1
|
Olajiga OM, Jameson SB, Carter BH, Wesson DM, Mitzel D, Londono-Renteria B. Artificial Feeding Systems for Vector-Borne Disease Studies. BIOLOGY 2024; 13:188. [PMID: 38534457 DOI: 10.3390/biology13030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
This review examines the advancements and methodologies of artificial feeding systems for the study of vector-borne diseases, offering a critical assessment of their development, advantages, and limitations relative to traditional live host models. It underscores the ethical considerations and practical benefits of such systems, including minimizing the use of live animals and enhancing experimental consistency. Various artificial feeding techniques are detailed, including membrane feeding, capillary feeding, and the utilization of engineered biocompatible materials, with their respective applications, efficacy, and the challenges encountered with their use also being outlined. This review also forecasts the integration of cutting-edge technologies like biomimicry, microfluidics, nanotechnology, and artificial intelligence to refine and expand the capabilities of artificial feeding systems. These innovations aim to more accurately simulate natural feeding conditions, thereby improving the reliability of studies on the transmission dynamics of vector-borne diseases. This comprehensive review serves as a foundational reference for researchers in the field, proposing a forward-looking perspective on the potential of artificial feeding systems to revolutionize vector-borne disease research.
Collapse
Affiliation(s)
- Olayinka M Olajiga
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Samuel B Jameson
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Brendan H Carter
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Dawn M Wesson
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Dana Mitzel
- Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, United States Department of Agriculture, Agricultural Research Service, Manhattan, KS 66506, USA
| | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Rochlin I, Chu D, Gmelin M, Le J, Furie MB, Thanassi DG, Kim HK. Optimization of artificial membrane feeding system for lone star ticks, Amblyomma americanum (Acari: Ixodidae), and experimental infection with Rickettsia amblyommatis (Rickettsiales: Rickettsiaceae). JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:442-453. [PMID: 38104248 PMCID: PMC10936164 DOI: 10.1093/jme/tjad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
With the introduction of siliconized artificial membranes, various artificial feeding systems (AFS) for hard ticks (Ixodidae) have been developed over the last decades. Most AFS utilize similar core components but employ diverse approaches, materials, and experimental conditions. Published work describes different combinations of the core components without experimental optimizations for the artificial feeding of different tick species. Amblyomma americanum L., (Acari: Ixodidae) (lone star tick) is a known vector and reservoir for diverse tick-borne pathogens, such as Rickettsia amblyommatis and Ehrlichia chaffeensis. Ongoing environmental changes have supported the expansion of A. americanum into new habitats, contributing to increased tick-borne diseases in endemic areas. However, a significant knowledge gap exists in understanding the underlying mechanisms involved in A. americanum interactions with tick-borne pathogens. Here, we performed a systematic analysis and developed an optimized AFS for nymphal lone star ticks. Our results demonstrate that Goldbeater's membranes, rabbit hair, hair extract, and adult lone star ticks significantly improved the attachment rate of nymphal ticks, whereas tick frass and frass extract did not. With the optimized conditions, we achieved an attachment rate of 46 ± 3% and a success rate of 100% (i.e., one or more attached ticks) in each feeding experiment for nymphal lone star ticks. When fed on sheep blood spiked with R. amblyommatis, both nymphal and adult lone star ticks acquired and maintained R. amblyommatis, demonstrating the feasibility of studying A. americanum-pathogen interactions using AFS. Our study can serve as a roadmap to optimize and improve AFS for other medically relevant tick species.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Dennis Chu
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Matthew Gmelin
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Justin Le
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Martha B Furie
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - David G Thanassi
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Hwan Keun Kim
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
3
|
Elati K, Benyedem H, Fukatsu K, Hoffmann-Köhler P, Mhadhbi M, Bakırcı S, Bilgiç HB, Karagenç T, Darghouth MA, Nijhof AM. In vitro feeding of all life stages of two-host Hyalomma excavatum and Hyalomma scupense and three-host Hyalomma dromedarii ticks. Sci Rep 2024; 14:444. [PMID: 38172407 PMCID: PMC10764919 DOI: 10.1038/s41598-023-51052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Ticks are blood-sucking ectoparasites and can transmit various pathogens of medical and veterinary relevance. The life cycle of ticks can be completed under laboratory conditions on experimental animals, but the artificial feeding of ticks has attracted increased interest as an alternative method. This study represents the first report on the successful in vitro feeding of all life stages of two-host tick species, Hyalomma scupense and Hyalomma excavatum, and the three-host tick Hyalomma dromedarii. The attachment and engorgement rates of adults were 84% (21/25) and 76% (19/25) for H. scupense females. For adult H. excavatum and H. dromedarii, 70% (21/30) and 34.4% (11/32) of the females attached and all attached females successfully fed to repletion. The oviposition rates of the artificially fed females were 36.4%, 57.1% and 63.1% for H. dromedarii, H. excavatum and H. scupense, respectively, with a reproductive efficiency index varying between 44.3 and 60.7%. For the larvae, the attachment and engorgement rates were 44.2% (313/708) and 42.8% (303/708) for H. dromedarii, 70.5% (129/183) and 56.8% (104/183) for H. excavatum and 92.6% (113/122) and 55.7% (68/122) for H. scupense. The attachment and engorgement rates for the nymphs were 90.2% (129/143) and 47.6% (68/143) for H. dromedarii, 66.7% (34/51) and 41.2% (21/51) for H. excavatum, and 44.1% (30/68) and 36.8% (25/68) for H. scupense. Molting rates of the immature stages varied between 71.3% (216/303) and 100% (68/68) for the larvae and between 61.9% (13/21) and 96% (24/25) for the nymphs. The successful in vitro feeding of all stages of the three Hyalomma species makes this method a valuable tool for tick research, with potential applications in studies on the pathogens transmitted by these tick species such as Theileria annulata.
