1
|
Faisal MS, Hussain I, Ikram MA, Shah SB, Rehman A, Iqbal W. Irinotecan dosing and pharmacogenomics: a comprehensive exploration based on UGT1A1 variants and emerging insights. J Chemother 2024:1-14. [PMID: 38706404 DOI: 10.1080/1120009x.2024.2349444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Irinotecan is a critical anticancer drug used to treat metastatic colorectal cancer and advanced pancreatic ductal adenocarcinoma by obstructing topoisomerase 1; however, it can cause minor-to-severe and life-threatening adverse effects. UDP glucuronosyltransferase family 1 member A1 (UGT1A1) polymorphisms increase the risk of irinotecan-induced neutropenia and diarrhea. Hence, screening for UGT1A1 polymorphisms before irinotecan-based chemotherapy is recommended to minimize toxicity, whereas liposomes offer the potential to deliver irinotecan with fewer side effects in patients with pancreatic ductal adenocarcinoma. This review presents a comprehensive overview of the effects of genotype-guided dosing of irinotecan on UGT1A1*28 and UGT1A1*6 variants, incorporating pharmacogenomic research, optimal regimens for metastatic colorectal and pancreatic cancer treatment using irinotecan, guidelines for toxicity reduction, and an evaluation of the cost-effectiveness of UGT1A1 genotype testing.
Collapse
Affiliation(s)
- Muhammad Saleem Faisal
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Imran Hussain
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | | | - Syed Babar Shah
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Abdul Rehman
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Wajid Iqbal
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
2
|
Yu C, Huang F, Wang K, Liu M, Chow WA, Ling X, Li F, Causey JL, Huang X, Cook-Wiens G, Cui X. Single protein encapsulated SN38 for tumor-targeting treatment. J Transl Med 2023; 21:897. [PMID: 38072965 PMCID: PMC10712105 DOI: 10.1186/s12967-023-04778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The alkaloid camptothecin analog SN38 is a potent antineoplastic agent, but cannot be used directly for clinical application due to its poor water solubility. Currently, the prodrug approach on SN38 has resulted in 3 FDA-approved cancer therapeutics, irinotecan, ONIVYDE, and Trodelvy. However, only 2-8% of irinotecan can be transformed enzymatically in vivo into the active metabolite SN38, which severely limits the drug's efficacy. While numerous drug delivery systems have been attempted to achieve effective SN38 delivery, none have produced drug products with antitumor efficacy better than irinotecan in clinical trials. Therefore, novel approaches are urgently needed for effectively delivering SN38 to cancer cells with better efficacy and lower toxicity. METHODS Based on the unique properties of human serum albumin (HSA), we have developed a novel single protein encapsulation (SPE) technology to formulate cancer therapeutics for improving their pharmacokinetics (PK) and antitumor efficacy and reducing their side effects. Previous application of SPE technology to doxorubicin (DOX) formulation has led to a promising drug candidate SPEDOX-6 (FDA IND #, 152154), which will undergo a human phase I clinical trial. Using the same SPE platform on SN38, we have now produced two SPESN38 complexes, SPESN38-5 and SPESN38-8. We conducted their pharmacological evaluations with respect to maximum tolerated dose, PK, and in vivo efficacy against colorectal cancer (CRC) and soft tissue sarcoma (STS) in mouse models. RESULTS The lyophilized SPESN38 complexes can dissolve in aqueous media to form clear and stable solutions. Maximum tolerated dose (MTD) of SPESN38-5 is 250 mg/kg by oral route (PO) and 55 mg/kg by intravenous route (IV) in CD-1 mice. SPESN38-8 has the MTD of 45 mg/kg by IV in the same mouse model. PK of SPESN38-5 by PO at 250 mg/kg gave mouse plasma AUC0-∞ of 0.05 and 4.5 nmol × h/mL for SN38 and SN38 glucuronidate (SN38G), respectively, with a surprisingly high molar ratio of SN38G:SN38 = 90:1. However, PK of SPESN38-5 by IV at 55 mg/kg yielded much higher mouse plasma AUC0-∞ of 19 and 28 nmol × h/mL for SN38 and SN38G, producing a much lower molar ratio of SN38G:SN38 = 1.5:1. Antitumor efficacy of SPESN38-5 and irinotecan (control) was evaluated against HCT-116 CRC xenograft tumors. The data indicates that SPESN38-5 by IV at 55 mg/kg is more effective in suppressing HCT-116 tumor growth with lower systemic toxicity compared to irinotecan at 50 mg/kg. Additionally, SPESN38-8 and DOX (control) by IV were evaluated in the SK-LMS-1 STS mouse model. The results show that SPESN38-8 at 33 mg/kg is highly effective for inhibiting SK-LMS-1 tumor growth with low toxicity, in contrast to DOX's insensitivity to SK-LMS-1 with high toxicity. CONCLUSION SPESN38 complexes provide a water soluble SN38 formulation. SPESN38-5 and SPESN38-8 demonstrate better PK values, lower toxicity, and superior antitumor efficacy in mouse models, compared with irinotecan and DOX.
Collapse
Affiliation(s)
- Changjun Yu
- Department of Chemistry, California Institute of Technology, Pasadena, CA, 91125, USA.
