1
|
Benedikt S, Stock K, Horling L, Schmidle G, Schirmer M, Degenhart G, Blauth M, Lamina C, Pallua JD, Arora R. Bone remodelling after scaphoid fractures: HR-pQCT, clinical and laboratory data from a prospective 1-year follow-up study. Bone 2025; 192:117337. [PMID: 39603371 DOI: 10.1016/j.bone.2024.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION The exact mechanisms of bone remodelling after scaphoid fractures are not fully understood. Blood supply may lead to delayed consolidation and non-unions as challenging long-term problems. The aim of this study was to follow-up the microstructure during the scaphoid bone remodelling process using High Resolution peripheral Quantitative Computed Tomography (HR-pQCT) and compare the results with clinical and laboratory data. PATIENTS AND METHODS In this monocentric, prospective, controlled, clinical trial 39 patients with an unilateral conservatively treated scaphoid fracture at the level of the waist or the distal pole were followed up over one year (2, 4, 6, 12, 26 and 52 weeks after trauma). Fracture healing was monitored by clinical examination, blood bone remodelling markers and HR-pQCT. RESULTS The HR-pQCT showed significant changes in trabecular number, trabecular thickness, trabecular separation and bone mineral density until the 52 week follow-up. Complete bony consolidation on HR-pQCT was evident in half of the fractures at 12 weeks and in all fractures at 52 weeks after trauma. None of the patients developed a non-union. Carboxy-terminal collagen crosslinks as resorption marker showed significant changes until the 52 week follow-up. CONCLUSION This study shows detailed clinical, laboratory and radiologic changes during follow-up of uncomplicated fracture healing of conservative scaphoids. Bony consolidation is highly variable and can take up to one year after fracture. Larger studies are warranted, as HR-pQCT might provide detailed microstructural information to better predict fracture healing processes, thus acting as a high-resolution and low-radiation alternative to standard conventional CT.
Collapse
Affiliation(s)
- Stefan Benedikt
- Department of Orthopaedics and Traumatology, University Hospital Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| | - Kerstin Stock
- Department of Orthopaedics and Traumatology, University Hospital Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| | - Lukas Horling
- Department of Orthopaedics and Traumatology, University Hospital Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| | - Gernot Schmidle
- Department of Orthopaedics and Traumatology, University Hospital Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| | - Michael Schirmer
- Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; Office Dr. Schirmer, 6060 Hall, Austria
| | - Gerald Degenhart
- Department of Radiology, University Hospital Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| | - Michael Blauth
- DePuy Synthes, Luzernstrasse 21, 4528 Zuchwil, Switzerland
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| | - Johannes Dominikus Pallua
- Department of Orthopaedics and Traumatology, University Hospital Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| | - Rohit Arora
- Department of Orthopaedics and Traumatology, University Hospital Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Hakobyan G, Khachatryan L, Khudaverdyan M, Gegham T, Burnazyan S. Diagnostic and Prognostic Value of Indicators of Bone Metabolism Markers in Patients Following Mandibulectomy and Free Fibula Flap Reconstruction with Endosteal Implants. J Maxillofac Oral Surg 2024; 23:719-726. [PMID: 38911414 PMCID: PMC11189845 DOI: 10.1007/s12663-023-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 06/19/2023] [Indexed: 06/25/2024] Open
Abstract
Purpose To evaluate and assess the indicators of bone metabolism markers osteocalcin and β-Cross-Laps in blood serum as a tool for monitoring bone regeneration and determining the time of implantation in patients after mandibulectomy and reconstruction of a free fibular flap with subsequent endosteal implants. Materials and Methods Forty-eight patients in a 6-year period participated in this study, due to resection for tumors. All patients underwent reconstruction with fibula free flap after tumor resection, 4-6 months after osteoectomy, dental implants were installed with further orthopedic rehabilitation. To assess the rate of bone remodeling after transplantation, the content biochemical markers of bone remodeling osteocalcin and β-Cross-Laps serum were determined by enzyme immunoassay. Results All 46 fibular free flaps were healed without complications and were survived. A total 326 implants installed, 8 implants failed to osseointegrate, and 6 implants failed after 5 years of loading (peri-implantitis). Success rate of implants after 5 years was 95,7%. In patients before surgery, the mean of osteocalcin levels was 8.5 ng/ml, two months later, there was a sharp increase in the content of osteocalcin by 15.4 ng/ml, after four months reached 24.7 ng/ml, after six months of 28.6 ng/ml, then the indicator began to decrease and after 12 months it was approaching the norm of 14.7 ng/ml. In patients before surgery, the mean level of β-Cross-Laps was 0.76 ng/ml, after two months bone transplantation the mean level of β-Cross-Laps decreased to - 0.65 ng/ml, after four months the indicator increased and reached of 0.98 ng/ml, after six months the indicator was - 1.56 ng/ml, then these indicators began to decrease and after 12 months, approaching normal values of - 0.87 ng/ml. There is a correlation between different concentrations of osteocalcin or β-Cross- Laps and the success rate of implants. Implants were shown to be unsuccessful low concentrations of osteocalcin and high concentrations of β-Cross-Laps in serum. Conclusion Studies have shown that the long-term survival and success rates of implants placed in the reconstructed areas may guarantee an excellent prognosis of implant-supported prostheses. Bone markers in blood serum osteocalcin and β-Cross-Laps can be used to evaluate the rate of bone remodeling, which allows you to determine the time of implantation.
Collapse
Affiliation(s)
- Gagik Hakobyan
- Department of Oral and Maxillofacial Surgery, Yerevan State Medical University After M. Heratsi, Yerevan, Armenia
| | - Levon Khachatryan
- Department of Maxillofacial and Plastic Surgery, Modern Implant Medicine, Armenia Yerevan State Medical University After M. Heratsi, Yerevan, Armenia
| | - Margarita Khudaverdyan
- Department of Therapeutic Dentistry, Yerevan State Medical University After M. Heratsi, Yerevan, Armenia
| | - Tunyan Gegham
- Department of Dental Professional and Continuing Education of Oral and Maxillofacial Surgery, Yerevan State Medical University After M. Heratsi, Yerevan, Armenia
| | - Seda Burnazyan
- Department of Oral and Maxillofacial Surgery, Yerevan State Medical University After M. Heratsi, Yerevan, Armenia
| |
Collapse
|
3
|
Perut F, Roncuzzi L, Gómez-Barrena E, Baldini N. Association between Bone Turnover Markers and Fracture Healing in Long Bone Non-Union: A Systematic Review. J Clin Med 2024; 13:2333. [PMID: 38673606 PMCID: PMC11051214 DOI: 10.3390/jcm13082333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Fracture healing is a very complex and well-orchestrated regenerative process involving many cell types and molecular pathways. Despite the high efficiency of this process, unsatisfying healing outcomes, such as non-union, occur for approximately 5-10% of long bone fractures. Although there is an obvious need to identify markers to monitor the healing process and to predict a potential failure in callus formation to heal the fracture, circulating bone turnover markers' (BTMs) utility as biomarkers in association with radiographic and clinical examination still lacks evidence so far. Methods: A systematic review on the association between BTMs changes and fracture healing in long bone non-union was performed following PRISMA guidelines. The research papers were identified via the PubMed, Cochrane, Cinahl, Web of Science, Scopus, and Embase databases. Studies in which the failure of fracture healing was associated with osteoporosis or genetic disorders were not included. Results: A total of 172 studies were collected and, given the inclusion criteria, 14 manuscripts were included in this review. Changes in circulating BTMs levels were detected during the healing process and across groups (healed vs. non-union patients and healthy vs. patients with non-union). However, we found high heterogeneity in patients' characteristics (fracture site, gender, and age) and in sample scheduling, which made it impossible to perform a meta-analysis. Conclusions: Clinical findings and radiographic features remain the two important components of non-union diagnosis so far. We suggest improving blood sample standardization and clinical data collection in future research to lay the foundations for the effective use of BTMs as tools for diagnosing non-union.