Collapse
Affiliation(s)
- Khawla Elati
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
- Laboratoire de Parasitologie, École Nationale de MédecineVétérinaire de SidiThabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020 Sidi Thabet, Tunisia, Univ. Manouba, Sidi Thabet, Tunisia.
| | - Hayet Benyedem
- Laboratoire de Parasitologie, École Nationale de MédecineVétérinaire de SidiThabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020 Sidi Thabet, Tunisia, Univ. Manouba, Sidi Thabet, Tunisia
| | - Kohsuke Fukatsu
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Research Center, Nihon Nohyaku Co., Ltd., Osaka, Japan
| | - Peggy Hoffmann-Köhler
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
| | - Moez Mhadhbi
- Laboratoire de Parasitologie, École Nationale de MédecineVétérinaire de SidiThabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020 Sidi Thabet, Tunisia, Univ. Manouba, Sidi Thabet, Tunisia
| | - Serkan Bakırcı
- Faculty of Veterinary Medicine, Department of Parasitology, Aydın Adnan Menderes University, Isıklı‑Efeler, Aydın, Turkey
| | - Hüseyin Bilgin Bilgiç
- Faculty of Veterinary Medicine, Department of Parasitology, Aydın Adnan Menderes University, Isıklı‑Efeler, Aydın, Turkey
| | - Tülin Karagenç
- Faculty of Veterinary Medicine, Department of Parasitology, Aydın Adnan Menderes University, Isıklı‑Efeler, Aydın, Turkey
| | - Mohamed Aziz Darghouth
- Laboratoire de Parasitologie, École Nationale de MédecineVétérinaire de SidiThabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020 Sidi Thabet, Tunisia, Univ. Manouba, Sidi Thabet, Tunisia
| | - Ard M Nijhof
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
| |
Collapse
|
4
|
Garcia Guizzo M, Meneses C, Amado Cecilio P, Hessab Alvarenga P, Sonenshine D, Ribeiro JM. Optimizing tick artificial membrane feeding for Ixodes scapularis. Sci Rep 2023; 13:16170. [PMID: 37758795 PMCID: PMC10533868 DOI: 10.1038/s41598-023-43200-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Artificial membrane feeding (AMF) is a powerful and versatile technique with a wide range of applications in the study of disease vectors species. Since its first description, AMF has been under constant optimization and standardization for different tick species and life stages. In the USA, Ixodes scapularis is the main vector of tick-borne zoonoses including the pathogens causing Lyme disease in humans and animals. Seeking to improve the overall fitness of I. scapularis adult females fed artificially, here, we have optimized the AMF technique, considerably enhancing attachment rate, engorgement success, egg laying, and egg hatching compared to those described in previous studies. Parameters such as the membrane thickness and the light/dark cycle to which the ticks were exposed were refined to more closely reflect the tick's natural behavior and life cycle. Additionally, ticks were fed on blood only, blood + ATP or blood + ATP + gentamicin. The artificial feeding of ticks on blood only was successful and generated a progeny capable of feeding naturally on a host, i.e., mice. Adding ATP as a feeding stimulant did not improve tick attachment or engorgement. Notably, the administration of gentamicin, an antibiotic commonly used in tick AMF to prevent microbial contamination, negatively impacted Rickettsia buchneri endosymbiont levels in the progeny of artificially fed ticks. In addition, gentamicin-fed ticks showed a reduction in oviposition success compared to ticks artificially fed on blood only, discouraging the use of antibiotics in AMF. Overall, our data suggest that the AMF of adult females on blood only, in association with the natural feeding of their progeny on mice, might be used as an integrated approach in tick rearing, eliminating the use of protected species under the Animal Welfare Act (AWA). Of note, although optimized for I. scapularis adult ticks, I. scapularis nymphs, other tick species, and sand flies could also be fed using the membrane described in this study, indicating that it might be a suitable alternative for the artificial feeding of a variety of hematophagous species.