- Sunstate Biosciences, LLC, 870 S. Myrtle Ave, Monrovia, CA, 91016, USA.
| | - Faqing Huang
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| | - Kinsley Wang
- Sunstate Biosciences, LLC, 870 S. Myrtle Ave, Monrovia, CA, 91016, USA
| | - Mengmeng Liu
- Sunstate Biosciences, LLC, 870 S. Myrtle Ave, Monrovia, CA, 91016, USA
| | - Warren A Chow
- Division of Hematology/Oncology, Department of Medicine, UCI Health, Orange, CA, 92868, USA
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Canget BioTekpharma, LLC, 701 Ellicott Street, Buffalo, NY, 14203, USA
| | - Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Jason L Causey
- Department of Computer Sciences, Arkansas State University, Jonesboro, AR, 72467, USA
| | - Xiuzhen Huang
- Department of Computational Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Galen Cook-Wiens
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
3
|
Kanjilal P, Singh K, Das R, Matte J, Thayumanavan S. Antibody Polymer Conjugates (APCs) for Active Targeted Therapeutic Delivery. Biomacromolecules 2023; 24:3638-3646. [PMID: 37478281 PMCID: PMC11145409 DOI: 10.1021/acs.biomac.3c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Antibody drug conjugates (ADCs) are poised to have an enormous impact on targeted nanomedicine, especially in many cancer pathologies. The reach of the current format of ADCs is limited by their low drug-to-antibody ratio (DAR) because of the associated physiochemical instabilities. Here, we design antibody polymer conjugates (APCs) as a modular strategy to utilize polymers to address ADC's shortcomings. We show here that conjugation of polymer-based therapeutic molecules to antibodies helps increase the DAR, owing to the hydrophilic comonomer in the polymer that helps in masking the increased hydrophobicity caused by high drug loading. We show that the platform exhibits cell targetability and selective cell killing in multiple cell lines expressing disease-relevant antigens, viz., HER2 and EGFR. The ability to use different functionalities in the drug as the handle for polymer attachment further demonstrates the platform nature of APCs. The findings here could serve as an alternative design strategy for the next generation of active targeted nanomedicine.
Collapse
|
4
|
Yu CJ, Huang F, Wang K, Liu M, Chow WA, Ling X, Li F, Causey JL, Huang X, Cook-Wiens G, Cui X. Single Protein Encapsulated SN38 for Tumor-Targeting Treatment. RESEARCH SQUARE 2023:rs.3.rs-3154635. [PMID: 37546894 PMCID: PMC10402254 DOI: 10.21203/rs.3.rs-3154635/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background The alkaloid camptothecin analog SN38 is a potent antineoplastic agent, but cannot be used directly for clinical application due to its poor water solubility. Currently, the prodrug approach on SN38 has resulted in 3 FDA-approved cancer therapeutics, irinotecan, ONIVYDE, and Trodelvy. However, only 2-8% of irinotecan can be transformed enzymatically in vivo into the active metabolite SN38, which severely limits the drug's efficacy. While numerous drug delivery systems have been attempted to achieve effective SN38 delivery, none have produced drug products with antitumor efficacy better than irinotecan in clinical trials. Therefore, novel approaches are urgently needed for effectively delivering SN38 to cancer cells with better efficacy and lower toxicity. Methods Based on the unique properties of human serum albumin (HSA), we have developed a novel single protein encapsulation (SPE) technology to formulate cancer therapeutics for improving their pharmacokinetics (PK) and antitumor efficacy and reducing their side effects. Previous application of SPE technology to doxorubicin (DOX) formulation has led to a promising drug candidate SPEDOX-6 (FDA IND #, 152154), which will undergo a human phase I clinical trial. Using the same SPE platform on SN38, we have now produced two SPESN38 complexes, SPESN38-5 and SPESN38-8. We conducted their pharmacological evaluations with respect to maximum tolerated dose, PK, and in vivo efficacy against colorectal cancer (CRC) and soft tissue sarcoma (STS) in mouse models. Results The lyophilized SPESN38 complexes can dissolve in aqueous media to form clear and stable solutions. Maximum tolerated dose (MTD) of SPESN38-5 is 250 mg/kg by oral route (PO) and 55 mg/kg by intravenous route (IV) in CD-1 mice. SPESN38-8 has the MTD of 45 mg/kg by IV in the same mouse model. PK of SPESN38-5 by PO at 250 mg/kg gave mouse plasma AUC0-∞ of 0.0548 and 4.5007 (nmol × h/mL) for SN38 and SN38 glucuronidate (SN38G), respectively, with a surprisingly high molar ratio of SN38G:SN38 = 82:1. However, PK of SPESN38-5 by IV at 55 mg/kg yielded much higher mouse plasma AUC0-∞ of 18.80 and 27.78 nmol × h/mL for SN38 and SN38G, producing a much lower molar ratio of SN38G:SN38 = 1.48:1. Antitumor efficacy of SPESN38-5 and irinotecan (control) was evaluated against HCT-116 CRC xenograft tumors. The data indicates that SPESN38-5 by IV at 55 mg/kg is more effective in suppressing HCT-116 tumor growth with lower systemic toxicity compared to irinotecan at 50 mg/kg. Additionally, SPESN38-8 and DOX (control) by IV were evaluated in the SK-LMS-1 STS mouse model. The results show that SPESN38-8 at 33 mg/kg is highly effective for inhibiting SK-LMS-1 tumor growth with low toxicity, in contrast to DOX's insensitivity to SK-LMS-1 with high toxicity. Conclusion SPESN38 complexes provide a water soluble SN38 formulation. SPESN38-5 and SPESN38-8 demonstrate better PK values, lower toxicity, and superior antitumor efficacy in mouse models, compared with irinotecan and DOX.