Collapse
Affiliation(s)
- Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.R.); (N.B.)
| | - Laura Roncuzzi
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.R.); (N.B.)
| | - Enrique Gómez-Barrena
- Department of Orthopedic Surgery and Traumatology, Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain;
- Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.R.); (N.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40136 Bologna, Italy
| |
Collapse
|
4
|
Vasileva R, Chaprazov T, Milanova A. Effects of Erythropoietin-Promoted Fracture Healing on Bone Turnover Markers in Cats. J Funct Biomater 2024; 15:106. [PMID: 38667563 PMCID: PMC11051391 DOI: 10.3390/jfb15040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In orthopaedics, erythropoietin (EPO) is applied in the preoperative management of anaemic patients, but also as a stimulating factor to assist bone regeneration due to its angiogenic and osteoinductive potential. Since orthopaedists mainly rely on their clinical experience to assess bone healing, additional and more objective methods such as studying the dynamics of bone markers are needed. Therefore, the aim of this study was to investigate the plasma activity of bone-specific alkaline phosphatase (BALP), the N-terminal propeptide of type I collagen (PINP), the C-terminal telopeptide of type I collagen (CTX), and deoxypyridinoline (DPD) during the first 2 months of healing of comminuted fractures in cats, either non-stimulated or locally stimulated with recombinant human erythropoietin (rhEPO). The study included twelve cats of mixed breeds, aged 7.2 ± 4 months, weighing 2.11 ± 1.1 kg, with comminuted diaphyseal fractures of the femur. Surgical treatment with plate osteosynthesis was performed in all animals. The cats were randomly divided into two groups-a control (n = 6) and an EPO group (n = 6). The locally applied EPO leads to the increased activity of bone formation markers (BALP and PINP) during the second week after the osteosynthesis, preceding the peaks in the control group by two weeks. The studied bone resorption markers (DPD, CTX) varied insignificantly during the studied period. In conclusion, erythropoietin could serve as a promoter of bone healing in comminuted fractures in cats.
Collapse
Affiliation(s)
- Radina Vasileva
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Tsvetan Chaprazov
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Aneliya Milanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
5
|
Shariyate MJ, Kheir N, Caro D, Abbasian M, Rodriguez EK, Snyder BD, Nazarian A. Assessment of Bone Healing: Opportunities to Improve the Standard of Care. J Bone Joint Surg Am 2023; 105:1193-1202. [PMID: 37339171 DOI: 10.2106/jbjs.22.01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
➤ Bone healing is commonly evaluated by clinical examination and serial radiographic evaluation. Physicians should be mindful that personal and cultural differences in pain perception may affect the clinical examination. Radiographic assessment, even with the Radiographic Union Score, is qualitative, with limited interobserver agreement.➤ Physicians may use serial clinical and radiographical examinations to assess bone healing in most patients, but in ambiguous and complicated cases, they may require other methods to provide assistance in decision-making.➤ In complicated instances, clinically available biomarkers, ultrasound, and magnetic resonance imaging may determine initial callus development. Quantitative computed tomography and finite element analysis can estimate bone strength in later callus consolidation phases.➤ As a future direction, quantitative rigidity assessments for bone healing may help patients to return to function earlier by increasing a clinician's confidence in successful progressive healing.
Collapse
Affiliation(s)
- Mohammad Javad Shariyate
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Nadim Kheir
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniela Caro
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Mohammadreza Abbasian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Edward K Rodriguez
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Brian D Snyder
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Orthopaedic Surgery, Yerevan State Medical University Yerevan, Armenia
| |
Collapse
|
6
|
Osteoblastic microRNAs in skeletal diseases: Biological functions and therapeutic implications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
7
|
Chitwood JR, Chakraborty N, Hammamieh R, Moe SM, Chen NX, Kacena MA, Natoli RM. Predicting fracture healing with blood biomarkers: the potential to assess patient risk of fracture nonunion. Biomarkers 2021; 26:703-717. [PMID: 34555995 DOI: 10.1080/1354750x.2021.1985171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fracture non-union is a significant orthopaedic problem affecting a substantial number of patients yearly. Treatment of nonunions is devastating to patients and costly to the healthcare system. Unfortunately, the diagnosis of non-union is typically made in a reactionary fashion by an orthopaedic surgeon based on clinical assessment and radiographic features several months into treatment. For this reason, investigators have been trying to develop prediction algorithms; however, these have relied on population-based approaches and lack the predictive capability necessary to make individual treatment decisions. There is also a growing body of literature focussed on identifying blood biomarkers that are associated with non-union. This review describes the research that has been done in this area. Further studies of patient-centered, precision medicine approaches will likely improve fracture non-union diagnostic/prognostic capabilities.
Collapse
Affiliation(s)
- Joseph R Chitwood
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sharon M Moe
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Neal X Chen
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Al-Sobayil F, Sadan MA, El-Shafaey ES, Ahmed AF. Can bone marrow aspirate improve mandibular fracture repair in camels ( Camelus dromedarius)? A preliminary study. J Vet Sci 2021; 21:e90. [PMID: 33263237 PMCID: PMC7710458 DOI: 10.4142/jvs.2020.21.e90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 08/30/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022] Open
Abstract
Background Mandibular fractures are common in camels, leading to considerable economic losses. This study explored methods of improving mandibular fractures repair, adjuvant with interdental wire, or bone plate fixation. Autologous bone marrow (BM) injection enhances osteogenesis and rapid healing. Objectives To investigate the effect of autologous BM aspirate as an adjuvant treatment for repairing mandibular fractures in camels with interdental wire, or bone plate fixation. Methods Thirty dromedary camels aged 5–8 years and of both sexes were randomly divided into 4 treatment groups: group 1 (n = 10) treated with stainless steel wire fixation and BM injection at the fracture line, group 2 (n = 10) treated with plate fixation and BM injection at the fracture line, group 3 (n = 5) treated with stainless steel bone wire fixation and placebo saline injection at the fracture line, and group 4 (n = 5) treated with plate fixation and placebo injection at the fracture line. The mandibular fractures were followed weekly for 12 weeks postoperatively to assess improvement and healing based on clinical evaluation, radiographic union scale, and bone turnover markers (i.e., bone alkaline phosphatase, osteocalcin, pyridinoline, and deoxypyridinoline). Results Compared to other groups, elevated bone turnover markers in group 1 were demonstrated (p < 0.05) on the seventh postoperative day. Likewise, compared to other groups, both clinical findings and radiographic union scale significantly improved (p < 0.05) in group 1 on the 56th postoperative day. Conclusions BM aspirate has a promising beneficial osteogenic effect on mandibular fracture repair in camels, most notably when combined with interdental wire fixation.