Collapse
Affiliation(s)
- Melina Garcia Guizzo
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Pedro Amado Cecilio
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Patricia Hessab Alvarenga
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Daniel Sonenshine
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jose M Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
5
|
Valcárcel F, Elhachimi L, Vilá M, Tomassone L, Sánchez M, Selles SMA, Kouidri M, González MG, Martín-Hernández R, Valcárcel Á, Fernández N, Tercero JM, Sanchis J, Bellido-Blasco J, González-Coloma A, Olmeda AS. Emerging Hyalomma lusitanicum: From identification to vectorial role and integrated control. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:425-459. [PMID: 37144688 DOI: 10.1111/mve.12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Abstract
In the Mediterranean basin, the tick species Hyalomma lusitanicum Koch stands out among other species of the Hyalomma genus due to its wide distribution, and there is great concern about its potential role as a vector and/or reservoir and its continuous expansion to new areas because of climate warming and human and other animal movements. This review aims to consolidate all the information on H. lusitanicum, including taxonomy and evolution, morphological and molecular identification, life cycle, sampling methods, rearing under laboratory conditions, ecology, hosts, geographical distribution, seasonality, vector role and control methods. The availability of adequate data is extremely relevant to the development of appropriate control strategies in areas where this tick is currently distributed as well as in new areas where it could become established in the near future.
Collapse
Affiliation(s)
- Félix Valcárcel
- Grupo de Parasitología Animal, Departamento de Reproducción Animal, INIA-CSIC, Madrid, Spain
| | - L Elhachimi
- Département de parasitologie et de Santé Publique, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - M Vilá
- Grupo de Investigación COPAR (GI-2120; USC), Departamento de Patoloxia Animal, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - L Tomassone
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - M Sánchez
- Grupo de Parasitología Animal, Departamento de Reproducción Animal, INIA-CSIC, Madrid, Spain
- Villamagna S.A., Finca "La Garganta", Villanueva de Córdoba, Spain
- Facultad de Veterinaria, Universidad Alfonso X El Sabio (UAX), Madrid, Spain
| | - S M A Selles
- Institute of Veterinary Sciences, University of Tiaret, Tiaret, Algeria
- Laboratory of Research on Local Animal Products, University of Tiaret, Tiaret, Algeria
| | - M Kouidri
- Laboratory of Farm Animal Products, University of Tiaret, Tiaret, Algeria
| | - M G González
- Grupo de Parasitología Animal, Departamento de Reproducción Animal, INIA-CSIC, Madrid, Spain
- Villamagna S.A., Finca "La Garganta", Villanueva de Córdoba, Spain
| | - R Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF-Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Marchamalo, 19180, Spain. Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-ESF/EC-FSE), Fundación Parque Científico y Tecnológico de Castilla-La Mancha, Albacete, Spain
| | - Á Valcárcel
- Lokimica S.L., c/ Valdemorillo, Madrid, Spain
- Veterinary Pathobiology section, University College Dublín, Dublin 4, Ireland
| | - N Fernández
- Facultad de Veterinaria, Universidad Alfonso X El Sabio (UAX), Madrid, Spain
| | - J M Tercero
- Villamagna S.A., Finca "La Garganta", Villanueva de Córdoba, Spain
| | - J Sanchis
- Facultad de Veterinaria, CENUR Litoral Norte, Universidad de la República, Uruguay
| | - J Bellido-Blasco
- Sección de Epidemiología, Centro de Salud Pública de Castelló, CIBER-ESP. Universitat Jaume I (UJI), Castelló, Spain
| | | | - A S Olmeda
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| |
Collapse
|
6
|
Tahir D, Asri B, Meyer LN, Evans A, Mather T, Blagburn B, Straubinger RK, Choumet V, Jongejan F, Varloud M. Vectra 3D (dinotefuran, pyriproxyfen and permethrin) prevents acquisition of Borrelia burgdorferi sensu stricto by Ixodes ricinus and Ixodes scapularis ticks in an ex vivo feeding model. Parasit Vectors 2021; 14:416. [PMID: 34419129 PMCID: PMC8379798 DOI: 10.1186/s13071-021-04881-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We evaluated the efficiency of an ex vivo feeding technique using a silicone membrane-based feeding chamber to (i) assess the anti-feeding and acaricidal efficacy of a spot-on combination of dinotefuran, pyriproxyfen and permethrin (DPP, Vectra® 3D) against adult Ixodes scapularis and Ixodes ricinus ticks, and to (ii) explore its effect on blocking the acquisition of Borrelia burgdorferi sensu stricto. METHODS Eight purpose-bred dogs were randomly allocated to two equal-size groups based on body weight assessed on day 2. DPP was administered topically, as spot-on, to four dogs on day 0. Hair from the eight dogs was collected individually by brushing the whole body on days 2, 7, 14, 21, 28 and 35. On each day of hair collection, 0.05 g of sampled hair was applied on the membrane corresponding to each feeding unit (FU). Seventy-two FU were each seeded with 30 adults of I. scapularis (n = 24 FU) or I. ricinus ticks (n = 48 FU). Bovine blood spiked with B. burgdorferi sensu stricto (strain B31) was added into each unit and changed every 12 h for 4 days. Tick mortality was assessed 1 h after seeding. One additional hour of incubation was added for live/moribund specimens and reassessed for viability. All remaining live/moribund ticks were left in the feeders and tick engorgement status was recorded at 96 h after seeding, and the uptake of B. burgdorferi s.s. was examined in the collected ticks by applying quantitative real-time PCR. RESULTS Exposure to DPP-treated hair was 100% effective in blocking B. burgdorferi s.s. acquisition. The anti-feeding efficacy remained stable (100%) against both Ixodes species throughout the study. The acaricidal efficacy of DPP evaluated at 1 and 2 h after exposure was 100% throughout the study for I. ricinus, except the 1-h assessment on day 28 (95.9%) and day 35 (95.3%). The 1-h assessment of acaricidal efficacy was 100% at all time points for I. scapularis. CONCLUSIONS The ex vivo feeding system developed here demonstrated a protective effect of DPP against the acquisition of B. burgdorferi without exposing the animals to the vectors or to the pathogen.
Collapse
Affiliation(s)
- Djamel Tahir
- Clinvet Morocco, B.P 301, 28815, Mohammedia, Morocco
| | - Btissam Asri
- Clinvet Morocco, B.P 301, 28815, Mohammedia, Morocco.,Institut Agronomique Et Vétérinaire Hassan II, Rabat, Morocco
| | | | - Alec Evans
- Clinvet Morocco, B.P 301, 28815, Mohammedia, Morocco
| | - Thomas Mather
- Center for Vector-Borne Disease, University of Rhode Island, Kingston, RI, USA
| | - Byron Blagburn
- College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Reinhard K Straubinger
- Institute for Infectious Diseases and Zoonoses, Bacteriology and Mycology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| | - Valérie Choumet
- Environnement Et Risques Infectieux, Institut Pasteur, Paris, France
| | - Frans Jongejan
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Marie Varloud
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500, Libourne, France.
| |
Collapse
|
7
|
Evaluating Transmission Paths for Three Different Bartonella spp. in Ixodes ricinus Ticks Using Artificial Feeding. Microorganisms 2021; 9:microorganisms9050901. [PMID: 33922378 PMCID: PMC8146832 DOI: 10.3390/microorganisms9050901] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Bartonellae are facultative intracellular alpha-proteobacteria often transmitted by arthropods. Ixodes ricinus is the most important vector for arthropod-borne pathogens in Europe. However, its vector competence for Bartonella spp. is still unclear. This study aimed to experimentally compare its vector competence for three Bartonella species: B. henselae, B. grahamii, and B. schoenbuchensis. A total of 1333 ticks (1021 nymphs and 312 adults) were separated into four groups, one for each pathogen and a negative control group. Ticks were fed artificially with bovine blood spiked with the respective Bartonella species. DNA was extracted from selected ticks to verify Bartonella-infection by PCR. DNA of Bartonella spp. was detected in 34% of nymphs and females after feeding. The best engorgement results were obtained by ticks fed with B. henselae-spiked blood (65.3%) and B. schoenbuchensis (61.6%). Significantly more nymphs fed on infected blood (37.3%) molted into adults compared to the control group (11.4%). Bartonella DNA was found in 22% of eggs laid by previously infected females and in 8.6% of adults molted from infected nymphs. The transovarial and transstadial transmission of bartonellae suggest that I. ricinus could be a potential vector for three bacteria.
Collapse
|
8
|
Artificial Feeding of All Consecutive Life Stages of Ixodes ricinus. Vaccines (Basel) 2021; 9:vaccines9040385. [PMID: 33919961 PMCID: PMC8070929 DOI: 10.3390/vaccines9040385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 01/19/2023] Open
Abstract
The hard tick Ixodes ricinus is an obligate hematophagous arthropod and the main vector for several zoonotic diseases. The life cycle of this three-host tick species was completed for the first time in vitro by feeding all consecutive life stages using an artificial tick feeding system (ATFS) on heparinized bovine blood supplemented with glucose, adenosine triphosphate, and gentamicin. Relevant physiological parameters were compared to ticks fed on cattle (in vivo). All in vitro feedings lasted significantly longer and the mean engorgement weight of F0 adults and F1 larvae and nymphs was significantly lower compared to ticks fed in vivo. The proportions of engorged ticks were significantly lower for in vitro fed adults and nymphs as well, but higher for in vitro fed larvae. F1-females fed on blood supplemented with vitamin B had a higher detachment proportion and engorgement weight compared to F1-females fed on blood without vitamin B, suggesting that vitamin B supplementation is essential in the artificial feeding of I. ricinus ticks previously exposed to gentamicin.
