1
|
Babaei S, Nikbakht M, Majd A, Mousavi SA. Comparative effects of arsenic trioxide and chemotherapy on Chk1 and CDC25 gene expression in gastric cancer cells AGS and MKN45: a potential therapeutic strategy. Mol Biol Rep 2025; 52:198. [PMID: 39903385 DOI: 10.1007/s11033-025-10313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Gastric cancer (GC) remains a significant global health burden, particularly in East Asia, where it is a leading cause of cancer-related morbidity and mortality. Despite advancements in chemotherapy, the development of chemoresistance continues to undermine the efficacy of standard treatments such as Docetaxel and Oxaliplatin. Arsenic trioxide (ATO) has emerged as a potential therapeutic agent capable of overcoming resistance by targeting DNA repair mechanisms, particularly through the downregulation of Checkpoint Kinase 1 (Chk1). This study investigates the cytotoxic effects of ATO and its capacity to enhance chemotherapy efficacy in GC cells. METHODS AGS and MKN-45 gastric cancer cell lines were exposed to ATO, Docetaxel, Oxaliplatin, and their combinations. Cell viability was assessed via the MTT assay, while Chk1 and CDC25 expressions at the mRNA and protein levels was analyzed using real-time PCR and Western blotting. Statistical analyses were performed using ANOVA and Tukey's post hoc test. RESULTS The MTT assay revealed significant dose- and time-dependent reductions in cell viability, with combination treatments achieving the most pronounced effects. The greatest cytotoxicity was observed with 4 µM ATO combined with 2500 µM Docetaxel or 100 µM Oxaliplatin, showing a high level of statistical significance (p < 0.0001). Additionally, ATO monotherapy significantly downregulated Chk1 and CDC25 expressions (p < 0.05), while its combination with chemotherapeutic agents further enhanced Chk1 and CDC25 suppressions, with ATO-Docetaxel demonstrating the most pronounced effect (p < 0.01). CONCLUSIONS These findings highlight ATO's potential to sensitize GC cells to chemotherapy by impairing DNA repair mechanisms and inducing synergistic cytotoxicity. ATO holds promise as an adjuvant therapeutic agent for overcoming chemoresistance in gastric cancer.
Collapse
Affiliation(s)
- Shadi Babaei
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Nikbakht
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran, Iran.
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Asadoullah Mousavi
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wang SSY. Advancing biomarker development for diagnostics and therapeutics using solid tumour cancer stem cell models. TUMORI JOURNAL 2024; 110:10-24. [PMID: 36964664 DOI: 10.1177/03008916231158411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The cancer stem cell model hopes to explain solid tumour carcinogenesis, tumour progression and treatment failure in cancers. However, the cancer stem cell model has led to minimal clinical translation to cancer stem cell biomarkers and targeted therapies in solid tumours. Many reasons underlie the challenges, one being the imperfect understanding of the cancer stem cell model. This review hopes to spur further research into clinically translatable cancer stem cell biomarkers through first defining cancer stem cells and their associated models. With a better understanding of these models there would be a development of more accurate biomarkers. Making the clinical translation of biomarkers into diagnostic tools and therapeutic agents more feasible.
Collapse
|
3
|
Tam A, Mercier BD, Thomas RM, Tizpa E, Wong IG, Shi J, Garg R, Hampel H, Gray SW, Williams T, Bazan JG, Li YR. Moving the Needle Forward in Genomically-Guided Precision Radiation Treatment. Cancers (Basel) 2023; 15:5314. [PMID: 38001574 PMCID: PMC10669735 DOI: 10.3390/cancers15225314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
Radiation treatment (RT) is a mainstay treatment for many types of cancer. Recommendations for RT and the radiation plan are individualized to each patient, taking into consideration the patient's tumor pathology, staging, anatomy, and other clinical characteristics. Information on germline mutations and somatic tumor mutations is at present rarely used to guide specific clinical decisions in RT. Many genes, such as ATM, and BRCA1/2, have been identified in the laboratory to confer radiation sensitivity. However, our understanding of the clinical significance of mutations in these genes remains limited and, as individual mutations in such genes can be rare, their impact on tumor response and toxicity remains unclear. Current guidelines, including those from the National Comprehensive Cancer Network (NCCN), provide limited guidance on how genetic results should be integrated into RT recommendations. With an increasing understanding of the molecular underpinning of radiation response, genomically-guided RT can inform decisions surrounding RT dose, volume, concurrent therapies, and even omission to further improve oncologic outcomes and reduce risks of toxicities. Here, we review existing evidence from laboratory, pre-clinical, and clinical studies with regard to how genetic alterations may affect radiosensitivity. We also summarize recent data from clinical trials and explore potential future directions to utilize genetic data to support clinical decision-making in developing a pathway toward personalized RT.
Collapse
Affiliation(s)
- Andrew Tam
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Benjamin D. Mercier
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Reeny M. Thomas
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Eemon Tizpa
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Irene G. Wong
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Juncong Shi
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Rishabh Garg
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Stacy W. Gray
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (H.H.); (S.W.G.)
| | - Terence Williams
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Jose G. Bazan
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
| | - Yun R. Li
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd., Duarte, CA 91010, USA; (A.T.); (B.D.M.); (R.M.T.); (E.T.); (I.G.W.); (J.S.); (R.G.); (T.W.)
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Division of Quantitative Medicine & Systems Biology, Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85022, USA
| |
Collapse
|
4
|
Kamal M, Wang YJ, Plummer S, Dickerson A, Yu M. An Image-Based Identification of Aggressive Breast Cancer Circulating Tumor Cell Subtypes. Cancers (Basel) 2023; 15:2669. [PMID: 37345005 DOI: 10.3390/cancers15102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Using previously established CTC lines from breast cancer patients, we identified different morphometric subgroups of CTCs with one of them having the highest tumorigenic potential in vivo despite the slowest cell proliferation in vitro. This subgroup represents 32% of all cells and contains cells with small cell volume, large nucleus to cell, dense nuclear areas to the nucleus, mitochondria to cell volume ratios and rough texture of cell membrane and termed "Small cell, Large mitochondria, Rough membrane" (SLR). RNA-seq analyses showed that the SLR group is enriched in pathways and cellular processes related to DNA replication, DNA repair and metabolism. SLR upregulated genes are associated with poor survival in patients with ER+ breast cancer based on the KM Plotter database. The high tumorigenic potential, slow proliferation, and enriched DNA replication/repair pathways suggest that the SLR subtype is associated with stemness properties. Our new findings provide a simple image-based identification of CTC subpopulations with elevated aggressiveness, which is expected to provide a more accurate prediction of patient survival and therapy response than total CTC numbers. The detection of morphometric and transcriptomic profiles related to the SLR subgroup of CTCs also opens opportunities for potential targeted cancer treatment.