Collapse
Affiliation(s)
- Fahd Al-Sobayil
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Qassim, Saudi Arabia
| | - Madeh A Sadan
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Qassim, Saudi Arabia.,Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - El Sayed El-Shafaey
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Qassim, Saudi Arabia.,Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed F Ahmed
- Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
9
|
Advances in the occurrence and biotherapy of osteoporosis. Biochem Soc Trans 2021; 48:1623-1636. [PMID: 32627832 DOI: 10.1042/bst20200005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022]
Abstract
Osteoporosis (OP) is a bone metabolic disease, is characterized by degeneration of bone structure and decreased bone mass. It happens in more than 1/3 women and 1/5 men of over than 50 years old, which affects the health and lives of people. The main mechanism of OP is mainly that the dynamic balance between the bone formation and resorption is broken, so that bone resorption is more than bone formation. It is prone to result in bone metabolism disorder. There are many precipitating factor such as elder age, low hormone level, genetic factors and bad hobbies. At the same time, the occurrence of the OP and its complications has different degrees of impact on people's quality of life. Based on the current understanding of the OP, we summarized the etiology, current clinical drugs and potential targeting therapy for OP. Although the research have made many progress in explore what is the novel mechanism and how to improve the effect, there are still many problems in the treatment method that limit its application prospects and need to be solved. In this review, we mainly focus on the mechanism of OP and related research on the targeted treatment of OP. Hopefully, our summary will provide a reference to develop some novel strategies for the target therapy of OP.
Collapse
|
10
|
Crous A, Abrahamse H. The Signalling Effects of Photobiomodulation on Osteoblast Proliferation, Maturation and Differentiation: A Review. Stem Cell Rev Rep 2021; 17:1570-1589. [PMID: 33686595 DOI: 10.1007/s12015-021-10142-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Proliferation of osteoblasts is essential for maturation and mineralization of bone matrix. Ossification, the natural phase of bone-forming and hardening is a carefully regulated phase where deregulation of this process may result in insufficient or excessive bone mineralization or ectopic calcification. Osteoblasts can also be differentiated into osteocytes, populating short interconnecting passages within the bone matrix. Over the past few decades, we have seen a significant improvement in awareness and techniques using photobiomodulation (PBM) to stimulate cell function. One of the applications of PBM is the promotion of osteoblast proliferation and maturation. PBM research results on osteoblasts showed increased mitochondrial ATP production, increased osteoblast activity and proliferation, increased and pro-osteoblast expression in the presence of red and NIR radiation. Osteocyte differentiation was also accomplished using blue and green light, showing that different light parameters have various signalling effects. The current review addresses osteoblast function and control, a new understanding of PBM on osteoblasts and its therapeutic impact using various parameters to optimize osteoblast function that may be clinically important. Graphical Abstract.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
11
|
Roberts JL, Liu G, Darby TM, Fernandes LM, Diaz-Hernandez ME, Jones RM, Drissi H. Bifidobacterium adolescentis supplementation attenuates fracture-induced systemic sequelae. Biomed Pharmacother 2020; 132:110831. [PMID: 33022534 PMCID: PMC9979243 DOI: 10.1016/j.biopha.2020.110831] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is an important contributor to both health and disease. While previous studies have reported on the beneficial influences of the gut microbiota and probiotic supplementation on bone health, their role in recovery from skeletal injury and resultant systemic sequelae remains unexplored. This study aimed to determine the extent to which probiotics could modulate bone repair by dampening fracture-induced systemic inflammation. Our findings demonstrate that femur fracture induced an increase in gut permeability lasting up to 7 days after trauma before returning to basal levels. Strikingly, dietary supplementation with Bifidobacterium adolescentis augmented the tightening of the intestinal barrier, dampened the systemic inflammatory response to fracture, accelerated fracture callus cartilage remodeling, and elicited enhanced protection of the intact skeleton following fracture. Together, these data outline a mechanism whereby dietary supplementation with beneficial bacteria can be therapeutically targeted to prevent the systemic pathologies induced by femur fracture.
Collapse
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA,Nutrition and Health Sciences Program, Emory University, Atlanta, GA, USA
| | - Guanglu Liu
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Trevor M. Darby
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lorenzo M. Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Rheinallt M. Jones
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; Nutrition and Health Sciences Program, Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Magani SKJ, Mupparthi SD, Gollapalli BP, Shukla D, Tiwari AK, Gorantala J, Yarla NS, Tantravahi S. Salidroside - Can it be a Multifunctional Drug? Curr Drug Metab 2020; 21:512-524. [PMID: 32520682 DOI: 10.2174/1389200221666200610172105] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 03/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Salidroside is a glucoside of tyrosol found mostly in the roots of Rhodiola spp. It exhibits diverse biological and pharmacological properties. In the last decade, enormous research is conducted to explore the medicinal properties of salidroside; this research reported many activities like anti-cancer, anti-oxidant, anti-aging, anti-diabetic, anti-depressant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, etc. Objective: Despite its multiple pharmacological effects, a comprehensive review detailing its metabolism and therapeutic activities is still missing. This review aims to provide an overview of the metabolism of salidroside, its role in alleviating different metabolic disorders, diseases and its molecular interaction with the target molecules in different conditions. This review mostly concentrates on the metabolism, biological activities and molecular pathways related to various pharmacological activities of salidroside. CONCLUSION Salidroside is produced by a three-step pathway in the plants with tyrosol as an intermediate molecule. The molecule is biotransformed into many metabolites through phase I and II pathways. These metabolites, together with a certain amount of salidroside may be responsible for various pharmacological functions. The salidroside based inhibition of PI3k/AKT, JAK/ STAT, and MEK/ERK pathways and activation of apoptosis and autophagy are the major reasons for its anti-cancer activity. AMPK pathway modulation plays a significant role in its anti-diabetic activity. The neuroprotective activity was linked with decreased oxidative stress and increased antioxidant enzymes, Nrf2/HO-1 pathways, decreased inflammation through suppression of NF-κB pathway and PI3K/AKT pathways. These scientific findings will pave the way to clinically translate the use of salidroside as a multi-functional drug for various diseases and disorders in the near future.