Collapse
Affiliation(s)
| | - Faqing Huang
- University of Southern Mississippi Center For Tobacco Prevention and Health Promotion: University of Southern Mississippi
| | | | | | - Warren A Chow
- University of California Irvine Department of Medicine
| | - Xiang Ling
- Roswell Park Comprehensive Cancer Center
| | - Fengzhi Li
- Roswell Park Comprehensive Cancer Center
| | | | | | | | | |
Collapse
|
5
|
Li Y, Zhao D, Zhang W, Yang M, Wu Z, Shi W, Lan S, Guo Z, Yu H, Wu D. A novel camptothecin derivative, ZBH-01, exhibits superior antitumor efficacy than irinotecan by regulating the cell cycle. J Transl Med 2023; 21:422. [PMID: 37386467 PMCID: PMC10308760 DOI: 10.1186/s12967-023-04196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/14/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Irinotecan (CPT-11) is a classic chemotherapeutic agent that plays an important role in the clinical treatment of metastatic colon cancer and other malignant tumors. We previously designed a series of novel irinotecan derivatives. In this study, we select one representative, ZBH-01, to investigate its sophisticated antitumor mechanism in colon tumor cells. METHODS The cytotoxic activity of ZBH-01 on colon cancer cells was evaluate by MTT or Cell Counting Kit-8 (CCK8) assay, 3D and xenograft model. The inhibitory effect of ZBH-01 on TOP1 was detected by DNA relaxation assay and Immuno Complex of Ezyme (ICE) bioassay. The molecular mechanism of ZBH-01 was explored by Next-Generation Sequencing (NGS), bioinformatics analyses, flow cytometry, qRT-PCR, and western blot etc. RESULTS: ZBH-01 can induce obvious DNA damage and has superior antitumor activity against colon cancer cells compared to CPT-11 and SN38 (7-Ethyl-10-hydroxy camptothecin, the in vivo active form of CPT-11) both in vivo and in vitro. Its inhibitory effect on topoisomerase I (TOP1) was also comparable with these two control drugs. There are a much larger number of 842 downregulated and 927 upregulated mRNAs in ZBH-01 treatment group than that in the controls. The most significantly enriched KEGG pathways for these dysregulated mRNAs were DNA replication, the p53 signaling pathway, and the cell cycle. After constructing a protein-protein interaction (PPI) network and screening out a prominent cluster, 14 involved in the cell cycle process was identified. Consistently, ZBH-01 induced G0/G1 phase arrest in colon cancer cells, while CPT-11/SN38 caused S phase arrest. The initiation of apoptosis by ZBH-01 was also superior to CPT-11/SN38, followed by the increased expression of Bax, active caspase 3, and cleaved-PARP, and decreased expression of Bcl-2. Additionally, CCNA2 (cyclin A2), CDK2 (cyclin-dependent kinase 2), and MYBL2 (MYB proto-oncogene like 2) might be involved in the G0/G1 cell cycle arrest induced by ZBH-01. CONCLUSIONS ZBH-01 can be an antitumor candidate drug for preclinical study in the future.
Collapse
Affiliation(s)
- Yongqi Li
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Dawei Zhao
- Department of Breast Tumor, Jilin Cancer Hospital, Changchun, 130012, China
| | - Wenqiu Zhang
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Miaomiao Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Zhihui Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Weiguo Shi
- Institute of Pharmacology and Toxicology Academy of Military Medical Sciences, Beijing, 100850, China
| | - Shijie Lan
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen Guo
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hong Yu
- Cell Biology Laboratory, Jilin Province Institute of Cancer Prevention and Treatment, Jilin Cancer Hospital, Changchun, 130012, China.
| | - Di Wu
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Yin Y, Xie J, Peng F, Tan L, Xiao Y, Zheng H, Yin L, Situ H, Zhang S. The topoisomerase inhibitor CPT-11 prevents the growth and metastasis of lung cancer cells in nude mice by inhibiting EGFR/MAPK signaling pathway. Heliyon 2023; 9:e15805. [PMID: 37251857 PMCID: PMC10208938 DOI: 10.1016/j.heliyon.2023.e15805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Objective The topoisomerase inhibitor CPT-11 has been applied in treatment of multiple cancer types. Here, we probed into the possible mechanism of CPT-11 in affecting growth and metastasis of lung cancer (LC) cells, with involvement of the EGFR/MAPK pathway. Methods The target protein of CPT-11 was screened through bioinformatics analysis, and the LC-related microarray datasets GSE29249, GSE32863 and GSE44077 were obtained for differential analysis for identifying the target protein. A subcutaneous xenograft tumor model and a metastatic tumor model were constructed in nude mice for in vivo mechanism verification of the regulatory role of CPT-11 in LC through modulation of EGRF/MAPK pathway. Results Bioinformatics analysis showed that EGFR was the target protein of CPT-11. In vivo animal experiments confirmed that CPT-11 enhanced LC cell growth and metastasis in nude mice. CPT-11 could inhibit activation of EGFR/MAPK pathway. EGFR promoted LC cell growth and metastasis in nude mice through activation of the MAPK pathway. Conclusion The topoisomerase inhibitor CPT-11 may prevent LC growth and metastasis by inhibiting activation of EGFR/MAPK pathway.