Collapse
Affiliation(s)
- Mohamed Kamal
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Zoology, Faculty of Science, University of Benha, Benha 13518, Egypt
| | - Yiru Jess Wang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sarai Plummer
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amber Dickerson
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Maleki Dana P, Sadoughi F, Mirzaei H, Asemi Z, Yousefi B. DNA damage response and repair in the development and treatment of brain tumors. Eur J Pharmacol 2022; 924:174957. [DOI: 10.1016/j.ejphar.2022.174957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
6
|
Perspective on the Use of DNA Repair Inhibitors as a Tool for Imaging and Radionuclide Therapy of Glioblastoma. Cancers (Basel) 2022; 14:cancers14071821. [PMID: 35406593 PMCID: PMC8997380 DOI: 10.3390/cancers14071821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The current routine treatment for glioblastoma (GB), the most lethal high-grade brain tumor in adults, aims to induce DNA damage in the tumor. However, the tumor cells might be able to repair that damage, which leads to therapy resistance. Fortunately, DNA repair defects are common in GB cells, and their survival is often based on a sole backup repair pathway. Hence, targeted drugs inhibiting essential proteins of the DNA damage response have gained momentum and are being introduced in the clinic. This review gives a perspective on the use of radiopharmaceuticals targeting DDR kinases for imaging in order to determine the DNA repair phenotype of GB, as well as for effective radionuclide therapy. Finally, four new promising radiopharmaceuticals are suggested with the potential to lead to a more personalized GB therapy. Abstract Despite numerous innovative treatment strategies, the treatment of glioblastoma (GB) remains challenging. With the current state-of-the-art therapy, most GB patients succumb after about a year. In the evolution of personalized medicine, targeted radionuclide therapy (TRT) is gaining momentum, for example, to stratify patients based on specific biomarkers. One of these biomarkers is deficiencies in DNA damage repair (DDR), which give rise to genomic instability and cancer initiation. However, these deficiencies also provide targets to specifically kill cancer cells following the synthetic lethality principle. This led to the increased interest in targeted drugs that inhibit essential DDR kinases (DDRi), of which multiple are undergoing clinical validation. In this review, the current status of DDRi for the treatment of GB is given for selected targets: ATM/ATR, CHK1/2, DNA-PK, and PARP. Furthermore, this review provides a perspective on the use of radiopharmaceuticals targeting these DDR kinases to (1) evaluate the DNA repair phenotype of GB before treatment decisions are made and (2) induce DNA damage via TRT. Finally, by applying in-house selection criteria and analyzing the structural characteristics of the DDRi, four drugs with the potential to become new therapeutic GB radiopharmaceuticals are suggested.
Collapse
|
7
|
Vlatkovic T, Veldwijk MR, Giordano FA, Herskind C. Targeting Cell Cycle Checkpoint Kinases to Overcome Intrinsic Radioresistance in Brain Tumor Cells. Cancers (Basel) 2022; 14:cancers14030701. [PMID: 35158967 PMCID: PMC8833533 DOI: 10.3390/cancers14030701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary As cell cycle checkpoint mechanisms maintain genomic integrity, the inhibition of enzymes involved in these control mechanisms may increase the sensitivity of the cells to DNA damaging treatments. In this review, we summarize the knowledge in the field of brain tumor treatment with radiation therapy and cell cycle checkpoint inhibition via targeting ATM, ATR, CHK1, CHK2, and WEE1 kinases. Abstract Radiation therapy is an important part of the standard of care treatment of brain tumors. However, the efficacy of radiation therapy is limited by the radioresistance of tumor cells, a phenomenon held responsible for the dismal prognosis of the most aggressive brain tumor types. A promising approach to radiosensitization of tumors is the inhibition of cell cycle checkpoint control responsible for cell cycle progression and the maintenance of genomic integrity. Inhibition of the kinases involved in these control mechanisms can abolish cell cycle checkpoints and DNA damage repair and thus increase the sensitivity of tumor cells to radiation and chemotherapy. Here, we discuss preclinical progress in molecular targeting of ATM, ATR, CHK1, CHK2, and WEE1, checkpoint kinases in the treatment of brain tumors, and review current clinical phase I-II trials.
Collapse
Affiliation(s)
- Tijana Vlatkovic
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
| | - Marlon R. Veldwijk
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
| | - Frank A. Giordano
- Department of Radiation Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| | - Carsten Herskind
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
- Correspondence: ; Tel.: +49-621-383-3773
| |
Collapse
|
8
|
Anticancer Activities of 9-chloro-6-(piperazin-1-yl)-11H-indeno[1,2-c] quinolin-11-one (SJ10) in Glioblastoma Multiforme (GBM) Chemoradioresistant Cell Cycle-Related Oncogenic Signatures. Cancers (Basel) 2022; 14:cancers14010262. [PMID: 35008426 PMCID: PMC8750065 DOI: 10.3390/cancers14010262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) remains to be the most frequent malignant tumor of the central nervous system (CNS), which accounts for approximately 54% of all primary brain gliomas. Current treatment modalities for GBM include surgical resection, followed by radiotherapy and chemotherapy with temozolomide (TMZ). However, due to its genetic heterogeneity, GBM tumors always recur, due to treatment reasistance. The aim of this study was to identify molecular gene signatures, responsible for cancer initiation, progression, resistances and to treatment, metastasis, and also evaluate the potency of our novel compounds SJ10 as potential target for CCNB1/CDC42/MAPK7/CD44 oncogenic signatures. Accordingly, we used computational simulation and identify these signatures as regulators of the cell cycle in GBM, which leads to cancer development and metastasis. We also showed the antiproliferative and cytotoxic effects of SJ10 compound against a panel of NCI-60 cancer cell lines. This suggests the potential of the compounds to inhibit CCNB1/CDC42/MAPK7/CD44 in GBM. Abstract Current anticancer treatments are inefficient against glioblastoma multiforme (GBM), which remains one of the most aggressive and lethal cancers. Evidence has shown the presence of glioblastoma stem cells (GSCs), which are chemoradioresistant and associated with high invasive capabilities in normal brain tissues. Moreover, accumulating studies have indicated that radiotherapy contributes to abnormalities in cell cycle checkpoints, including the G1/S and S phases, which may potentially lead to resistance to radiation. Through computational simulations using bioinformatics, we identified several GBM oncogenes that are involved in regulating the cell cycle. Cyclin B1 (CCNB1) is one of the cell cycle-related genes that was found to be upregulated in GBM. Overexpression of CCNB1 was demonstrated to be associated with higher grades, proliferation, and metastasis of GBM. Additionally, increased expression levels of CCNB1 were reported to regulate activation of mitogen-activated protein kinase 7 (MAPK7) in the G2/M phase, which consequently modulates mitosis; additionally, in clinical settings, MAPK7 was demonstrated to promote resistance to temozolomide (TMZ) and poor patient survival. Therefore, MAPK7 is a potential novel drug target due to its dysregulation and association with TMZ resistance in GBM. Herein, we identified MAPK7/extracellular regulated kinase 5 (ERK5) genes as being overexpressed in GBM tumors compared to normal tissues. Moreover, our analysis revealed increased levels of the cell division control protein homolog (CDC42), a protein which is also involved in regulating the cell cycle through the G1 phase in GBM tissues. This therefore suggests crosstalk among CCNB1/CDC42/MAPK7/cluster of differentiation 44 (CD44) oncogenic signatures in GBM through the cell cycle. We further evaluated a newly synthesized small molecule, SJ10, as a potential target agent of the CCNB1/CDC42/MAPK7/CD44 genes through target prediction tools and found that SJ10 was indeed a target compound for the above-mentioned genes; in addition, it displayed inhibitory activities against these oncogenes as observed from molecular docking analysis.