Collapse
Affiliation(s)
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - A K Tiwari
- Department of Zoology, Dr. Bhanvar Singh Porte Government College, Pendra Bilaspur, India
| | | | | | | |
Collapse
|
13
|
Granchi D, Ciapetti G, Gómez-Barrena E, Rojewski M, Rosset P, Layrolle P, Spazzoli B, Donati DM, Baldini N. Biomarkers of bone healing induced by a regenerative approach based on expanded bone marrow-derived mesenchymal stromal cells. Cytotherapy 2019; 21:870-885. [PMID: 31272868 DOI: 10.1016/j.jcyt.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/29/2019] [Accepted: 06/09/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Safety and feasibility of a regenerative strategy based on the use of culture-expanded mesenchymal stromal cells (MSCs) have been investigated in phase 2 trials for the treatment of nonunion and osteonecrosis of the femoral head (ONFH). As part of the clinical study, we aimed to evaluate if bone turnover markers (BTMs) could be useful for predicting the regenerative ability of the cell therapy product. MATERIALS AND METHODS The bone defects of 39 patients (nonunion: n = 26; ONFH: n = 13) were treated with bone marrow-derived MSCs, expanded using a clinical-grade protocol and combined with biphasic calcium phosphate before implantation. Bone formation markers, bone-resorption markers and osteoclast regulatory proteins were measured before treatment (baseline) and after 12 and 24 weeks from surgery. At the same time-points, clinical and radiological controls were performed to evaluate the bone-healing progression. RESULTS We found that C-Propeptide of Type I Procollagen (CICP) and C-terminal telopeptide of type-I collagen (CTX) varied significantly, not only over time, but also according to clinical results. In patients with a good outcome, CICP increased and CTX decreased, and this trend was observed in both nonunion and ONFH. Moreover, collagen biomarkers were able to discriminate healed patients from non-responsive patients with a good diagnostic accuracy. DISCUSSION CICP and CTX could be valuable biomarkers for monitoring and predicting the regenerative ability of cell products used to stimulate the repair of refractory bone diseases. To be translated in a clinical setting, these results are under validation in a currently ongoing phase 3 clinical trial.
Collapse
Affiliation(s)
- Donatella Granchi
- SSD Fisiopatologia Ortopedica e Medicina Rigenerativa, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Gabriela Ciapetti
- SSD Fisiopatologia Ortopedica e Medicina Rigenerativa, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Markus Rojewski
- Institute for Clinical Transfusion Medicine and Immunogenetic Ulm (IKT Ulm), Ulm, Germany
| | - Philippe Rosset
- Service of Orthopaedic Surgery and Traumatology, CHRU, Tours, France
| | - Pierre Layrolle
- Inserm, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Benedetta Spazzoli
- Clinica Ortopedica III, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- Clinica Ortopedica III, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, Italy
| | - Nicola Baldini
- SSD Fisiopatologia Ortopedica e Medicina Rigenerativa, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, Italy
| |
Collapse
|
14
|
Szponder T, Wessely-Szponder J, Sobczyńska-Rak A, Żylińska B, Radzki RP, Polkowska I. Application of Platelet-rich Plasma and Tricalcium Phosphate in the Treatment of Comminuted Fractures in Animals. In Vivo 2019; 32:1449-1455. [PMID: 30348700 DOI: 10.21873/invivo.11398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022]
Abstract
AIM To assess the applicability of β-tri-calcium phosphate (TCP) and platelet-rich plasma (PRP) in the treatment of comminuted fractures in small animals. MATERIAL AND METHODS The experimental study was carried out on 16 New Zealand White rabbits. After creating the bone defect and performing tibial osteotomy, TCP implants containing activated PRP were introduced into the fracture and the defect. The fracture was stabilised using external fixators or intramedullary nails. After 12 weeks, the animals were euthanised, and radiological, histological, scanning electron microscopy and peripheral quantitative computed tomography examinations were performed. The analysis also covered the results of fracture treatment in 37 small animals (cats and dogs) in which treatment with TCP containing PRP was used as an alternative to cancellous bone implantation. RESULTS Correct bone union was observed in the experimental groups, TCP remained visible at the site of the fracture after 12 weeks. In the clinical application in small animals, bone union was observed in over 91% of treated animals. CONCLUSION β-TCP and activated PRP may be an effective method of bone union enhancement in the treatment of comminuted fractures in small animals.
Collapse
Affiliation(s)
- Tomasz Szponder
- Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland .,Department of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Joanna Wessely-Szponder
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Aleksandra Sobczyńska-Rak
- Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland.,Department of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Beata Żylińska
- Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland.,Department of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Radosław P Radzki
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Izabella Polkowska
- Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland.,Department of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| |
Collapse
|
15
|
Yoon BH, Yu W. Clinical Utility of Biochemical Marker of Bone Turnover: Fracture Risk Prediction and Bone Healing. J Bone Metab 2018; 25:73-78. [PMID: 29900156 PMCID: PMC5995756 DOI: 10.11005/jbm.2018.25.2.73] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/29/2022] Open
Abstract
Bone turnover markers (BTMs) are released during bone remodeling and are thought to reflect the metabolic activity of bone at the cellular level. This review examines BTM as a biological response marker for monitoring future fracture prediction and fracture healing processes. Substantial evidence has been of high value to investigate the use of BTM in fracture risk prediction; nevertheless, the conclusions of some studies are inconsistent due to their large variability. BTM is promising for fracture risk prediction for adopting international reference standards or providing absolute risks, such as 10-year fracture probabilities. There are uncertainties over their clinical use for monitoring osteoporotic fracture healing. More rigorous evidence is needed that can provide more detailed insights for fracture healing and for ascertaining the progression of fracture healing.
Collapse
Affiliation(s)
- Byung-Ho Yoon
- Department of Orthopaedic Surgery, Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Woojin Yu
- Department of Orthopaedic Surgery, Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Prognostic potential of markers of bone turnover in delayed-healing tibial diaphyseal fractures. Eur J Trauma Emerg Surg 2017; 45:31-38. [DOI: 10.1007/s00068-017-0879-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022]
|
17
|
Sousa CP, Lopez-Peña M, Guzón FM, Abreu HVD, Luís MR, Viegas CA, Camassa J, Azevedo JTD, Cabrita AS, Reis RL, Gomes ME, Dias IR. Evaluation of bone turnover markers and serum minerals variations for predicting fracture healing versus non-union processes in adult sheep as a model for orthopedic research. Injury 2017; 48:1768-1775. [PMID: 28601248 DOI: 10.1016/j.injury.2017.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 02/02/2023]
Abstract
Bone turnover markers (BTMs) have been considered as an auxiliary method of following the fracture healing process and for early prediction of impaired bone healing. A better understanding of the potential of BTMs in this application could allow for earlier interventions and improved patient care. The aim of this study with a large animal experimental model was to assess the variation of bone formation markers - namely the total alkaline phosphatase (ALP) and its bone-specific isoform (BALP), serum concentration of intact osteocalcin (OC), N-terminal propeptide type III procollagen (PIIINP) and of bone resorption markers - namely tartrate resistant acid phosphatase (TRAP) and deoxypyridinoline crosslink (DPD) during the first stages of a normal fracture healing process and of a segmental critical size defect (CSD), which progresses to a non-union process. Thirty healthy female sheep (Portuguese Churra-da-Terra-Quente breed), approximately 4-years-old, were enrolled in this study. Jugular venous blood samples were collected pre-operatively and at 1, 2, 3, 4, 6, 8, 10 and 12 post-operative weeks. The animals of the CSD group showed significant lower serum levels of BALP, OC and significant higher serum PIIINP levels at early stages of the fracture healing process, compared with animals that progressed in a normal fracture healing process. Serum BALP, OC and PIIINP levels could be useful as non-invasive auxiliary tools with other complementary methods for predicting the outcome of traumatic bone fractures.