Collapse
Affiliation(s)
- Yingqiu Yin
- Respiratory Medical Department, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan City, Guangdong Province, China
| | - Junling Xie
- Respiratory Medical Department, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan City, Guangdong Province, China
| | - Feng Peng
- Respiratory Medical Department, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan City, Guangdong Province, China
| | - Liming Tan
- Science and Education Department, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan City, Guangdong Province, China
| | - Yun Xiao
- Respiratory Medical Department, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan City, Guangdong Province, China
| | - Huiying Zheng
- Respiratory Medical Department, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan City, Guangdong Province, China
| | - Lingzhi Yin
- Respiratory Medical Department, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan City, Guangdong Province, China
| | - Huijing Situ
- Department of Radiotherapy, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan City, Guangdong Province, China
| | - Shanqiang Zhang
- Department of Anatomy, Shantou University Medical College, Shantou City, Guangdong Province, China
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan City, Guangdong Province, China
| |
Collapse
|
7
|
Gassl V, Aberle MR, Boonen B, Vaes RDW, Olde Damink SWM, Rensen SS. Chemosensitivity of 3D Pancreatic Cancer Organoids Is Not Affected by Transformation to 2D Culture or Switch to Physiological Culture Medium. Cancers (Basel) 2022; 14:cancers14225617. [PMID: 36428711 PMCID: PMC9688175 DOI: 10.3390/cancers14225617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Organoids are increasingly used to investigate patient-specific drug responsiveness, but organoid culture is complex and expensive, and carried out in rich, non-physiological media. We investigated reproducibility of drug-responsiveness of primary cell cultures in 2D versus 3D and in conventional versus physiological cell culture medium. 3D pancreatic ductal adenocarcinoma organoid cultures PANCO09b and PANCO11b were converted to primary cell cultures growing in 2D. Transformed 2D cultures were grown in physiological Plasmax medium or Advanced-DMEM/F12. Sensitivity towards gemcitabine, paclitaxel, SN-38, 5-fluorouacil, and oxaliplatin was investigated by cell viability assays. Growth rates of corresponding 2D and 3D cultures were comparable. PANCO09b had a shorter doubling time in physiological media. Chemosensitivity of PANCO09b and PANCO11b grown in 2D or 3D was similar, except for SN-38, to which PANCO11b cultured in 3D was more sensitive (2D: 8.2 ×10-3 ± 2.3 ×10-3 vs. 3D: 1.1 ×10-3 ± 0.6 ×10-3, p = 0.027). PANCO09b and PANCO11b showed no major differences in chemosensitivity when cultured in physiological compared to conventional media, although PANCO11b was more sensitive to SN-38 in physiological media (9.8 × 10-3 ± 0.7 × 10-3 vs. 5.2 × 10-3 ± 1.8 × 10-3, p = 0.015). Collectively, these data indicate that the chemosensitivity of organoids is not affected by culture medium composition or culture dimensions. This implies that organoid-based drug screens can be simplified to become more cost-effective.
Collapse
Affiliation(s)
- Vincent Gassl
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Merel R. Aberle
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Bas Boonen
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Rianne D. W. Vaes
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Steven W. M. Olde Damink
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Visceral and Transplantation Surgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
8
|
A novel irinotecan derivative ZBH-1207 with different anti-tumor mechanism from CPT-11 against colon cancer cells. Mol Biol Rep 2022; 49:8359-8368. [PMID: 35764749 DOI: 10.1007/s11033-022-07652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Irinotecan (CPT-11) is a camptothecin derivative whose potent anti-tumor activity depends on the rapid formation of an in vivo active metabolite, SN38 (7-ethyl-10-hydroxycamptothecin). CPT-11 combine with other agents are often the treatment of choice for patients with advanced or metastatic colorectal cancer (CRC). This study evaluates the cytotoxic mechanism of a novel CPT-11 derivative, ZBH-1207 in CRC cells in vitro. METHODS The anti-proliferation effect of ZBH-1207 on tumor cells was assessed by MTT assay. The inhibition of TOP1, the alteration of cell cycle and apoptosis, and the expression of caspase-3 and PARP in CRC cells induced by ZBH-1207 were detected by DNA relaxation assay, flow cytometry, and Western blot, respectively. RESULTS ZBH-1207 significantly inhibits the proliferation of seven tumor cell lines and retains the activity of TOP1 as compared with CPT-11. Treatment with ZBH-1207 results in more apparent cell cycle arrests and apoptosis of CRC cells than that of CPT-11 and SN38. Accordingly, up-regulation of active caspase-3 and PARP expression were relatively higher in ZBH-1207 group than that in CPT-11 and SN38 group. CONCLUSION ZBH-1207 has higher cytotoxicity than CPT-11/SN38 in CRC cells. Its molecular mechanism involves apoptosis signaling pathway.
Collapse
|
9
|
Advances with antibody-drug conjugates in breast cancer treatment. Eur J Pharm Biopharm 2021; 169:241-255. [PMID: 34748933 DOI: 10.1016/j.ejpb.2021.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/21/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
Antibody-drug conjugate-based therapy for treatment of cancer has attracted much attention because of its enhanced efficacy against numerous cancer types. Commonly, an ADC includes a mAb linked to a therapeutic payload. Antibody, linker and payload are the three main components of ADCs. The high specificity of antibodies is integrated with the strong potency of payloads in ADCs. ADCs with potential cytotoxic small molecules as payloads, generate antibody-mediated cancer therapy. Recently, ADCs with DNA-damaging agents have shown favor over microtubule-targeting agents as payloads. Although ADC resistance can be a barrier to effectiveness, several ADC therapies have been either approved or are in clinical trials for cancer treatment. The ADC-based treatments of breast cancers, particularly TNBC, MDR and metastatic breast cancers, have shown promise in recent years. This review discusses ADC drug designs, and developed for different types of breast cancer including TNBC, MDR and metastatic breast cancer.
Collapse
|
10
|
Robb R, Kuo JCT, Liu Y, Corrales-Guerrero S, Cui T, Hegazi A, Nagy G, Lee RJ, Williams TM. A novel protein-drug conjugate, SSH20, demonstrates significant efficacy in caveolin-1-expressing tumors. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:555-564. [PMID: 34553040 PMCID: PMC8433067 DOI: 10.1016/j.omto.2021.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022]
Abstract
In recent years, human serum albumin (HSA) has been characterized as an ideal drug carrier in the cancer arena. Caveolin-1 (Cav-1) has been established as the principal structural protein of caveolae and, thus, critical for caveolae-mediated endocytosis. Cav-1 has been shown to be overexpressed in cancers of the lung and pancreas, among others. We found that Cav-1 expression plays a critical role in both HSA uptake and response to albumin-based chemotherapies. As such, developing a novel albumin-based chemotherapy that is more selective for tumors with high Cav-1 expression or high levels of caveolar-endocytosis could have significant implications in biomarker-directed therapy. Herein, we present the development of a novel and effective HSA-SN-38 conjugate (SSH20). We find that SSH20 uptake decreases significantly by immunofluorescence assays and western blotting after silencing of Cav-1 expression through RNA interference. Decreased drug sensitivity occurs in Cav-1-depleted cells using cytotoxicity assays. Importantly, we find significantly reduced sensitivity to SSH20 in Cav-1-silenced tumors compared to Cav-1-expressing tumors in vivo. Notably, we show that SSH20 is significantly more potent than irinotecan in vitro and in vivo. Together, we have developed a novel HSA-conjugated chemotherapy that is potent, effective, safe, and demonstrates improved efficacy in high Cav-1-expressing tumors.