Collapse
|
9
|
Guan R, Zhang X, Guo M. Glioblastoma stem cells and Wnt signaling pathway: molecular mechanisms and therapeutic targets. Chin Neurosurg J 2020; 6:25. [PMID: 32922954 PMCID: PMC7398200 DOI: 10.1186/s41016-020-00207-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common form of primary brain tumor. Glioblastoma stem cells play an important role in tumor formation by activation of several signaling pathways. Wnt signaling pathway is one such important pathway which helps cellular differentiation to promote tumor formation in the brain. Glioblastoma remains to be a highly destructive type of tumor despite availability of treatment strategies like surgery, chemotherapy, and radiation. Advances in the field of cancer biology have revolutionized therapy by allowing targeting of tumor-specific molecular deregulation. In this review, we discuss about the significance of glioblastoma stem cells in cancer progression through Wnt signaling pathway and highlight the clinical targets being potentially considered for therapy in glioblastoma.
Collapse
Affiliation(s)
- Ruoyu Guan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, Harbin, 150086 Heilongjiang Province China
| | - Xiaoming Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang Province China
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, Harbin, 150086 Heilongjiang Province China
| |
Collapse
|
10
|
Auzmendi-Iriarte J, Saenz-Antoñanzas A, Mikelez-Alonso I, Carrasco-Garcia E, Tellaetxe-Abete M, Lawrie CH, Sampron N, Cortajarena AL, Matheu A. Characterization of a new small-molecule inhibitor of HDAC6 in glioblastoma. Cell Death Dis 2020; 11:417. [PMID: 32488056 PMCID: PMC7265429 DOI: 10.1038/s41419-020-2586-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Histone deacetylase 6 (HDAC6) is an epigenetic modifier that is an attractive pharmacological target in cancer. In this work, we show that HDAC6 is elevated in glioblastoma, the most malignant and common brain tumor in adults, in which its high levels correlate with poor patient survival and is more abundant in glioma stem cell subpopulation. Moreover, we identified a new small-molecule inhibitor of HDAC6, which presents strong sensitivity for HDAC6 inhibition and exerts high cytotoxic activity, alone or in combination with temozolomide. It is also able to significantly reduce tumor growth in vivo. Transcriptomic analysis of patient-derived glioma stem cells revealed an increase in cell differentiation and cell death pathways, as well as a decrease in cell-cycle activity and cell division by the treatment with the compound. Finally, the comparison with a pan-HDAC inhibitor, Vorinostat (SAHA), or HDAC6-specific inhibitor, Tubastatin A, showed higher target specificity and antitumor activity of the new HDAC6 inhibitor. In conclusion, our data reveal the efficacy of a novel HDAC6 inhibitor in glioblastoma preclinical setting.
Collapse
Affiliation(s)
| | | | - Idoia Mikelez-Alonso
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Estefania Carrasco-Garcia
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBERfes, Carlos III Institute, Madrid, Spain
| | | | - Charles H Lawrie
- Molecular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicolás Sampron
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBERfes, Carlos III Institute, Madrid, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ander Matheu
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain. .,CIBERfes, Carlos III Institute, Madrid, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
11
|
Azenha D, Lopes MC, Martins TC. Claspin: From replication stress and DNA damage responses to cancer therapy. DNA Repair (Amst) 2019; 115:203-246. [DOI: 10.1016/bs.apcsb.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Ratnayake G, Bain AL, Fletcher N, Howard CB, Khanna KK, Thurecht KJ. RNA interference to enhance radiation therapy: Targeting the DNA damage response. Cancer Lett 2018; 439:14-23. [PMID: 30240587 DOI: 10.1016/j.canlet.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
RNA interference (RNAi) therapy is an emerging class of biopharmaceutical that has immense potential in cancer medicine. RNAi medicines are based on synthetic oligonucleotides that can suppress a target protein in tumour cells with high specificity. This review explores the attractive prospect of using RNAi as a radiosensitiser by targeting the DNA damage response. There are a multitude of molecular targets involved in the detection and repair of DNA damage that are suitable for this purpose. Recent developments in delivery technologies such nanoparticle carriers and conjugation strategies have allowed RNAi therapeutics to enter clinical trials in the treatment of cancer. With further progress, RNAi targeting of the DNA damage response may hold great promise in guiding radiation oncology into the era of precision medicine.
Collapse
Affiliation(s)
- G Ratnayake
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia; QIMR Berghofer Medical Research Institute, Australia; Royal Brisbane and Women's Hospital, Australia.
| | - A L Bain
- QIMR Berghofer Medical Research Institute, Australia
| | - N Fletcher
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia
| | - C B Howard
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia
| | - K K Khanna
- QIMR Berghofer Medical Research Institute, Australia
| | - K J Thurecht
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| |
Collapse
|
13
|
Tachon G, Cortes U, Guichet PO, Rivet P, Balbous A, Masliantsev K, Berger A, Boissonnade O, Wager M, Karayan-Tapon L. Cell Cycle Changes after Glioblastoma Stem Cell Irradiation: The Major Role of RAD51. Int J Mol Sci 2018; 19:ijms19103018. [PMID: 30282933 PMCID: PMC6213228 DOI: 10.3390/ijms19103018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/26/2022] Open
Abstract
“Glioma Stem Cells” (GSCs) are known to play a role in glioblastoma (GBM) recurrence. Homologous recombination (HR) defects and cell cycle checkpoint abnormalities can contribute concurrently to the radioresistance of GSCs. DNA repair protein RAD51 homolog 1 (RAD51) is a crucial protein for HR and its inhibition has been shown to sensitize GSCs to irradiation. The aim of this study was to examine the consequences of ionizing radiation (IR) for cell cycle progression in GSCs. In addition, we intended to assess the potential effect of RAD51 inhibition on cell cycle progression. Five radiosensitive GSC lines and five GSC lines that were previously characterized as radioresistant were exposed to 4Gy IR, and cell cycle analysis was done by fluorescence-activated cell sorting (FACS) at 24, 48, 72, and 96 h with or without RAD51 inhibitor. Following 4Gy IR, all GSC lines presented a significant increase in G2 phase at 24 h, which was maintained over 72 h. In the presence of RAD51 inhibitor, radioresistant GSCs showed delayed G2 arrest post-irradiation for up to 48 h. This study demonstrates that all GSCs can promote G2 arrest in response to radiation-induced DNA damage. However, following RAD51 inhibition, the cell cycle checkpoint response differed. This study contributes to the characterization of the radioresistance mechanisms of GSCs, thereby supporting the rationale of targeting RAD51-dependent repair pathways in view of radiosensitizing GSCs.