Collapse
|
9
|
González J, Bickerton M, Toledo A. Applications of artificial membrane feeding for ixodid ticks. Acta Trop 2021; 215:105818. [PMID: 33406442 DOI: 10.1016/j.actatropica.2020.105818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/18/2022]
Abstract
Ticks are obligatory hematophagous ectoparasites that feed on a large variety of vertebrates. In the laboratory, animals (mainly mice and rabbits) are used to maintain tick colonies. However, the use of animals to rear ticks can be expensive and requires dedicated animal facilities. In addition, research institutions are committed to the principle of 3Rs (Replacement, Reduction and Refinement), which encourages the use of alternatives to animals when possible. The development of artificial membrane systems has provided an alternative to animals, at least for some tick species. Over the years, different modifications in artificial feeding systems have led to new applications, including acaricide testing, tick-pathogen interaction, and novel approaches to study tick physiology. Although artificial membrane feeding still has some limitations, the method can provide numerous advantages, including the standardization of acaricide treatments under controlled conditions, an alternative to animals for tick rearing, and reduction of cost associated with animals and animal housing facilities. In this review, we summarized the evolution of tick feeding membranes and their applications over time, explaining the modifications incorporated to study tick physiology, tick-pathogen interactions, and acaricide testing.
Collapse
Affiliation(s)
- Julia González
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901, USA
| | - Mathew Bickerton
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901, USA; Bergen County Department of Health, Division of Environmental Health, 220 East Ridgewood Avenue, Paramus, NJ 07652, USA
| | - Alvaro Toledo
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901, USA.
| |
Collapse
|
10
|
Federizon J, Frye A, Huang WC, Hart TM, He X, Beltran C, Marcinkiewicz AL, Mainprize IL, Wills MKB, Lin YP, Lovell JF. Immunogenicity of the Lyme disease antigen OspA, particleized by cobalt porphyrin-phospholipid liposomes. Vaccine 2019; 38:942-950. [PMID: 31727504 DOI: 10.1016/j.vaccine.2019.10.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Outer surface protein A (OspA) is a Borrelia lipoprotein and an established Lyme disease vaccine target. Admixing non-lipidated, recombinant B. burgdorferi OspA with liposomes containing cobalt porphyrin-phospholipid (CoPoP) resulted in rapid, particulate surface display of the conformationally intact antigen. Particleization was serum-stable and led to enhanced antigen uptake in murine macrophages in vitro. Mouse immunization using CoPoP liposomes that also contained a synthetic monophosphoryl lipid A (PHAD) elicited a Th1-biased OspA antibody response with higher IgG production compared to other vaccine adjuvants. Antibodies were reactive with intact B. burgdorferi spirochetes and Borrelia lysates, and induced complement-mediated borreliacidal activity in vitro. One year after initial immunization, mice maintained high levels of circulating borreliacidal antibodies capable of blocking B. burgdorferi transmission from infected ticks to human blood in a feeding chamber.
Collapse
Affiliation(s)
- Jasmin Federizon
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Amber Frye
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY 12222, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Thomas M Hart
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA
| | - Xuedan He
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Christopher Beltran
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Ashley L Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Iain L Mainprize
- G. Magnotta Lyme Disease Research Lab, Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Melanie K B Wills
- G. Magnotta Lyme Disease Research Lab, Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY 12222, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
11
|
Olivieri E, Wijnveld M, Bonga M, Berger L, Manfredi MT, Veronesi F, Jongejan F. Transmission of Rickettsia raoultii and Rickettsia massiliae DNA by Dermacentor reticulatus and Rhipicephalus sanguineus (s.l.) ticks during artificial feeding. Parasit Vectors 2018; 11:494. [PMID: 30176918 PMCID: PMC6122679 DOI: 10.1186/s13071-018-3075-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/23/2018] [Indexed: 11/11/2022] Open
Abstract
Background Tick-borne rickettsial pathogens are emerging worldwide and pose an increased health risk to both humans and animals. A plethora of rickettsial species has been identified in ticks recovered from human and animal patients. However, the detection of rickettsial DNA in ticks does not necessarily mean that these ticks can act as vectors for these pathogens. Here, we used artificial feeding of ticks to confirm transmission of Rickettsia massiliae and Rickettsia raoultii by Rhipicephalus sanguineus (sensu lato) and Dermacentor reticulatus ticks, respectively. The speed of transmission was also determined. Methods An artificial feeding system based on silicone membranes were used to feed adult R. sanguineus (s.l.) and D. reticulatus ticks. Blood samples from in vitro feeding units were analysed for the presence of rickettsial DNA using PCR and reverse line blot hybridisation. Results The attachment rate of R. sanguineus (s.l.) ticks were 40.4% at 8 h post-application, increasing to 70.2% at 72 h. Rickettsia massiliae was detected in blood samples collected 8 h after the R. sanguineus (s.l.) ticks were placed into the in vitro feeding units. D. reticulatus ticks were pre-fed on sheep and subsequently transferred to the in vitro feeding system. The attachment rate was 29.1 % at 24 h post-application, increasing to 43.6 % at 96 h. Rickettsia raoultii was detected in blood collected 24 h after D. reticulatus was placed into the feeding units. Conclusions Rhipicephalus sanguineus (s.l.) and D. reticulatus ticks are vectors of R. massiliae and R. raoultii, respectively. The transmission of R. massiliae as early as 8 h after tick attachment emphasises the importance of removing ticks as soon as possible to minimise transmission. This study highlights the relevance of in vitro feeding systems to provide insight into the vectorial capacity of ticks and the dynamics of tick-borne pathogen transmission.