Collapse
Affiliation(s)
- Ryan Robb
- University of North Carolina, Chapel Hill, NC, USA
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, The Ohio State University, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Yang Liu
- Division of Pharmaceutics and Pharmacology, The Ohio State University, 500 W. 12 Ave., Columbus, OH 43210, USA
| | | | - Tiantian Cui
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Ahmad Hegazi
- Division of Pharmaceutics and Pharmacology, The Ohio State University, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Gregory Nagy
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, The Ohio State University, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Terence M Williams
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Yang TC, Liu SJ, Lo WL, Chen SM, Tang YL, Tseng YY. Enhanced Anti-Tumor Activity in Mice with Temozolomide-Resistant Human Glioblastoma Cell Line-Derived Xenograft Using SN-38-Incorporated Polymeric Microparticle. Int J Mol Sci 2021; 22:ijms22115557. [PMID: 34074038 PMCID: PMC8197307 DOI: 10.3390/ijms22115557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) has remained one of the most lethal and challenging cancers to treat. Previous studies have shown encouraging results when irinotecan was used in combination with temozolomide (TMZ) for treating GBM. However, irinotecan has a narrow therapeutic index: a slight dose increase in irinotecan can induce toxicities that outweigh its therapeutic benefits. SN-38 is the active metabolite of irinotecan that accounts for both its anti-tumor efficacy and toxicity. In our previous paper, we showed that SN-38 embedded into 50:50 biodegradable poly[(d,l)-lactide-co-glycolide] (PLGA) microparticles (SMPs) provides an efficient delivery and sustained release of SN-38 from SMPs in the brain tissues of rats. These properties of SMPs give them potential for therapeutic application due to their high efficacy and low toxicity. In this study, we tested the anti-tumor activity of SMP-based interstitial chemotherapy combined with TMZ using TMZ-resistant human glioblastoma cell line-derived xenograft models. Our data suggest that treatment in which SMPs are combined with TMZ reduces tumor growth and extends survival in mice bearing xenograft tumors derived from both TMZ-resistant and TMZ-sensitive human glioblastoma cell lines. Our findings demonstrate that combining SMPs with TMZ may have potential as a promising strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Tao-Chieh Yang
- Department of Neurosurgery, School of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (S.-J.L.); (Y.-L.T.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan
| | - Wei-Lun Lo
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Shu-Mei Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Ya-Ling Tang
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (S.-J.L.); (Y.-L.T.)
| | - Yuan-Yun Tseng
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Correspondence: ; Tel.: +886-2-22490088 (ext. 8120); Fax: +886-2-22480900
| |
Collapse
|
12
|
Taemaitree F, Fortuni B, Koseki Y, Fron E, Rocha S, Hofkens J, Uji-I H, Inose T, Kasai H. FRET-based intracellular investigation of nanoprodrugs toward highly efficient anticancer drug delivery. NANOSCALE 2020; 12:16710-16715. [PMID: 32785392 DOI: 10.1039/d0nr04910g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to overcome unpredictable side-effects and increased cytotoxicity of conventional carrier-based anticancer drug delivery systems, several systems that consist exclusively of the pure drug (or prodrug) have been proposed. The behavior and dynamics of these systems after entering cancer cells are, however, still unknown, hindering their progress towards in vivo and clinical applications. Here, we report a comprehensive in cellulo study of carrier-free SN-38 nanoprodrugs (NPDs), previously developed by our group. The work shows the intracellular uptake, localization, and degradation of the NPDs via FRET microscopy. Accordingly, new FRET-NPDs were chemically synthesized and characterized. Prodrug to drug conversion and therapeutic efficiency were also validated. Our work provides crucial information for the application of NPDs as drug delivery systems and demonstrates their outstanding potential as next-generation anticancer nanomedicines.
Collapse
Affiliation(s)
- Farsai Taemaitree
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai 980-8577, Japan.
| | - Beatrice Fortuni
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F 3001, Heverlee, Belgium.
| | - Yoshitaka Koseki
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai 980-8577, Japan.
| | - Eduard Fron
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F 3001, Heverlee, Belgium.
| | - Susana Rocha
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F 3001, Heverlee, Belgium.
| | - Johan Hofkens
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F 3001, Heverlee, Belgium. and Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hiroshi Uji-I
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F 3001, Heverlee, Belgium. and Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-Ward, Sapporo, 0010020, Japan
| | - Tomoko Inose
- Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-Ward, Sapporo, 0010020, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai 980-8577, Japan.
| |
Collapse
|
13
|
Nejadmoghaddam MR, Minai-Tehrani A, Ghahremanzadeh R, Mahmoudi M, Dinarvand R, Zarnani AH. Antibody-Drug Conjugates: Possibilities and Challenges. Avicenna J Med Biotechnol 2019; 11:3-23. [PMID: 30800238 PMCID: PMC6359697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 11/22/2022] Open
Abstract
The design of Antibody Drug Conjugates (ADCs) as efficient targeting agents for tumor cell is still in its infancy for clinical applications. This approach incorporates the antibody specificity and cell killing activity of chemically conjugated cytotoxic agents. Antibody in ADC structure acts as a targeting agent and a nanoscale carrier to deliver a therapeutic dose of cytotoxic cargo into desired tumor cells. Early ADCs encountered major obstacles including, low blood residency time, low penetration capacity to tumor microenvironment, low payload potency, immunogenicity, unusual off-target toxicity, drug resistance, and the lack of stable linkage in blood circulation. Although extensive studies have been conducted to overcome these issues, the ADCs based therapies are still far from having high-efficient clinical outcomes. This review outlines the key characteristics of ADCs including tumor marker, antibody, cytotoxic payload, and linkage strategy with a focus on technical improvement and some future trends in the pipeline.