Collapse
Affiliation(s)
- Gaelle Tachon
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
- Faculté de Médecine-Pharmacie, Université de Poitiers, F-86021 Poitiers, France.
| | - Ulrich Cortes
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Pierre-Olivier Guichet
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Pierre Rivet
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Anais Balbous
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Konstantin Masliantsev
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
- Faculté de Médecine-Pharmacie, Université de Poitiers, F-86021 Poitiers, France.
| | - Antoine Berger
- Département d'Oncologie Radiothérapie, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Odile Boissonnade
- Département d'Oncologie Radiothérapie, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Michel Wager
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Faculté de Médecine-Pharmacie, Université de Poitiers, F-86021 Poitiers, France.
- Département de Neurochirurgie, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Lucie Karayan-Tapon
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
- Faculté de Médecine-Pharmacie, Université de Poitiers, F-86021 Poitiers, France.
| |
Collapse
|
14
|
Sensitization of prostate cancer to radiation therapy: Molecules and pathways to target. Radiother Oncol 2018; 128:283-300. [PMID: 29929859 DOI: 10.1016/j.radonc.2018.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/01/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
Radiation therapy is used to treat cancer by radiation-induced DNA damage. Despite the best efforts to eliminate cancer, some cancer cells survive irradiation, resulting in cancer progression or recurrence. Alteration in DNA damage repair pathways is common in cancers, resulting in modulation of their response to radiation. This article focuses on the recent findings about molecules and pathways that potentially can be targeted to sensitize prostate cancer cells to ionizing radiation, thereby achieving an improved therapeutic outcome.
Collapse
|
15
|
Yang W, Liu Y, Gao R, Yu H, Sun T. HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett 2018; 415:164-176. [PMID: 29222038 DOI: 10.1016/j.canlet.2017.12.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/05/2017] [Accepted: 12/03/2017] [Indexed: 12/21/2022]
Abstract
The existence of small numbers of stem-like cells, called glioma stem cells (GSCs), in human glioblastoma multiforme (GBM) is responsible for recurrence due to resistance to radiotherapy and chemotherapy. Inhibition of histone deacetylase 6 (HDAC6) enhanced radiosensitivity of cancer cells. However, the effect of inhibiting HDAC6 on stemness and radioresistance of GSCs and its molecular mechanism are largely unknown. In the present study, we found that HDAC6 was upregulated in GSCs comparing to non-stem tumor cells. Inhibiting HDAC6 downregulated glioma-associated oncogene homolog 1 (Gli1), Patched (Ptch1 and Ptch2) receptors, components of SHH signal, expression and activity in GSCs. Restraining HDAC6 decreased cell proliferation, induces differentiation and increased apoptosis of GSCs via inactivation of SHH/Gli1 signaling pathway. Moreover, HDAC6 inhibition decreased DNA damage repair capacity of GSCs through degradation of checkpoint kinase (CHK) 1 caused by X-linked inhibitor of apoptosis (XIAP) downregulation, leading to elevated radiosensitivity. Taken together, these findings indicate that HDAC6 inhibition decreased stemness of GSCs and enhanced GSCs radiosensitivity through inactivating SHH/Gli1 pathway. This provides a promising novel drug target to overcome GSCs stemness and radioresistance.
Collapse
Affiliation(s)
- Wei Yang
- School of Radiological Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yingying Liu
- School of Radiological Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ruoling Gao
- School of Radiological Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hongquan Yu
- Department of Neurosurgery of the First Affiliated Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
16
|
Liu J, Liu Y, Xie T, Luo L, Xu C, Gao Q, Shen L, Wan F, Lei T, Ye F. Radiation-induced G2/M arrest rarely occurred in glioblastoma stem-like cells. Int J Radiat Biol 2018; 94:394-402. [PMID: 29463172 DOI: 10.1080/09553002.2018.1440094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE The purpose of this study is to systematically study the cell-cycle alterations of glioblastoma stem-like cells (GSLCs) after irradiation, possibly enriching the mechanisms of radioresistance of GSLCs. MATERIALS AND METHODS GSLCs were enriched and identified, and then the radioresistance of GSLCs was validated by analyzing cell survival, cell proliferation, and radiation-induced apoptosis. The discrepancy of the cell-cycle distribution and expression of cell-cycle-related proteins between GSLCs and glioblastoma differentiated cells (GDCs) after irradiation was completely analyzed. RESULTS The survival fractions and the cell viabilities of GSLCs were significantly higher than those of GDCs after irradiation. Radiation-induced apoptosis was less prominent in GSLCs than in GDCs. After irradiation with high-dose X-rays, the percentages of GDCs in G2/M phase was evidently increased. However, radiation-induced G2/M arrest occurred less frequently in GSLCs, but S-phase arrest occurred in GSLCs after irradiation with 8 Gy. Further mechanistic studies showed that the expressions levels of Cdc25c, Cdc2, and CyclinB1 in GSLCs were not apparently changed after irradiation, while those of p-ATM and p-Chk1 were sharply increased after irradiation in GSLCs. The basal level of Cdc25c expression in GSLCs was much higher than that in GDCs. CONCLUSIONS We explored the cell-cycle alterations and cell-cycle-related proteins expression levels in GSLCs after irradiation, providing a novel mechanism of radioresistance of GSLCs.
Collapse
Affiliation(s)
- Junfeng Liu
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Yu Liu
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Tao Xie
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Longjun Luo
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Cheng Xu
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Qinglei Gao
- b Cancer Biology Research Center (Key Laboratory of the Ministry of Education) , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Lu Shen
- c Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Feng Wan
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Ting Lei
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Fei Ye
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| |
Collapse
|
17
|
Azenha D, Lopes MC, Martins TC. Claspin functions in cell homeostasis-A link to cancer? DNA Repair (Amst) 2017; 59:27-33. [PMID: 28942358 DOI: 10.1016/j.dnarep.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Cancer remains one of the leading causes of mortality worldwide. Most cancers present high degrees of genomic instability. DNA damage and replication checkpoints function as barriers to halt cell cycle progression until damage is resolved, preventing the perpetuation of errors. Activation of these checkpoints is critically dependent on Claspin, an adaptor protein that mediates the phosphorylation of the effector kinase Chk1 by ATR. However, Claspin also performs other roles related to the protection and maintenance of cell and genome integrity. For instance, following DNA damage and checkpoint activation, Claspin bridges checkpoint responses to DNA repair or to apoptosis. During DNA replication, Claspin acts a sensor and couples DNA unwinding to strand polymerization, and may also indirectly regulate replication initiation at firing origins. As Claspin participates in several processes that are vital to maintenance of cell homeostasis, its function is tightly regulated at multiple levels. Nevertheless, little is known about its role in cancer. Accumulating evidence suggests that Claspin inactivation could be an essential event during carcinogenesis, indicating that Claspin may function as a tumour suppressor. In this review, we will examine the functions of Claspin and how its deregulation may contribute to cancer initiation and progression. To conclude, we will discuss means by which Claspin can be targeted for cancer therapy.