Collapse
Affiliation(s)
- Emanuela Olivieri
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy.,Utrecht Centre for Tick-borne Diseases, FAO Reference Centre for Ticks and Tick-borne Diseases, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Michiel Wijnveld
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Marise Bonga
- Utrecht Centre for Tick-borne Diseases, FAO Reference Centre for Ticks and Tick-borne Diseases, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Laura Berger
- Utrecht Centre for Tick-borne Diseases, FAO Reference Centre for Ticks and Tick-borne Diseases, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Maria T Manfredi
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133, Milan, Italy
| | - Fabrizia Veronesi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Frans Jongejan
- Utrecht Centre for Tick-borne Diseases, FAO Reference Centre for Ticks and Tick-borne Diseases, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands. .,Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| |
Collapse
|
12
|
Hart T, Yang X, Pal U, Lin YP. Identification of Lyme borreliae proteins promoting vertebrate host blood-specific spirochete survival in Ixodes scapularis nymphs using artificial feeding chambers. Ticks Tick Borne Dis 2018; 9:1057-1063. [PMID: 29653905 DOI: 10.1016/j.ttbdis.2018.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 12/31/2022]
Abstract
Lyme borreliosis, the most common vector-borne illness in Europe and the United States, is caused by spirochetes of the Borrelia burgdorferi sensu lato complex and transmitted by Ixodes ticks. In humans, the spirochetes disseminate from the tick bite site to multiple tissues, leading to serious clinical manifestations. The ability of spirochetes to survive in ticks during blood feeding is thought to be essential for Lyme borreliae to be transmitted to different vertebrate hosts. This ability is partly attributed to several B. burgdorferi proteins, including BBA52 and Lp6.6, which promote spirochete survival in nymphal ticks feeding on mice. One of the strategies to identify such proteins without using live animals is to feed B. burgdorferi-infected ticks on blood via artificial feeding chambers. In previous studies, ticks were only fed on bovine blood in the feeding chambers. In this study, we used this chamber model and showed that I. scapularis ticks will not only acquire bovine blood but human and quail blood as well. The latter two are the incidental host and an avian host of Lyme borreliae, respectively. We also investigated the roles that BBA52 and Lp6.6 play in promoting spirochete survival in nymphal ticks fed on human or quail blood. After feeding on human blood, spirochete burdens in ticks infected with an lp6.6-deficient B. burgdorferi were significantly reduced, while bba52-deficient spirochete burdens in ticks remained unchanged, similar to the wild-type strain. No strain showed a change in spirochete burdens in ticks fed on quail blood. These results indicate that Lp6.6 plays a role for B. burgdorferi in nymphs fed on human but not quail blood. Such information also demonstrates that the artificial feeding chamber is a powerful tool to identify B. burgdorferi proteins that promote vertebrate host blood-specific spirochete survival in I. scapularis ticks.
Collapse
Affiliation(s)
- Thomas Hart
- Department of Biological Sciences, State University of New York at Albany, NY, USA; Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD, USA
| | - Yi-Pin Lin
- Department of Biomedical Sciences, State University of New York at Albany, NY, USA; Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
13
|
Groff K, Bishop P. Itching for change: Embracing modern flea and tick product development. Regul Toxicol Pharmacol 2017; 88:349-355. [PMID: 28689745 DOI: 10.1016/j.yrtph.2017.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
Abstract
The development and regulatory approval of ectoparasiticides, including flea and tick control products, involves decades-old methods and the use of large numbers of animals to evaluate toxicity and efficacy. Animals also are used to rear (breed and feed) fleas and ticks for later use in testing. Non-animal methods for regulatory-required testing and rearing currently exist and, with further development, others could soon become available. Here we provide an overview of the state-of-the-science of non-animal methods for rearing and regulatory-required efficacy testing of flea and tick control products. Several remaining challenges as well as recommendations on the steps needed to replace animals in the evaluation of these products are discussed.