Collapse
Affiliation(s)
- Mohammad-Reza Nejadmoghaddam
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Morteza Mahmoudi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
| |
Collapse
|
14
|
Lukina MM, Dudenkova VV, Shimolina LE, Snopova LB, Zagaynova EV, Shirmanova MV. In vivo metabolic and SHG imaging for monitoring of tumor response to chemotherapy. Cytometry A 2018; 95:47-55. [PMID: 30329217 DOI: 10.1002/cyto.a.23607] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Although chemotherapy remains one of the main types of treatment for cancer, treatment failure is a frequent occurrence, emphasizing the need for new approaches to the early assessment of tumor response. The aim of this study was to search for indicators based on optical imaging of cellular metabolism and of collagen in tumors in vivo that enable evaluation of their response to chemotherapy. The study was performed on a mouse colorectal cancer model with the use of cisplatin, paclitaxel, and irinotecan. The metabolic activity of the tumor cells was assessed using fluorescence lifetime imaging of the metabolic cofactor reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H. Second harmonic generation (SHG) imaging was used to analyze the extent and properties of collagen within the tumors. We detected an early decrease in the free/bound NAD(P)H ratio in all treated tumors, indicating a shift toward a more oxidative metabolism. Monitoring of collagen showed an early increase in the amount of collagen followed by an increase in the extent of its orientation in tumors treated with cisplatin and paclitaxel, and decrease in collagen content in the case of irinotecan. Our study suggests that changes in cellular metabolism and fibrotic stroma organization precede morphological alterations and tumor size reduction, and that this indicates that NAD(P)H and collagen can be considered as intrinsic indicators of the response to treatment. This is the first time that these parameters have been investigated in tumors in vivo in the course of chemotherapy with drugs having different mechanisms of action. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Maria M Lukina
- Institute of Biomedical Technologies, Privolzhskiy Research Medical University, Nizhny Novgorod, Russia.,Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Varvara V Dudenkova
- Institute of Biomedical Technologies, Privolzhskiy Research Medical University, Nizhny Novgorod, Russia.,Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Lyubov' E Shimolina
- Institute of Biomedical Technologies, Privolzhskiy Research Medical University, Nizhny Novgorod, Russia.,Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ludmila B Snopova
- Institute of Biomedical Technologies, Privolzhskiy Research Medical University, Nizhny Novgorod, Russia
| | - Elena V Zagaynova
- Institute of Biomedical Technologies, Privolzhskiy Research Medical University, Nizhny Novgorod, Russia
| | - Marina V Shirmanova
- Institute of Biomedical Technologies, Privolzhskiy Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
15
|
A novel oral camptothecin analog, gimatecan, exhibits superior antitumor efficacy than irinotecan toward esophageal squamous cell carcinoma in vitro and in vivo. Cell Death Dis 2018; 9:661. [PMID: 29855512 PMCID: PMC5981453 DOI: 10.1038/s41419-018-0700-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a frequently diagnosed and deadly malignancy with few standard therapeutic options. Camptothecins are considered one of the most promising antitumor drugs. A modified lipophilic analog, gimatecan, was synthesized as a novel oral camptothecin and showed impressive effects in various tumors, but its therapeutic efficacy and mechanisms in ESCC remain unclear. This study investigated the antitumor efficacy and mechanisms of gimatecan in ECSS both in vitro and in vivo. Using ESCC cell lines, cell line-derived xenografts and patient-derived xenografts models, we evaluated gimatecan’s inhibition of tumor growth, and compared its antitumor efficacy with that of irinotecan. Topoisomerase I function and expression were assessed using the DNA relaxation assay and Western blotting, respectively. DNA damage was evaluated by Western blotting. Cell cycle progression and cell apoptosis were assessed using flow cytometry and Western blotting. Gimatecan could significantly suppress tumor growth in vivo and inhibit tumor cell proliferation in vitro, which was superior to irinotecan. Gimatecan suppressed the function and expression of topoisomerase I. It also caused DNA damage and activated the phosphorylation of multiple checkpoint gatekeepers, such as ATM, ATR, BRCA1, H2AX, CHK1, CHK2, and p53. It induced S phase arrest, enhanced the expression of p21WAF1/CIP, and suppressed the expression of CDK2 and cyclin A. Induction of apoptosis was accompanied by increases in Bax, cleaved-caspase 3 activation, cleaved-caspase 9 induction, and a decrease in Bcl-2. The molecular and phenotypic changes induced by gimatecan were stronger than that of irinotecan. In ESCC, gimatecan suppressed the expression and function of topoisomerase I, induced DNA damage and intra-S phase cell cycle arrest, and resulted in apoptosis. And the results suggest that gimatecan has higher potency in inhibiting ESCC tumor growth than irinotecan, providing a rational novel therapeutic strategy for future clinical evaluation.