Collapse
Affiliation(s)
- Diana Azenha
- Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal; Instituto Português de Oncologia de Coimbra de Francisco Gentil, Av. Bissaya Barreto 98, Apartado 2005, 3000-651, Coimbra, Portugal.
| | - Maria Celeste Lopes
- Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal.
| | - Teresa C Martins
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal; Instituto Português de Oncologia de Coimbra de Francisco Gentil, Av. Bissaya Barreto 98, Apartado 2005, 3000-651, Coimbra, Portugal.
| |
Collapse
|
18
|
Zhu Y, Shi LY, Lei YM, Bao YH, Li ZY, Ding F, Zhu GT, Wang QQ, Huang CX. Radiosensitization effect of hsa-miR-138-2-3p on human laryngeal cancer stem cells. PeerJ 2017; 5:e3233. [PMID: 28533948 PMCID: PMC5436573 DOI: 10.7717/peerj.3233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Treatments that target cancer stem cells play an important role in the controlling and eliminating of tumor initiation as well as in development, progression, and chemotherapy/radiotherapy resistance. In our previous study, we cultured and harvested human laryngeal cancer stem cells (CSCs) and applied microRNA biochips to screen differentially expressed miRNAs that were related to radiation tolerance in irradiated human laryngeal CSCs. According to the predicted genes and pathways of differential miRNAs target, down-regulated expression of hsa-miR-138-2-3p under radiation was thought to play a key role in enhancing the radio-sensitivity in human laryngeal squamous cancer stem cells. METHOD To investigate the radiational enhancement of hsa-miR-138-2-3p, we transfected hsa-miR-138-2-3p mimics that were synthesized based on the sequences of hsa-miR-138-2-3p in vitrointo human laryngeal CSCs (Hep-2, M2e, and TU212 cell lines) to make hsa-miR-138-2-3p overexpressed, and the tumorous specialities of CSCs, like cell proliferation, invasion, apoptosis, cell cycle arrest, and DNA damage were evaluated by CCK-8 assay, clone formation assay, invasion assay, flow cytometry, and comet assay. Furthermore, we explored the signal transduction pathways that regulated the cancer stem cell initiation, development, invasion, apoptosis and cell cycle arrest, which were controlled by hsa-miR-138-2-3p. RESULT Overexpressed hsa-miR-138-2-3p played a key role in many anti-cancer biological processes in human laryngeal CSCs: (1) it decreased laryngeal CSCs proliferation and invasion in response to radiotherapy; (2) it increased the proportion of early and late apoptosis in laryngeal CSCs after radiation, raised G1 phase arrest in laryngeal CSCs after radiation, and decreased the proportion of S stage cells of cell cycle that were related to radio-resistance in laryngeal CSCs; (3) it down-regulated the expression of β-catenin in Wnt signal pathway that was related to the tolerance of laryngeal CSCs to radiotherapy; (4) it down-regulated the expression of YAP1 in Hippo signal pathway that regulated cell proliferation, invasion and apoptosis; (5) it up-regulated the expression of p38 and JNK1 in MAPK signal pathway that was concerned to radio-sensitivity. CONCLUSION In the present study, it was found that hsa-miR-138-2-3p regulated the Wnt/β-catenin pathways, the Hippo/YAP1 pathways, and the MAPK/p38/JNK1 pathways that were involved in cell proliferation, invasion, apoptosis, cell cycle arrest, radio-resistance and radio-sensitivity in laryngeal CSCs. These results will be useful for a better understanding of the cell biology of hsa-miR-138-2-3p in laryngeal CSCs, and for serving hsa-miR-138-2-3p as a promising biomarker and as a target for diagnosis and for novel anti-cancer therapies for laryngeal cancers.
Collapse
Affiliation(s)
- Ying Zhu
- First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li-Yun Shi
- Department of Immunology, School of Medical and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan-Min Lei
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan-Hong Bao
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhao-Yang Li
- Department of Oncology, Affiliated Hospital with Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Fei Ding
- Department of Oncology, Affiliated Hospital with Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Gui-Ting Zhu
- Department of Oncology, Affiliated Hospital with Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Qing-Qing Wang
- Institute of Immunology, Zhejiang University, Hangzhou, China
| | - Chang-Xin Huang
- Department of Oncology, Affiliated Hospital with Hangzhou Normal University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Yang X, Xiao Z, Du X, Huang L, Du G. Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol Rep 2016; 37:555-562. [DOI: 10.3892/or.2016.5266] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/29/2016] [Indexed: 11/06/2022] Open
|
20
|
Farnie G, Sotgia F, Lisanti MP. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget 2016; 6:30472-86. [PMID: 26421710 PMCID: PMC4741545 DOI: 10.18632/oncotarget.5401] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
Chemo-resistance is a clinical barrier to more effective anti-cancer therapy. In this context, cancer stem-like cells (CSCs) are thought to be chemo-resistant, resulting in tumor recurrence and distant metastasis. Our hypothesis is that chemo-resistance in CSCs is driven, in part, by enhanced mitochondrial function. Here, we used breast cell lines and metastatic breast cancer patient samples to begin to dissect the role of mitochondrial metabolism in conferring the CSC phenotype. More specifically, we employed fluorescent staining with MitoTracker (MT) to metabolically fractionate these cell lines into mito-high and mito-low sub-populations, by flow-cytometry. Interestingly, cells with high mitochondrial mass (mito-high) were specifically enriched in a number of known CSC markers, such as aldehyde dehydrogenase (ALDH) activity, and they were ESA+/CD24-/low and formed mammospheres with higher efficiency. Large cell size is another independent characteristic of the stem cell phenotype; here, we observed a >2-fold increase in mitochondrial mass in large cells (>12-μm), relative to the smaller cell population (4–8-μm). Moreover, the mito-high cell population showed a 2.4-fold enrichment in tumor-initiating cell activity, based on limiting dilution assays in murine xenografts. Importantly, primary human breast CSCs isolated from patients with metastatic breast cancer or a patient derived xenograft (PDX) also showed the co-enrichment of ALDH activity and mitochondrial mass. Most significantly, our investigations demonstrated that mito-high cells were resistant to paclitaxel, resulting in little or no DNA damage, as measured using the comet assay. In summary, increased mitochondrial mass in a sub-population of breast cancer cells confers a stem-like phenotype and chemo-resistance. As such, our current findings have important clinical implications for over-coming drug resistance, by therapeutically targeting the mito-high CSC population.