Collapse
Affiliation(s)
- Cristina P Sousa
- Center Hospitalar of Porto, Largo Prof. Abel Salazar 4099-001 Porto, Portugal.
| | - Mónica Lopez-Peña
- Department of Veterinary Clinics Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, University Campus, Av. Carballo Calero, 27002 Lugo, Spain
| | - Fernando M Guzón
- Department of Veterinary Clinics Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, University Campus, Av. Carballo Calero, 27002 Lugo, Spain
| | - Humberto V De Abreu
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Maurino R Luís
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Carlos A Viegas
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD, Vila Real, Portugal
| | - José Camassa
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Jorge T De Azevedo
- Department of Animal Sciences, ECAV, UTAD, Vila Real, Portugal; CECAV - Centre for Animal Sciences and Veterinary Studies, UTAD, Vila Real, Portugal
| | - António S Cabrita
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, Rua larga, 3004-504 Coimbra, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel R Dias
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, UTAD, Vila Real, Portugal
| |
Collapse
|
18
|
Changes of Bone Turnover Markers in Long Bone Nonunions Treated with a Regenerative Approach. Stem Cells Int 2017; 2017:3674045. [PMID: 28744314 PMCID: PMC5506673 DOI: 10.1155/2017/3674045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/06/2017] [Accepted: 05/14/2017] [Indexed: 02/07/2023] Open
Abstract
In this clinical trial, we investigated if biochemical bone turnover markers (BTM) changed according to the progression of bone healing induced by autologous expanded MSC combined with a biphasic calcium phosphate in patients with delayed union or nonunion of long bone fractures. Bone formation markers, bone resorption markers, and osteoclast regulatory proteins were measured by enzymatic immunoassay before surgery and after 6, 12, and 24 weeks. A satisfactory bone healing was obtained in 23 out of 24 patients. Nine subjects reached a good consolidation already at 12 weeks, and they were considered as the “early consolidation” group. We found that bone-specific alkaline phosphatase (BAP), C-terminal propeptide of type I procollagen (PICP), and beta crosslaps collagen (CTX) changed after the regenerative treatment, BAP and CTX correlated to the imaging results collected at 12 and 24 weeks, and BAP variation along the healing course differed in patients who had an “early consolidation.” A remarkable decrease in BAP and PICP was observed at all time points in a single patient who experienced a treatment failure, but the predictive value of BTM changes cannot be determined. Our findings suggest that BTM are promising tools for monitoring cell therapy efficacy in bone nonunions, but studies with larger patient numbers are required to confirm these preliminary results.
Collapse
|
19
|
Xiaofeng L, Daxia X, Yunzhen C. Teriparatide as a nonoperative treatment for tibial and femoral fracture nonunion: A case report. Medicine (Baltimore) 2017; 96:e6571. [PMID: 28422848 PMCID: PMC5406064 DOI: 10.1097/md.0000000000006571] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Fracture nonunion is a great challenge for orthopedic surgeons. Many surgical interventions are associated with significant pain and heavy economic burden. Therefore, our aim was to evaluate the outcomes of a new nonoperative treatment for fracture nonunion. PATIENT CONCERNS A 44-year-old man suffered closed fractures of the right tibia and left femur. Eleven months after surgery, there was no radiographic healing between fracture fragments. DIAGNOSES Fracture nonunion of the right tibia and left femur. INTERVENTIONS The patient received systemic treatment with teriparatide (recombinant human Parathyroid Hormone 1-34) 20 μg/d for 8 months, with further observation at 4 months after discontinuation. During treatment, bone metabolic markers were measured to evaluate metabolic activity of osteoblasts and osteoclasts. The Ethics Committee of Qilu Hospital of Shandong University approved this study. OUTCOMES Satisfactory healing of fracture nonunion was obtained without further intervention. LESSONS Anabolic treatment with teriparatide showed a positive effect on healing of fracture nonunion. Evaluation of bone metabolic markers during treatment is necessary to observe the curative effect. In view of the positive effect of teriparatide on healing of fracture nonunion in numerous animal models and clinical studies, it may be a promising alternative treatment for fracture nonunion in patients who are not suitable for surgical intervention.
Collapse
|
20
|
Camassa JA, Diogo CC, Sousa CP, Azevedo JT, Viegas CA, Reis RL, Dourado N, Dias IR. Bone turnover markers in sheep and goat: A review of the scientific literature. AN ACAD BRAS CIENC 2017; 89:231-245. [PMID: 28273244 DOI: 10.1590/0001-3765201720160407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/11/2016] [Indexed: 01/23/2023] Open
Abstract
Bone turnover markers (BTMs) are product of bone cell activity and are generally divided in bone formation and bone resorption markers. The purpose of this review was to structure the available information on the use of BTMs in studies on small ruminants, especially for monitoring their variations related to diet, exercise, gestation and metabolic lactation state, circadian and seasonal variations, and also during skeletal growth. Pre-clinical and translational studies using BTMs with sheep and goats as animal models in orthopaedic research studies to help in the evaluation of the fracture healing process and osteoporosis research are also described in this review. The available information from the reviewed studies was systematically organized in order to highlight the most promising BTMs in small ruminant research, as well as provide a wide view of the use of sheep and goat as animal models in orthopaedic research, type of markers and commercial assay kits with cross-reactivity in sheep and goat, method of sample and storage of serum and urine for bone turnover markers determination and the usefulness and limitations of bone turnover markers in the different studies, therefore an effective tool for researchers that seek answers to different questions while using BTMs in small ruminants.