Collapse
|
16
|
Hodroj MH, Jardaly A, Abi Raad S, Zouein A, Rizk S. Andrographolide potentiates the antitumor effect of topotecan in acute myeloid leukemia cells through an intrinsic apoptotic pathway. Cancer Manag Res 2018; 10:1079-1088. [PMID: 29785137 PMCID: PMC5955015 DOI: 10.2147/cmar.s160924] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Topotecan (TP) is an anticancer drug acting as topoisomerase I inhibitor that is used in the treatment of many types of cancers including leukemia, but it has significant side effects. Andrographolide, a compound extracted from Andrographis paniculata, was recently proven to inhibit the growth of cancer cells and can induce apoptosis. The aim of this study is to investigate the possible synergism between TP and andrographolide in acute myeloid cells in vitro. Materials and methods U937 acute myeloid leukemic cells were cultured using Roswell Park Memorial Institute (RPMI) medium and then treated for 24 h with TP and andrographolide prepared through the dilution of dimethyl sulfoxide (DMSO) stocks with RPMI on the day of treatment. Cell proliferation was assessed using cell proliferation assay upon treatment with both compounds separately and in combination. Cell-cycle study and apoptosis detection were performed by staining the cells with propidium iodide (PI) stain and Annexin V/PI stain, respectively, followed by flow cytometry analysis. Western blotting was used to assess the expression of various proteins involved in apoptotic pathways. Results Both TP and andrographolide showed an antiproliferative effect in a dose-dependent manner when applied on U937 cells separately; however, pretreating the cells with andrographolide before applying TP exhibited a synergistic effect with lower inhibitory concentrations (half-maximal inhibitory concentration). Treating the cells with TP alone led to specific cell-cycle arrest at S phase that was more prominent upon pretreatment combination with andrographolide. Using Annexin V/PI staining to assess the proapoptotic effect following the pretreatment combination showed an increase in the number of apoptotic cells, which was supported by the Western blot results that manifested an upregulation of several proapoptotic proteins expression. Conclusion The pretreatment of U937 with andrographolide followed by low doses of TP showed an enhancement in inducing apoptosis when compared to the application of each compound separately.
Collapse
Affiliation(s)
| | - Achraf Jardaly
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Sarah Abi Raad
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Annalise Zouein
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
17
|
Matsuoka K, Takechi T. Combined efficacy and mechanism of trifluridine and SN-38 in a 5-FU-resistant human colorectal cancer cell lines. Am J Cancer Res 2017; 7:2577-2586. [PMID: 29312810 PMCID: PMC5752697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023] Open
Abstract
Trifluridine/tipiracil (FTD/TPI or TFTD, also known as TAS-102) with a molar ratio of 1:0.5, is a novel combination of FTD, an antineoplastic thymidine analog, and TPI, an inhibitor of thymidine phosphorylase. It has been approved as a treatment for unresectable advanced or recurrent colorectal cancer. Irinotecan (CPT-11) is an active agent in colorectal cancer. The administration order of drugs is a critical issue in clinical combination therapy. In this study, we evaluated the in vitro simultaneous and sequential combination efficacy of FTD and SN-38, an active metabolite of CPT-11, against human colorectal 5-fluorouracil (5-FU) resistant cell line DLD-1/5-FU and the parental cells DLD-1. The sequential exposure to SN-38 for 24 h followed by sequential exposure to FTD for 24 h or vice versa was more effective for cell survival than the simultaneous exposure of both drugs for 24 h. Furthermore, compared with simultaneous exposure, sequential exposure induced DNA damage, G2/M cell cycle arrest with increasing sub-G1 positive cells, and apoptosis in both DLD-1 and DLD-1/5-FU cells. In particular, in DLD-1/5-FU cells, sequential exposure to SN-38 followed by FTD induced apoptosis more than FTD followed by SN-38. Thus, the sequential treatment with SN-38 followed by FTD may be useful for the combination therapy of FTD/TPI and CPT-11 against relapsed colorectal cancer after 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Kazuaki Matsuoka
- Translational Research Laboratory, Taiho Pharmaceutical Co., Ltd.224-2 Ebisuno, Hiraishi, Kawauchi-cho 771-0194, Japan
| | - Teiji Takechi
- Translational Research Laboratory, Taiho Pharmaceutical Co., Ltd.224-2 Ebisuno, Hiraishi, Kawauchi-cho 771-0194, Japan
| |
Collapse
|
18
|
Wu D, Shi W, Zhao J, Wei Z, Chen Z, Zhao D, Lan S, Tai J, Zhong B, Yu H. Assessment of the chemotherapeutic potential of a new camptothecin derivative, ZBH-1205. Arch Biochem Biophys 2016; 604:74-85. [PMID: 27302903 DOI: 10.1016/j.abb.2016.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
CPT-11 (irinotecan) is a derivative of camptothecin which is a natural product derived from the Chinese tree Camptotheca acuminta and widely used in antitumor therapy. Here, the in vitro anti-tumor activity and associated mechanisms of a novel derivative of camptothecin, ZBH-1205, were investigated in a panel of 9 human tumor cell lines, as well as in HEK 293 and SK-OV-3/DPP, a multi-drug resistant (MDR) cell line, and compared to CPT-11 and 7-ethyl-10-hydroxy-camptothecin (SN38). Comparisons between the different compounds were made on the basis of IC50 values as determined by the MTT assay, and flow cytometry was used to evaluate cell cycle progression, apoptosis, and the levels of pro- and active caspase-3 among different treatment groups. Interaction between the molecules and topoisomerase-1 (Topo-1)-DNA complexes was detected by a DNA relaxation assay. Our results demonstrated that IC50 values for ZBH-1205 ranged from 0.0009 μmol/L to 2.5671 μmol/L, which were consistently lower than IC50 values of CPT-11 or SN38 in the panel of cell lines, including SK-OV-3/DPP. Furthermore, ZBH-1205 was more effective than CPT-11 or SN38 at stabilizing Topo-1-DNA complexes and inducing tumor cell apoptosis. Therefore, ZBH-1205 is a promising chemotherapeutic agent to be further assessed in large-scale clinical trials.