Collapse
Affiliation(s)
- Katherine Groff
- People for the Ethical Treatment of Animals, 501 Front Street, Norfolk, VA, 23510, United States.
| | - Patricia Bishop
- People for the Ethical Treatment of Animals, 501 Front Street, Norfolk, VA, 23510, United States.
| |
Collapse
|
14
|
González J, Valcárcel F, Aguilar A, Olmeda AS. In vitro feeding of Hyalomma lusitanicum ticks on artificial membranes. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 72:449-459. [PMID: 28840366 DOI: 10.1007/s10493-017-0167-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/14/2017] [Indexed: 05/27/2023]
Abstract
In vitro feeding of ticks (Acari: Ixodidae) is an important means to study the biology of ticks and their vectorial capacity. Here, we have adapted the tick Hyalomma lusitanicum Koch to previously published silicone-based membranes for in vitro feeding. For comparison purposes data on pre-oviposition, oviposition and hatching from females engorged on animals were used. A total of 68 engorged females out of 169 were obtained; feeding duration and feeding behaviour were similar to that of ticks on live host animals, although the final weight achieved for membrane-fed ticks was lower than that of their animal-fed counterparts. Comparison of the time taken for egg production and hatching showed that pre-oviposition was faster for membrane-fed ticks (16 days) than for animal-fed ticks (36 days), whereas the duration of oviposition-hatching was the same for the two feeding methods (34 days). We also observed that seasonality has an influence on tick feeding success: the conditions in Spring/Summer accelerated the tick life cycle. It is concluded that relatively large numbers of homogeneous laboratory-raised Hyalomma ticks can be produced without feeding them on experimental animals.
Collapse
Affiliation(s)
- J González
- Villamagna SA, Finca "La Garganta", 14440, Villanueva de Córdoba, Córdoba, Spain
| | - F Valcárcel
- Grupo de Parasitología Animal, Animalario del Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agria y Alimentaria (INIA), 28040, Madrid, Spain.
| | - A Aguilar
- Grupo de Parasitología Animal, Animalario del Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agria y Alimentaria (INIA), 28040, Madrid, Spain
| | - A S Olmeda
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
15
|
Neelakanta G, Sultana H, Sonenshine DE, Marconi RT. An In Vitro Blood-Feeding Method Revealed Differential Borrelia turicatae (Spirochaetales: Spirochaetaceae) Gene Expression After Spirochete Acquisition and Colonization in the Soft Tick Ornithodoros turicata (Acari: Argasidae). JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:441-449. [PMID: 28399292 DOI: 10.1093/jme/tjw171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 06/07/2023]
Abstract
In the Midwestern, Southwestern, and Southern part of the United States, the soft tick Ornithodoros turicata transmits the spirochete Borrelia turicatae, the causative agent of relapsing fever in humans. In this study, we report a simplified and an efficient method of in vitro feeding to evaluate O. turicata-B. turicatae interactions. Both nymphal and adult female ticks successfully acquired spirochetes upon in vitro feeding on the B. turicatae-infected blood. We also noted transstadial transmission of spirochetes to adult ticks that were molted from nymphs fed on B. turicatae-infected blood. A differential expression pattern for some of the B. turicatae genes was evident after acquisition and colonization of the vector. The levels of arthropod-associated lipoprotein Alp-mRNA were significantly upregulated and the mRNA levels of factor H binding protein FhbA and immunogenic protein BipA were significantly downregulated in the spirochetes after acquisition into ticks in comparison with spirochetes grown in culture medium. In addition, genes such as bta124 and bta116 were significantly upregulated in spirochetes in unfed ticks in comparison with the levels noted in spirochetes after acquisition. These findings represent an efficient in vitro blood-feeding method to study B. turicatae gene expression after acquisition and colonization in these ticks. In summary, we report that B. turicatae survive and develop in the tick host when acquired by in vitro feeding. We also report that B. turicatae genes are differentially expressed in ticks in comparison with the in vitro-grown cultures, indicating influence of tick environment on spirochete gene expression.