Collapse
Affiliation(s)
- Gillian Farnie
- Cancer Stem Cell Research, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Federica Sotgia
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Michael P Lisanti
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Balbous A, Cortes U, Guilloteau K, Rivet P, Pinel B, Duchesne M, Godet J, Boissonnade O, Wager M, Bensadoun RJ, Chomel JC, Karayan-Tapon L. A radiosensitizing effect of RAD51 inhibition in glioblastoma stem-like cells. BMC Cancer 2016; 16:604. [PMID: 27495836 PMCID: PMC4974671 DOI: 10.1186/s12885-016-2647-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 07/28/2016] [Indexed: 06/29/2024] Open
Abstract
Background Radioresistant glioblastoma stem cells (GSCs) contribute to tumor recurrence and identification of the molecular targets involved in radioresistance mechanisms is likely to enhance therapeutic efficacy. This study analyzed the DNA damage response following ionizing radiation (IR) in 10 GSC lines derived from patients. Methods DNA damage was quantified by Comet assay and DNA repair effectors were assessed by Low Density Array. The effect of RAD51 inhibitor, RI-1, was evaluated by comet and annexin V assays. Results While all GSC lines displayed efficient DNA repair machinery following ionizing radiation, our results demonstrated heterogeneous responses within two distinct groups showing different intrinsic radioresistance, up to 4Gy for group 1 and up to 8Gy for group 2. Radioresistant cell group 2 (comprising 5 out of 10 GSCs) showed significantly higher RAD51 expression after IR. In these cells, inhibition of RAD51 prevented DNA repair up to 180 min after IR and induced apoptosis. In addition, RAD51 protein expression in glioblastoma seems to be associated with poor progression-free survival. Conclusion These results underscore the importance of RAD51 in radioresistance of GSCs. RAD51 inhibition could be a therapeutic strategy helping to treat a significant number of glioblastoma, in combination with radiotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2647-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anaïs Balbous
- INSERM1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, F-86021, France.,Université de Poitiers, U1084, Poitiers, F-86022, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Ulrich Cortes
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Karline Guilloteau
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Pierre Rivet
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Baptiste Pinel
- CHU de Poitiers, Service d'Oncologie Radiotherapique, Poitiers, F86021, France
| | - Mathilde Duchesne
- CHU de Poitiers, Service d'Anatomo-cytopathologie, Poitiers, F86021, France
| | - Julie Godet
- CHU de Poitiers, Service d'Anatomo-cytopathologie, Poitiers, F86021, France
| | - Odile Boissonnade
- CHU de Poitiers, Service d'Oncologie Radiotherapique, Poitiers, F86021, France
| | - Michel Wager
- CHU de Poitiers, Service de Neurochirurgie, Poitiers, F86021, France
| | - René Jean Bensadoun
- CHU de Poitiers, Service d'Oncologie Radiotherapique, Poitiers, F86021, France
| | - Jean-Claude Chomel
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Lucie Karayan-Tapon
- INSERM1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, F-86021, France. .,Université de Poitiers, U1084, Poitiers, F-86022, France. .,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France.
| |
Collapse
|
22
|
Malhotra M, Toulouse A, Godinho BMDC, Mc Carthy DJ, Cryan JF, O'Driscoll CM. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies. MOLECULAR BIOSYSTEMS 2016; 11:2635-57. [PMID: 26135606 DOI: 10.1039/c5mb00278h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Malignant primary brain tumors are aggressive cancerous cells that invade the surrounding tissues of the central nervous system. The current treatment options for malignant brain tumors are limited due to the inability to cross the blood-brain barrier. The advancements in current research has identified and characterized certain molecular markers that are essential for tumor survival, progression, metastasis and angiogenesis. These molecular markers have served as therapeutic targets for the RNAi based therapies, which enable site-specific silencing of the gene responsible for tumor proliferation. However, to bring about therapeutic success, an efficient delivery carrier that can cross the blood-brain barrier and reach the targeted site is essential. The current review focuses on the potential of targeted, non-viral and viral particles containing RNAi therapeutic molecules as delivery strategies specifically for brain tumors.
Collapse
Affiliation(s)
- Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
23
|
Shen Y, Chen H, Zhang J, Chen Y, Wang M, Ma J, Hong L, Liu N, Fan Q, Lu X, Tian Y, Wang A, Dong J, Lan Q, Huang Q. Increased Notch Signaling Enhances Radioresistance of Malignant Stromal Cells Induced by Glioma Stem/ Progenitor Cells. PLoS One 2015; 10:e0142594. [PMID: 26599017 PMCID: PMC4657951 DOI: 10.1371/journal.pone.0142594] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022] Open
Abstract
Background Host malignant stromal cells induced by glioma stem/progenitor cells were revealed to be more radiation-resistant than the glioma stem/progenitor cells themselves after malignant transformation in nude mice. However, the mechanism underlying this phenomenon remains unclear. Methods Malignant stromal cells induced by glioma stem/progenitor cell 2 (GSC-induced host brain tumor cells, ihBTC2) were isolated and identified from the double color-coded orthotopic glioma nude mouse model. The survival fraction at 2 Gy (SF2) was used to evaluate the radiation resistance of ihBTC2, the human glioma stem/progenitor cell line SU3 and its radiation-resistant sub-strain SU3-5R and the rat C6 glioma cell line. The mRNA of Notch 1 and Hes1 from ihBTC2 cells were detected using qPCR before and after 4 Gy radiation. The expression of the Notch 1, pAkt and Bcl-2 proteins were investigated by Western blot. To confirm the role of the Notch pathway in the radiation resistance of ihBTC2, Notch signaling blocker gamma secretase inhibitors (GSIs) were used. Results The ihBTC2 cells had malignant phenotypes, such as infinite proliferation, hyperpentaploid karyotype, tumorigenesis in nude mice and expression of protein markers of oligodendroglia cells. The SF2 of ihBTC2 cells was significantly higher than that of any other cell line (P<0.05, n = 3). The expression of Notch 1 and Hes1 mRNAs from ihBTC2 cells was significantly increased after radiation. Moreover, the Notch 1, pAkt and Bcl-2 proteins were significantly increased after radiation (P<0.05, n = 3). Inhibition of Notch signaling markedly enhanced the radiosensitivity of ihBTC2 cells. Conclusions In an orthotopic glioma model, the malignant transformation of host stromal cells was induced by glioma stem/progenitor cells. IhBTC2 cells are more radiation-resistant than the glioma stem/progenitor cells, which may be mediated by activation of the Notch signaling pathway.