Collapse
Affiliation(s)
- Di Wu
- Tumor Center of Jilin University No.1 Hospital, Changchun 130021, China
| | - Weiguo Shi
- Institute of Pharmacology and Toxicology Academy of Military Medical Sciences, Beijing 100850, China
| | - Jing Zhao
- Key Lab for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Zhengren Wei
- Department of Pharmacology, Bethune Medical College, Jilin University, Changchun 130021, China
| | - Zhijia Chen
- Department of Pharmacology, Bethune Medical College, Jilin University, Changchun 130021, China
| | - Dawei Zhao
- Jilin Province Tumor Hospital, Changchun 130021, China
| | - Shijie Lan
- Tumor Center of Jilin University No.1 Hospital, Changchun 130021, China
| | - Jiandong Tai
- Tumor Center of Jilin University No.1 Hospital, Changchun 130021, China.
| | - Bohua Zhong
- Institute of Pharmacology and Toxicology Academy of Military Medical Sciences, Beijing 100850, China.
| | - Hong Yu
- Cell Biology Laboratory, Jilin Province Tumor Institute, Changchun 130021, China.
| |
Collapse
|
19
|
Yang Z, Luo H, Cao Z, Chen Y, Gao J, Li Y, Jiang Q, Xu R, Liu J. Dual-targeting hybrid nanoparticles for the delivery of SN38 to Her2 and CD44 overexpressed human gastric cancer. NANOSCALE 2016; 8:11543-11558. [PMID: 27203688 DOI: 10.1039/c6nr01749e] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor 2 (Her2) and cluster determinant 44 (CD44), is one of the most malignant human tumors which causes a high mortality rate due to rapid tumor growth and metastasis. To develop effective therapeutic treatments, a dual-targeting hybrid nanoparticle (NP) system was designed and constructed to deliver the SN38 agent specifically to human solid gastric tumors bearing excessive Her2 and CD44. The hybrid NPs consist of a particle core made of the biodegradable polymer PLGA and a lipoid shell prepared by conjugating the AHNP peptides and n-hexadecylamine (HDA) to the carboxyl groups of hyaluronic acid (HA). Upon encapsulation of the SN38 agent in the NPs, the AHNP peptides and HA on the NP surface allow preferential delivery of the drug to gastric cancer cells (e.g., HGC27 cells) by targeting Her2 and CD44. Cellular uptake and in vivo biodistribution experiments verified the active targeting and prolonged in vivo circulation properties of the dual-targeting hybrid NPs, leading to enhanced accumulation of the drug in tumors. Furthermore, the anti-proliferation mechanism studies revealed that the inhibition of the growth and invasive activity of HGC27 cells was not only attributed to the enhanced cellular uptake of dual-targeting NPs, but also benefited from the suppression of CD44 and Her2 expression by HA and AHNP moieties. Finally, intravenous administration of the SN38-loaded dual-targeting hybrid NPs induced significant growth inhibition of HGC27 tumor xenografted in nude mice compared with a clinical antitumor agent, Irinotecan (CPT-11), and the other NP formulations. These results demonstrate that the designed dual-targeting hybrid NPs are promising for targeted anti-cancer drug delivery to treat human gastric tumors over-expressing Her2 and CD44.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Huiyan Luo
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China. and Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Guangzhou, Guangdong 510060, China.
| | - Zhong Cao
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Ya Chen
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Jinbiao Gao
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Yingqin Li
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Qing Jiang
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Ruihua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Guangzhou, Guangdong 510060, China.
| | - Jie Liu
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
20
|
Hu T, Chung YM, Guan M, Ma M, Ma J, Berek JS, Hu MCT. Reprogramming ovarian and breast cancer cells into non-cancerous cells by low-dose metformin or SN-38 through FOXO3 activation. Sci Rep 2014; 4:5810. [PMID: 25056111 PMCID: PMC4108946 DOI: 10.1038/srep05810] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Because the cytotoxic effects of conventional chemotherapies often harm normal tissue cells along with cancer cells, conventional chemotherapies cause many unwanted or intolerable side effects. Thus, there is an unmet medical need to establish a paradigm of chemotherapy-induced differentiation of cancer cells with tolerable side effects. Here we show that low-dose metformin or SN-38 inhibits cell growth or survival in ovarian and breast cancer cells and suppresses their tumor growth in vivo. Low-dose metformin or SN-38 increases FOXO3 nuclear localization as well as the amount of DNA damage markers and downregulates the expression of a cancer-stemness marker CD44 and other stemness markers, including Nanog, Oct-4, and c-Myc, in these cancer cells. This treatment also inhibits spheroid body-formation in 3-dimensional culture. In contrast, silencing FOXO3 diminishes all these cellular events when ovarian/breast cancer cells are treated with the mentioned drugs. These results suggest that low-dose metformin or SN-38 may reprogram these cancer cells into non-cancerous cells in a FOXO3-dependent manner, and may allow patients to overcome these cancers with minimal side effects.
Collapse
Affiliation(s)
- Theodore Hu
- 1] Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA [2]
| | - Young Min Chung
- 1] Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA [2]
| | - Michelle Guan
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Ma
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jessica Ma
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonathan S Berek
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mickey C-T Hu
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Sharpe MA, Marcano DC, Berlin JM, Widmayer MA, Baskin DS, Tour JM. Antibody-targeted nanovectors for the treatment of brain cancers. ACS NANO 2012; 6:3114-3120. [PMID: 22390360 DOI: 10.1021/nn2048679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Introduced here is the hydrophilic carbon clusters (HCCs) antibody drug enhancement system (HADES), a methodology for cell-specific drug delivery. Antigen-targeted, drug-delivering nanovectors are manufactured by combining specific antibodies with drug-loaded poly(ethylene glycol)-HCCs (PEG-HCCs). We show that HADES is highly modular, as both the drug and antibody component can be varied for selective killing of a range of cultured human primary glioblastoma multiforme. Using three different chemotherapeutics and three different antibodies, without the need for covalent bonding to the nanovector, we demonstrate extreme lethality toward glioma, but minimal toxicity toward human astrocytes and neurons.
Collapse
Affiliation(s)
- Martyn A Sharpe
- Department of Neurosurgery, Methodist Hospital, 6560 Fannin Street, Houston, Texas 77030, United States.
| | | | | | | | | | | |
Collapse
|