Collapse
Affiliation(s)
- Girish Neelakanta
- Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA 23529 (; )
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529
| | - Hameeda Sultana
- Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, VA 23529 (; )
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529
| | - Daniel E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
16
|
Tajeri S, Razmi G, Haghparast A. Establishment of an Artificial Tick Feeding System to Study Theileria lestoquardi Infection. PLoS One 2016; 11:e0169053. [PMID: 28036364 PMCID: PMC5201281 DOI: 10.1371/journal.pone.0169053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/09/2016] [Indexed: 11/30/2022] Open
Abstract
The establishment of good experimental models for Theileria sp. infection is important for theileriosis research. Routinely, infection of ticks is accomplished by feeding on parasite-infected animals (sheep, cows and horses), which raises practical and ethical problems, driving the search for alternative methods of tick infection. Artificial tick feeding systems are based mainly on rearing ticks on host-derived or hand-made artificial membranes. We developed a modified feeding assay for infecting nymphal stages of Hyalomma anatolicum ticks with Theileria lestoquardi, a highly pathogenic parasite of sheep. We compared two different membranes: an artificial silicone membrane and a natural alternative using mouse skin. We observed high attachment rates with mouse skin, whereas in vitro feeding of H. anatolicum nymphs on silicone membranes was unsuccessful. We could infect H. anatolicum nymphs with T. lestoquardi and the emerging adult ticks transmitted infective parasites to sheep. In contrast, similar infections with Rhipicephalus bursa, a representative tick with short mouth-parts that was proposed as a vector for T. lestoquardi, appeared not to be a competent vector tick species. This is the first report of an experimentally controlled infection of H. anatolicum with T. lestoquardi and opens avenues to explore tick-parasite dynamics in detail.
Collapse
Affiliation(s)
- Shahin Tajeri
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Razmi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- * E-mail:
| | - Alireza Haghparast
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Veterinary Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
17
|
Establishment of a novel tick-Babesia experimental infection model. Sci Rep 2016; 6:37039. [PMID: 27841321 PMCID: PMC5107930 DOI: 10.1038/srep37039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022] Open
Abstract
Ticks are potent vectors of many deadly human and animal pathogens. Tick-borne babesiosis is a well-recognized malaria-like disease that occurs worldwide and recently has attracted increased attention as an emerging zoonosis. Although the proliferation of Babesia organisms is essential in the vectors, their detailed lifecycle with time information for migration in ticks remains unknown. A novel study model for the elucidation of the migration speed of Babesia parasites in their vector tick, Haemaphysalis longicornis, has been developed using an artificial feeding system with quantitative PCR method. The detectable DNA of Babesia parasites gradually disappeared in the tick midgut at 1 day post engorgement (DPE), and in contrary increased in other organs. The results indicated that the Babesia parasite passed the H. longicornis midgut within 24 hours post engorgement, migrated to the hemolymph, and then proliferated in the organs except the midgut. This time point may be an important curfew for Babesia parasites to migrate in the tick lumen. We also visualized the Babesia parasites in the experimentally infected ticks and in their eggs using IFAT for detecting their cytoskeletal structure, which suggested the successful tick infection and transovarial transmission of the parasite. This model will shed light on the further understanding of tick-Babesia interactions.
Collapse
|
18
|
Bullard R, Allen P, Chao CC, Douglas J, Das P, Morgan SE, Ching WM, Karim S. Structural characterization of tick cement cones collected from in vivo and artificial membrane blood-fed Lone Star ticks (Amblyomma americanum). Ticks Tick Borne Dis 2016; 7:880-892. [PMID: 27118479 DOI: 10.1016/j.ttbdis.2016.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/09/2016] [Indexed: 11/27/2022]
Abstract
The Lone Star tick, Amblyomma americanum, is endemic to the southeastern United States and capable of transmitting pathogenic diseases and causing non-pathogenic conditions. To remain firmly attached to the host, the tick secretes a proteinaceous matrix termed the cement cone which hardens around the tick's mouthparts to assist in the attachment of the tick as well as to protect the mouthparts from the host immune system. Cement cones collected from ticks on a host are commonly contaminated with host skin and hair making analysis of the cone difficult. To reduce the contamination found in the cement cone, we have adapted an artificial membrane feeding system used to feed long mouthpart ticks. Cones collected from in vivo and membrane fed ticks are analyzed to determine changes in the cone morphology. Comparisons of the cement cones using light microscopy shows similar structures and color however using scanning electron microscopy the cones have drastically different structures. The in vivo cones contain fibrils, sheets, and are heavily textured whereas cones from membrane fed ticks are remarkably smooth with no distinct structures. Analysis of the secondary protein structures using FTIR-ATR show both in vivo and membrane fed cement cones contain β sheets but only in vivo cement cones contain helical protein structures. Additionally, proteomic analysis using LC-MS/MS identifies many proteins including glycine rich proteins, metalloproteases, and protease inhibitors. Proteomic analysis of the cones identified both secreted and non-secreted tick proteins. Artificial membrane feeding is a suitable model for increased collection of cement cones for proteomic analysis however, structurally there are significant differences.
Collapse
Affiliation(s)
- Rebekah Bullard
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Paige Allen
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Chien-Chung Chao
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20892, USA
| | - Jessica Douglas
- School of Polymers and High Performance Materials, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Pradipta Das
- School of Polymers and High Performance Materials, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Sarah E Morgan
- School of Polymers and High Performance Materials, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Wei-Mei Ching
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20892, USA
| | - Shahid Karim
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| |
Collapse
|