Collapse
Affiliation(s)
- Yuntian Shen
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University; Institute of Radiotherapy & Oncology, Soochow University; Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Hua Chen
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinshi Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanming Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengyao Wang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University; Institute of Radiotherapy & Oncology, Soochow University; Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Jiawei Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Hong
- Laboratory Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuhong Fan
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University; Institute of Radiotherapy & Oncology, Soochow University; Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Xueguan Lu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University; Institute of Radiotherapy & Oncology, Soochow University; Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Ye Tian
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University; Institute of Radiotherapy & Oncology, Soochow University; Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Aidong Wang
- Laboratory Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- * E-mail: (DJ); (LQ)
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- * E-mail: (DJ); (LQ)
| | - Qiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Manic G, Obrist F, Sistigu A, Vitale I. Trial Watch: Targeting ATM-CHK2 and ATR-CHK1 pathways for anticancer therapy. Mol Cell Oncol 2015; 2:e1012976. [PMID: 27308506 PMCID: PMC4905354 DOI: 10.1080/23723556.2015.1012976] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/25/2015] [Accepted: 01/26/2015] [Indexed: 02/08/2023]
Abstract
The ataxia telangiectasia mutated serine/threonine kinase (ATM)/checkpoint kinase 2 (CHEK2, best known as CHK2) and the ATM and Rad3-related serine/threonine kinase (ATR)/CHEK1 (best known as CHK1) cascades are the 2 major signaling pathways driving the DNA damage response (DDR), a network of processes crucial for the preservation of genomic stability that act as a barrier against tumorigenesis and tumor progression. Mutations and/or deletions of ATM and/or CHK2 are frequently found in tumors and predispose to cancer development. In contrast, the ATR-CHK1 pathway is often upregulated in neoplasms and is believed to promote tumor growth, although some evidence indicates that ATR and CHK1 may also behave as haploinsufficient oncosuppressors, at least in a specific genetic background. Inactivation of the ATM-CHK2 and ATR-CHK1 pathways efficiently sensitizes malignant cells to radiotherapy and chemotherapy. Moreover, ATR and CHK1 inhibitors selectively kill tumor cells that present high levels of replication stress, have a deficiency in p53 (or other DDR players), or upregulate the ATR-CHK1 module. Despite promising preclinical results, the clinical activity of ATM, ATR, CHK1, and CHK2 inhibitors, alone or in combination with other therapeutics, has not yet been fully demonstrated. In this Trial Watch, we give an overview of the roles of the ATM-CHK2 and ATR-CHK1 pathways in cancer initiation and progression, and summarize the results of clinical studies aimed at assessing the safety and therapeutic profile of regimens based on inhibitors of ATR and CHK1, the only 2 classes of compounds that have so far entered clinics.
Collapse
Affiliation(s)
| | - Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | | | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- Department of Biology, University of Rome “TorVergata”; Rome, Italy
| |
Collapse
|
25
|
Dexamethasone acts as a radiosensitizer in three astrocytoma cell lines via oxidative stress. Redox Biol 2015; 5:388-397. [PMID: 26160768 PMCID: PMC4506989 DOI: 10.1016/j.redox.2015.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/13/2015] [Accepted: 06/16/2015] [Indexed: 01/08/2023] Open
Abstract
Glucocorticoids (GCs), which act on stress pathways, are well-established in the co-treatment of different kinds of tumors; however, the underlying mechanisms by which GCs act are not yet well elucidated. As such, this work investigates the role of glucocorticoids, specifically dexamethasone (DEXA), in the processes referred to as DNA damage and DNA damage response (DDR), establishing a new approach in three astrocytomas cell lines (CT2A, APP.PS1 L.1 and APP.PS1 L.3). The results show that DEXA administration increased the basal levels of gamma-H2AX foci, keeping them higher 4 h after irradiation (IR) of the cells, compared to untreated cells. This means that DEXA might cause increased radiosensitivity in these cell lines. On the other hand, DEXA did not have an apparent effect on the formation and disappearance of the 53BP1 foci. Furthermore, it was found that DEXA administered 2 h before IR led to a radical change in DNA repair kinetics, even DEXA does not affect cell cycle. It is important to highlight that DEXA produced cell death in these cell lines compared to untreated cells. Finally and most important, the high levels of gamma-H2AX could be reversed by administration of ascorbic acid, a potent blocker of reactive oxygen species, suggesting that DEXA acts by causing DNA damage via oxidative stress. These exiting findings suggest that DEXA might promote radiosensitivity in brain tumors, specifically in astrocytoma-like tumors. Dexamethasone causes DNA damage by increasing gamma-H2AX levels in three astrocytoma cell lines (CT2A, APP.PS1 L.1 and APP.PS1 L.3) Dexamethasone affects DNA repair kinetics and produces cell death in three astrocytoma cell lines (CT2A, APP.PS1 L.1 and APP.PS1 L.3) even dexamethasone does not affect any cell cycle arrest in any cell line studied. Oxidative stress appears to be one of the mechanisms of dexamethasone action in DNA damage as their effect is reversed with ascorbic acid addition.
Collapse
|
26
|
Sun C, Wang Z, Song W, Chen B, Zhang J, Dai X, Wang L, Wu J, Lan Q, Huang Q, Dong J. Alteration of DNA damage signaling pathway profile in radiation-treated glioblastoma stem-like cells. Oncol Lett 2015; 10:1769-1774. [PMID: 26622748 DOI: 10.3892/ol.2015.3411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 05/07/2015] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to investigate the alteration of the DNA damage signaling pathway profile in radiation-treated glioblastoma stem-like cells (GSLCs), and also aimed to explore potential targets for overcoming glioblastoma radioresistance. Serum-free medium was used to isolate and culture GSLCs. Cell growth was detected using a cell counting kit-8 assay and cell sorting analysis was performed by flow cytometry. X-ray irradiation was produced by a Siemens-Primus linear accelerator. Reverse transcription-quantitative polymerase chain reaction (qPCR)was performed to investigate target genes. SPSS 15.0 was used for all statistical analyses. Human glioblastoma U251 and U87 cells were cultured in serum-free medium supplemented with epidermal growth factor and fibroblast growth factor 2, which constitutes tumor sphere medium, and demonstrated sphere formation, with significantly increased the proportion of CD133+ and Nestin+ cells, which are referred to as GSLCs. The present data revealed that treatment with 10 Gy X-ray radiation alters the expression profile of DNA damage-associated genes in GSLCs. The expression levels of 12 genes demonstrated a ≥2-fold increase in the irradiated U87 GSLCs compared with the untreated U87 GSLCs. Three genes, consisting of XPA, RAD50 and PPP1R15A, were selected from the 12 genes by gene functional searching and qPCR confirmatory studies, as these genes were considered to be potential targets for overcoming radioresistance. The expression of XPA, RAD50 and PPP1R15A is significantly increased in U87 and U251 radiation resistant GSLCs, indicating three potential targets for overcoming the radioresistance of GSLCs.
