were overall not among the most important invasion hotspots, but that showed a great increase in the number of potential invaders. The substantial economic and ecological damage caused by invasive termites is likely to increase in response to climate change, increased urbanization, and accelerating economic globalization, acting singly or interactively.
Collapse
Affiliation(s)
- Grzegorz Buczkowski
- Department of EntomologyPurdue UniversityWest LafayetteINUSA
- Purdue Climate Change Research CenterPurdue UniversityWest LafayetteINUSA
| | - Cleo Bertelsmeier
- Department of Ecology and EvolutionBiophoreUNIL‐SorgeUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
13
|
Sinclair BJ, Coello Alvarado LE, Ferguson LV. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J Therm Biol 2015; 53:180-97. [DOI: 10.1016/j.jtherbio.2015.11.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/04/2023]
|
14
|
Sinclair BJ. Linking energetics and overwintering in temperate insects. J Therm Biol 2014; 54:5-11. [PMID: 26615721 DOI: 10.1016/j.jtherbio.2014.07.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 11/27/2022]
Abstract
Overwintering insects cannot feed, and energy they take into winter must therefore fuel energy demands during autumn, overwintering, warm periods prior to resumption of development in spring, and subsequent activity. Insects primarily consume lipids during winter, but may also use carbohydrate and proteins as fuel. Because they are ectotherms, the metabolic rate of insects is temperature-dependent, and the curvilinear nature of the metabolic rate-temperature relationship means that warm temperatures are disproportionately important to overwinter energy use. This energy use may be reduced physiologically, by reducing the slope or elevation of the metabolic rate-temperature relationship, or because of threshold changes, such as metabolic suppression upon freezing. Insects may also choose microhabitats or life history stages that reduce the impact of overwinter energy drain. There is considerable capacity for overwinter energy drain to affect insect survival and performance both directly (via starvation) or indirectly (for example, through a trade-off with cryoprotection), but this has not been well-explored. Likewise, the impact of overwinter energy drain on growing-season performance is not well understood. I conclude that overwinter energetics provides a useful lens through which to link physiology and ecology and winter and summer in studies of insect responses to their environment.
Collapse
Affiliation(s)
- Brent J Sinclair
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7.
| |
Collapse
|