Collapse
Affiliation(s)
- José A Camassa
- 1Department of Veterinary Sciences, Agricultural and Veterinary Sciences School/ ECAV, University of Trás-os-Montes and Alto Douro/ UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Camila C Diogo
- 1Department of Veterinary Sciences, Agricultural and Veterinary Sciences School/ ECAV, University of Trás-os-Montes and Alto Douro/ UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Cristina P Sousa
- Center Hospitalar of Porto, Largo Prof. Abel Salazar, 4099-001 Porto, Portugal
| | - Jorge T Azevedo
- Department of Animal Sciences/ ECAV, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.,Centre for Animal Sciences and Veterinary Studies/ CECAV, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Carlos A Viegas
- 1Department of Veterinary Sciences, Agricultural and Veterinary Sciences School/ ECAV, University of Trás-os-Montes and Alto Douro/ UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences/ CITAB, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,Life and Health Sciences Research Institute/ ICVS, School of Health Sciences, University of Minho Campus de Gualtar 4710-057 Braga, Portugal
| | - Nuno Dourado
- Department of Mechanical Engineering, University of Minho, Azurém Campus, 4804-533 Guimarães, Portugal
| | - Isabel R Dias
- 1Department of Veterinary Sciences, Agricultural and Veterinary Sciences School/ ECAV, University of Trás-os-Montes and Alto Douro/ UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences/ CITAB, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
21
|
Guo XQ, Qi L, Yang J, Wang Y, Wang C, Li ZM, Li L, Qu Y, Wang D, Han ZM. Salidroside accelerates fracture healing through cell-autonomous and non-autonomous effects on osteoblasts. Cell Tissue Res 2017; 367:197-211. [PMID: 27942852 DOI: 10.1007/s00441-016-2535-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022]
Abstract
Salidroside (SAL), a major active component of Rhodiola rosea L., exhibits diverse pharmacological effects. However, the direct roles of SAL in fracture healing remain largely unknown. Here, we demonstrate that SAL significantly promotes proliferation by altering the cell-cycle distribution of osteoblastic cells. SAL also greatly stimulates osteoblast differentiation and mineralization by inducing the expression of Runx2 and Osterix. In addition to its osteoblast-autonomous effects, SAL can activate the HIF-1α pathway coupling of angiogenesis and osteogenesis through cell-non-autonomous effects. Our in vitro results suggest that SAL significantly up-regulates HIF-1α expression at the mRNA and protein levels. Furthermore, the nuclear translocation and transcriptional activity of HIF-1α and the HIF-responsive gene VEGF increase following SAL treatment. Our mechanistic study revealed that the regulation of osteoblastic proliferation and HIF-1α expression partly involves MAPK/ERK and PI3K/Akt signaling. Our in vivo analysis also demonstrated that SAL can promote angiogenesis within the callus and accelerate fracture healing. Thus, SAL promotes skeletal regeneration in cell-autonomous and cell-non-autonomous ways and might be a potential therapy for accelerating fracture healing.
Collapse
Affiliation(s)
- Xiao Qin Guo
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazards, Tianjin, People's Republic of China
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, No. 1, Tianjin, 300309, People's Republic of China
| | - Lin Qi
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, No. 1, Tianjin, 300309, People's Republic of China
| | - Jing Yang
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, No. 1, Tianjin, 300309, People's Republic of China
| | - Yue Wang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazards, Tianjin, People's Republic of China.
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, No. 1, Tianjin, 300309, People's Republic of China.
| | - Chuan Wang
- Department of Stomatology, Affiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Zong Min Li
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, No. 1, Tianjin, 300309, People's Republic of China
| | - Ling Li
- Department of Pharmacology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Ye Qu
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, No. 1, Tianjin, 300309, People's Republic of China
| | - Dan Wang
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, No. 1, Tianjin, 300309, People's Republic of China
| | - Ze Min Han
- Department of Stomatology, Affiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China.
| |
Collapse
|
22
|
Burgers TA, Vivanco JF, Zahatnansky J, Moren AJV, Mason JJ, Williams BO. Mice with a heterozygous Lrp6 deletion have impaired fracture healing. Bone Res 2016; 4:16025. [PMID: 27635281 PMCID: PMC5011612 DOI: 10.1038/boneres.2016.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/17/2016] [Accepted: 06/22/2016] [Indexed: 01/07/2023] Open
Abstract
Bone fracture non-unions, the failure of a fracture to heal, occur in 10%–20% of fractures and are a costly and debilitating clinical problem. The Wnt/β-catenin pathway is critical in bone development and fracture healing. Polymorphisms of linking low-density lipoprotein receptor-related protein 6 (LRP6), a Wnt-binding receptor, have been associated with decreased bone mineral density and fragility fractures, although this remains controversial. Mice with a homozygous deletion of Lrp6 have severe skeletal abnormalities and are not viable, whereas mice with a heterozygous deletion have a combinatory effect with Lrp5 to decrease bone mineral density. As fracture healing closely models embryonic skeletal development, we investigated the process of fracture healing in mice heterozygous for Lrp6 (Lrp6+/−) and hypothesized that the heterozygous deletion of Lrp6 would impair fracture healing. Mid-diaphyseal femur fractures were induced in Lrp6+/− mice and wild-type controls (Lrp6+/+). Fractures were analyzed using micro-computed tomography (μCT) scans, biomechanical testing, and histological analysis. Lrp6+/− mice had significantly decreased stiffness and strength at 28 days post fracture (PF) and significantly decreased BV/TV, total density, immature bone density, and mature area within the callus on day-14 and -21 PF; they had significantly increased empty callus area at days 14 and 21 PF. Our results demonstrate that the heterozygous deletion of Lrp6 impairs fracture healing, which suggests that Lrp6 has a role in fracture healing.
Collapse
Affiliation(s)
- Travis A Burgers
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute , Grand Rapids, MI, USA
| | - Juan F Vivanco
- Facultad de Ingenieria y Ciencias, Adolfo Ibáñez University , Viña del Mar, Chile
| | - Juraj Zahatnansky
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute , Grand Rapids, MI, USA
| | - Andrew J Vander Moren
- Padnos College of Engineering and Computing, Grand Valley State University , Grand Rapids, MI, USA
| | - James J Mason
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute , Grand Rapids, MI, USA
| | - Bart O Williams
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute , Grand Rapids, MI, USA
| |
Collapse
|
23
|
Campos JMD, Prati AJ, Cirano FR, Pimentel SP, Pastore GP, Pecorari VG, Ribeiro FV, Casati MZ, Casarin RCV. Smoking Modulates Gene Expression of Type I Collagen, Bone Sialoprotein, and Osteocalcin in Human Alveolar Bone. J Oral Maxillofac Surg 2015; 73:2123-31. [PMID: 26188100 DOI: 10.1016/j.joms.2015.06.168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE Previous animal studies have shown the negative impact of smoking on bone-to-implant contact, and in humans, a decrease in bone density and implant survival over time. However, the effect of smoking on the human alveolar bone regarding the expression of bone-related markers is unknown. Therefore, the aim of this study was to evaluate the influence of smoking on the gene expression of molecules of bone metabolism in alveolar bone tissue from sites designed to receive dental implants. MATERIALS AND METHODS Biopsy specimens of alveolar bone were collected from smokers (n = 19) and nonsmokers (n = 19) from areas planned to receive dental implants. Gene expression of tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, osteoprotegerin (OPG), type I collagen (COL-I), bone sialoprotein (BSP), and osteocalcin (OCN) was quantified by quantitative real-time polymerase chain reaction using glyceraldehyde-3-phosphate dehydrogenase as a reference gene. The results were assessed using multiple regression analysis, with a significance level of 5%. RESULTS Multiple regression analysis indicated that smoking negatively affected mRNA expression of BSP and OCN and positively altered the expression of COL-I (P < .05) despite age, gender, and arch. Moreover, regression analysis did not show a significant correlation between smoking habit and mRNA levels of TNF-α, TGF-β, and OPG (P > .05). CONCLUSION These results support the hypothesis that some bone markers in alveolar tissue are modulated by smoking, which could explain the negative impact of smoking on bone healing.
Collapse
Affiliation(s)
| | | | | | | | - Gabriel Pires Pastore
- Professor, Division of Maxillofacial Surgery, Paulista University, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
24
|
Sousa CP, Dias IR, Lopez-Peña M, Camassa JA, Lourenço PJ, Judas FM, Gomes ME, Reis RL. Bone turnover markers for early detection of fracture healing disturbances: A review of the scientific literature. AN ACAD BRAS CIENC 2015; 87:1049-61. [PMID: 25993365 DOI: 10.1590/0001-3765201520150008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/30/2015] [Indexed: 01/18/2023] Open
Abstract
Imaging techniques are the standard method for assessment of fracture healing processes. However, these methods are perhaps not entirely reliable for early detection of complications, the most frequent of these being delayed union and non-union. A prompt diagnosis of such disorders could prevent prolonged patient distress and disability. Efforts should be directed towards the development of new technologies for improving accuracy in diagnosing complications following bone fractures. The variation in the levels of bone turnover markers (BTMs) have been assessed with regard to there ability to predict impaired fracture healing at an early stage, nevertheless the conclusions of some studies are not consensual. In this article the authors have revised the potential of BTMs as early predictors of prognosis in adult patients presenting traumatic bone fractures but who did not suffer from osteopenia or postmenopausal osteoporosis. The available information from the different studies performed in this field was systematized in order to highlight the most promising BTMs for the assessment of fracture healing outcome.
Collapse
Affiliation(s)
- Cristina P Sousa
- Departamento de Ciências Veterinárias, Escola das Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Isabel R Dias
- Departamento de Ciências Veterinárias, Escola das Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Mónica Lopez-Peña
- Department of Veterinary Clinics Sciences, Faculty of Veterinary Medicine, Universidad de Santiago de Compostela, Lugo, Spain
| | - José A Camassa
- Departamento de Ciências Veterinárias, Escola das Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | | | | | - Manuela E Gomes
- Departamento de Engenharia de Polímeros, Universidade do Minho, Barco GMR, Portugal
| | - Rui L Reis
- Departamento de Engenharia de Polímeros, Universidade do Minho, Barco GMR, Portugal
| |
Collapse
|
25
|
Kuo YJ, Sun JS, Rau G, Chen CH, Tsai TH, Tsuang YH. Better Osteoporotic Fracture Healing with Sintered Dicalcium Pyrophosphate (SDCP) Treatment: A Rat Femoral Fracture Model. J Histochem Cytochem 2014; 62:565-76. [PMID: 24828625 DOI: 10.1369/0022155414538264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/24/2014] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to evaluate the effect of sintered dicalcium pyrophosphate (SDCP) on fracture healing in an osteoporotic rat model. Female Sprague-Dawley rats (8 weeks old) were randomly allocated into five groups: sham-operated group, and bilateral ovariectomized group treated with SDCP, alendronate, calcitonin, or no treatment. Rats were sacrificed at 6 or 16 weeks after fracture. Fracture sites were examined by microcomputed tomography (microCT), histology, and mechanical testing. The results showed that SDCP mildly suppressed callus remodeling at 6 weeks, but not at 16 weeks. The lamellar bone in the callus area and new cortical shell formation in SDCP-treated group were similar to that of the sham group at 16 weeks after fracture, indicating there was no delayed callus remodeling into lamellar bone. At both 6 and 16 weeks after fracture, ultimate stress and elastic modulus were similar between the SDCP and sham groups, and the mechanical strength in these groups was better than that in other groups. Finally, analysis of the serum bone markers CTX-1 and P1NP suggested that SDCP decreased the bone turnover rate and promoted proper fracture healing. The effect of SDCP is superior to that of alendronate and calcitonin in the healing of osteoporotic fractures.
Collapse
Affiliation(s)
- Yi-Jie Kuo
- Institute of Clinical Medicine (YJK, JSS) National Yang Ming University, Taipei, TaiwanInstitute of Microbiology and Immunology (CHC) National Yang Ming University, Taipei, TaiwanInstitute of Traditional Medicine (THT, YHT) National Yang Ming University, Taipei, TaiwanDepartment of Orthopaedics (YJK), School of Medicine, College of MedicineGraduate Institute of Clinical Medicine (JSS, GR), School of Medicine, College of MedicineDepartment of Orthopaedics, Shang-Ho Hospital (GR, CHC, YHT) Taipei Medical University, Taipei, TaiwanDepartment of Orthopaedic Surgery, National Taiwan University Hospital Hsin Chu Branch, Hsin-Chu, Taiwan (JSS)Department of Orthopaedics, Shang-Ho Hospital (CHC, GR, YHT)Department of Orthopaedics, School of Medicine, National Taiwan University Hospital Hsin Chu Branch, Hsin-Chu, Taiwan (JSS)
| | - Jui-Sheng Sun
- Institute of Clinical Medicine (YJK, JSS) National Yang Ming University, Taipei, TaiwanInstitute of Microbiology and Immunology (CHC) National Yang Ming University, Taipei, TaiwanInstitute of Traditional Medicine (THT, YHT) National Yang Ming University, Taipei, TaiwanDepartment of Orthopaedics (YJK), School of Medicine, College of MedicineGraduate Institute of Clinical Medicine (JSS, GR), School of Medicine, College of MedicineDepartment of Orthopaedics, Shang-Ho Hospital (GR, CHC, YHT) Taipei Medical University, Taipei, TaiwanDepartment of Orthopaedic Surgery, National Taiwan University Hospital Hsin Chu Branch, Hsin-Chu, Taiwan (JSS)Department of Orthopaedics, Shang-Ho Hospital (CHC, GR, YHT)Department of Orthopaedics, School of Medicine, National Taiwan University Hospital Hsin Chu Branch, Hsin-Chu, Taiwan (JSS)
| | - Gary Rau
- Institute of Clinical Medicine (YJK, JSS) National Yang Ming University, Taipei, TaiwanInstitute of Microbiology and Immunology (CHC) National Yang Ming University, Taipei, TaiwanInstitute of Traditional Medicine (THT, YHT) National Yang Ming University, Taipei, TaiwanDepartment of Orthopaedics (YJK), School of Medicine, College of MedicineGraduate Institute of Clinical Medicine (JSS, GR), School of Medicine, College of MedicineDepartment of Orthopaedics, Shang-Ho Hospital (GR, CHC, YHT) Taipei Medical University, Taipei, TaiwanDepartment of Orthopaedic Surgery, National Taiwan University Hospital Hsin Chu Branch, Hsin-Chu, Taiwan (JSS)Department of Orthopaedics, Shang-Ho Hospital (CHC, GR, YHT)Department of Orthopaedics, School of Medicine, National Taiwan University Hospital Hsin Chu Branch, Hsin-Chu, Taiwan (JSS)
| | - Chia-Hsien Chen
- Institute of Clinical Medicine (YJK, JSS) National Yang Ming University, Taipei, TaiwanInstitute of Microbiology and Immunology (CHC) National Yang Ming University, Taipei, TaiwanInstitute of Traditional Medicine (THT, YHT) National Yang Ming University, Taipei, TaiwanDepartment of Orthopaedics (YJK), School of Medicine, College of MedicineGraduate Institute of Clinical Medicine (JSS, GR), School of Medicine, College of MedicineDepartment of Orthopaedics, Shang-Ho Hospital (GR, CHC, YHT) Taipei Medical University, Taipei, TaiwanDepartment of Orthopaedic Surgery, National Taiwan University Hospital Hsin Chu Branch, Hsin-Chu, Taiwan (JSS)Department of Orthopaedics, Shang-Ho Hospital (CHC, GR, YHT)Department of Orthopaedics, School of Medicine, National Taiwan University Hospital Hsin Chu Branch, Hsin-Chu, Taiwan (JSS)
| | - Tung-Hu Tsai
- Institute of Clinical Medicine (YJK, JSS) National Yang Ming University, Taipei, TaiwanInstitute of Microbiology and Immunology (CHC) National Yang Ming University, Taipei, TaiwanInstitute of Traditional Medicine (THT, YHT) National Yang Ming University, Taipei, TaiwanDepartment of Orthopaedics (YJK), School of Medicine, College of MedicineGraduate Institute of Clinical Medicine (JSS, GR), School of Medicine, College of MedicineDepartment of Orthopaedics, Shang-Ho Hospital (GR, CHC, YHT) Taipei Medical University, Taipei, TaiwanDepartment of Orthopaedic Surgery, National Taiwan University Hospital Hsin Chu Branch, Hsin-Chu, Taiwan (JSS)Department of Orthopaedics, Shang-Ho Hospital (CHC, GR, YHT)Department of Orthopaedics, School of Medicine, National Taiwan University Hospital Hsin Chu Branch, Hsin-Chu, Taiwan (JSS)
| | - Yang-Hwei Tsuang
- Institute of Clinical Medicine (YJK, JSS) National Yang Ming University, Taipei, TaiwanInstitute of Microbiology and Immunology (CHC) National Yang Ming University, Taipei, TaiwanInstitute of Traditional Medicine (THT, YHT) National Yang Ming University, Taipei, TaiwanDepartment of Orthopaedics (YJK), School of Medicine, College of MedicineGraduate Institute of Clinical Medicine (JSS, GR), School of Medicine, College of MedicineDepartment of Orthopaedics, Shang-Ho Hospital (GR, CHC, YHT) Taipei Medical University, Taipei, TaiwanDepartment of Orthopaedic Surgery, National Taiwan University Hospital Hsin Chu Branch, Hsin-Chu, Taiwan (JSS)Department of Orthopaedics, Shang-Ho Hospital (CHC, GR, YHT)Department of Orthopaedics, School of Medicine, National Taiwan University Hospital Hsin Chu Branch, Hsin-Chu, Taiwan (JSS)
| |
Collapse
|
26
|
Gamulin O, Serec K, Bilić V, Balarin M, Kosović M, Drmić D, Brčić L, Seiwerth S, Sikirić P. Monitoring the healing process of rat bones using Raman spectroscopy. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.01.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Burgers TA, Hoffmann MF, Collins CJ, Zahatnansky J, Alvarado MA, Morris MR, Sietsema DL, Mason JJ, Jones CB, Ploeg HL, Williams BO. Mice lacking pten in osteoblasts have improved intramembranous and late endochondral fracture healing. PLoS One 2013; 8:e63857. [PMID: 23675511 PMCID: PMC3652860 DOI: 10.1371/journal.pone.0063857] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/09/2013] [Indexed: 11/30/2022] Open
Abstract
The failure of an osseous fracture to heal (development of a non-union) is a common and debilitating clinical problem. Mice lacking the tumor suppressor Pten in osteoblasts have dramatic and progressive increases in bone volume and density throughout life. Since fracture healing is a recapitulation of bone development, we investigated the process of fracture healing in mice lacking Pten in osteoblasts (Ocn-cretg/+;Ptenflox/flox). Mid-diaphyseal femoral fractures induced in wild-type and Ocn-cretg/+;Ptenflox/flox mice were studied via micro-computed tomography (µCT) scans, biomechanical testing, histological and histomorphometric analysis, and protein expression analysis. Ocn-cretg/+;Ptenflox/flox mice had significantly stiffer and stronger intact bones relative to controls in all cohorts. They also had significantly stiffer healing bones at day 28 post-fracture (PF) and significantly stronger healing bones at days 14, 21, and 28 PF. At day 7 PF, the proximal and distal ends of the Pten mutant calluses were more ossified. By day 28 PF, Pten mutants had larger and more mineralized calluses. Pten mutants had improved intramembranous bone formation during healing originating from the periosteum. They also had improved endochondral bone formation later in the healing process, after mature osteoblasts are present in the callus. Our results indicate that the inhibition of Pten can improve fracture healing and that the local or short-term use of commercially available Pten-inhibiting agents may have clinical application for enhancing fracture healing.
Collapse
Affiliation(s)
- Travis A. Burgers
- Center for Skeletal Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Martin F. Hoffmann
- Grand Rapids Medical Education Partners, Grand Rapids, Michigan, United States of America
- Trauma Center, Orthopaedic Associates of Michigan, Grand Rapids, Michigan, United States of America
| | - Caitlyn J. Collins
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Juraj Zahatnansky
- Center for Skeletal Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Martin A. Alvarado
- Creston High School, Grand Rapids, Michigan, United States of America
- Grand Rapids Area Pre-College Engineering Program, Grand Rapids, Michigan, United States of America
| | - Michael R. Morris
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Debra L. Sietsema
- Trauma Center, Orthopaedic Associates of Michigan, Grand Rapids, Michigan, United States of America
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - James J. Mason
- Center for Skeletal Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Clifford B. Jones
- Trauma Center, Orthopaedic Associates of Michigan, Grand Rapids, Michigan, United States of America
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Heidi L. Ploeg
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bart O. Williams
- Center for Skeletal Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|