Collapse
Affiliation(s)
- Chao Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Zhongyong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wuchao Song
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Baomin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jinshi Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xingliang Dai
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jinding Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Qiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
27
|
Auffinger B, Spencer D, Pytel P, Ahmed AU, Lesniak MS. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev Neurother 2015; 15:741-52. [PMID: 26027432 DOI: 10.1586/14737175.2015.1051968] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glioma stem cells (GSCs) constitute a slow-dividing, small population within a heterogeneous glioblastoma. They are able to self-renew, recapitulate a whole tumor, and differentiate into other specific glioblastoma multiforme (GBM) subpopulations. Therefore, they have been held responsible for malignant relapse after primary standard therapy and the poor prognosis of recurrent GBM. The failure of current therapies to eliminate specific GSC subpopulations has been considered a major factor contributing to the inevitable recurrence in GBM patients after treatment. Here, we discuss the molecular mechanisms of chemoresistance of GSCs and the reasons why complete eradication of GSCs is so difficult to achieve. We will also describe the targeted therapies currently available for GSCs and possible mechanisms to overcome such chemoresistance and avoid therapeutic relapse.
Collapse
Affiliation(s)
- Brenda Auffinger
- The Brain Tumor Center, The University of Chicago, 5841 South Maryland Ave, M/C 3026, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
28
|
Syljuåsen RG, Hasvold G, Hauge S, Helland Å. Targeting lung cancer through inhibition of checkpoint kinases. Front Genet 2015; 6:70. [PMID: 25774168 PMCID: PMC4343027 DOI: 10.3389/fgene.2015.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/10/2015] [Indexed: 12/28/2022] Open
Abstract
Inhibitors of checkpoint kinases ATR, Chk1, and Wee1 are currently being tested in preclinical and clinical trials. Here, we review the basic principles behind the use of such inhibitors as anticancer agents, and particularly discuss their potential for treatment of lung cancer. As lung cancer is one of the most deadly cancers, new treatment strategies are highly needed. We discuss how checkpoint kinase inhibition in principle can lead to selective killing of lung cancer cells while sparing the surrounding normal tissues. Several features of lung cancer may potentially be exploited for targeting through inhibition of checkpoint kinases, including mutated p53, low ERCC1 levels, amplified Myc, tumor hypoxia and presence of lung cancer stem cells. Synergistic effects have also been reported between inhibitors of ATR/Chk1/Wee1 and conventional lung cancer treatments, such as gemcitabine, cisplatin, or radiation. Altogether, inhibitors of ATR, Chk1, and Wee1 are emerging as new cancer treatment agents, likely to be useful in lung cancer treatment. However, as lung tumors are very diverse, the inhibitors are unlikely to be effective in all patients, and more work is needed to determine how such inhibitors can be utilized in the most optimal ways.
Collapse
Affiliation(s)
- Randi G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital , Oslo, Norway
| | - Grete Hasvold
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital , Oslo, Norway
| | - Sissel Hauge
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital , Oslo, Norway
| | - Åslaug Helland
- Department of Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital , Oslo, Norway ; Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital , Oslo, Norway
| |
Collapse
|
29
|
Ling H, Lu LF, He J, Xiao GH, Jiang H, Su Q. Diallyl disulfide selectively causes checkpoint kinase-1 mediated G2/M arrest in human MGC803 gastric cancer cell line. Oncol Rep 2014; 32:2274-82. [PMID: 25176258 DOI: 10.3892/or.2014.3417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/04/2014] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that diallyl disulfide (DADS), a naturally occurring anticancer agent in garlic, arrested human gastric cancer cells (MGC803) in the G2/M phase of the cell cycle. Due to the importance of cell cycle redistribution in DADS-mediated anticarcinogenic effects, we investigated the role of checkpoint kinases (Chk1 and Chk2) during DADS-induced cell cycle arrest. In the present study, the northern blot analysis showed that mRNA expression of for Chkl and Chk2 was unchanged. Notably, DADS induced the accumulation of phosphorylated Chk1, but not of Chk2, activated phospho-ATR (ATM-RAD3-related gene), and dowregulated CDC25C and cyclin B1 expression. Furthermore, CDC25C was immunoprecipitated by anti-Chk1 but not anti-Chk2. Results of the overexpression and knockdown studies, showed that Chk1 but not Chk2 regulated the DADS-induced G2/M arrest of MGC803 cells. The overexpression of Chk1 resulted in significantly increased DADS-induced G2/M arrest, increased DADS-induced Chk1 phosphorylation and inhibited CDC25C expression. Knockdown of Chk1 reduced DADS‑induced G2/M arrest and blocked the DADS-induced inhibition of CDC25C and cyclin B1 expression. These results suggested that Chk1 is important in DADS‑induced cell cycle G2/M arrest in the human MGC803 gastric cancer cell line. Furthermore, the DADS-induced G2/M checkpoint response is mediated by Chk1 signaling through ATR/Chk1/CDC25C/cyclin B1.
Collapse
Affiliation(s)
- Hui Ling
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, P.R. China
| | - Li-Feng Lu
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, P.R. China
| | - Jie He
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, P.R. China
| | - Guo-Hua Xiao
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, P.R. China
| | - Hao Jiang
- Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qi Su
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
30
|
McDermott N, Meunier A, Lynch TH, Hollywood D, Marignol L. Isogenic radiation resistant cell lines: development and validation strategies. Int J Radiat Biol 2014; 90:115-26. [PMID: 24350914 DOI: 10.3109/09553002.2014.873557] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE The comparison of cell lines with differing radiosensitivities and their molecular response to radiation exposure has been used in a number of human cancer models to study the molecular response to radiation. This review proposes to analyze and compare the protocols used by investigators for the development and validation of these isogenic models of radioresistance. CONCLUSION There is large variability in the strategies used to generate and validate isogenic models of radioresistance. Further characterization of these models is required.
Collapse
Affiliation(s)
- Niamh McDermott
- Radiation and Urologic Oncology, Applied Radiation Therapy Trinity and Prostate Molecular Oncology Research Group, Discipline of Radiation Therapy, Trinity College Dublin , Ireland
| | | | | | | | | |
Collapse
|
31
|
NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, enhances the radiosensitivity of human glioma stem cells in vitro. Acta Pharmacol Sin 2013; 34:681-90. [PMID: 23603977 DOI: 10.1038/aps.2013.22] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM NVP-BEZ235 is a novel dual PI3K/mTOR inhibitor and shows dramatic effects on gliomas. The aim of this study was to investigate the effects of NVP-BEZ235 on the radiosensitivity and autophagy of glioma stem cells (GSCs) in vitro. METHODS Human GSCs (SU-2) were tested. The cell viability and survival from ionizing radiation (IR) were evaluated using MTT and clonogenic survival assay, respectively. Immunofluorescence assays were used to identify the formation of autophagosomes. The apoptotic cells were quantified with annexin V-FITC/PI staining and flow cytometry, and observed using Hoechst 33258 staining and fluorescence microscope. Western blot analysis was used to analyze the expression levels of proteins. Cell cycle status was determined by measuring DNA content after staining with PI. DNA repair in the cells was assessed using a comet assay. RESULTS Treatment of SU-2 cells with NVP-BEZ235 (10-320 nmol/L) alone suppressed the cell growth in a concentration-dependent manner. A low concentration of NVP-BEZ235 (10 nmol/L) significantly increased the radiation sensitivity of SU-2 cells, which could be blocked by co-treatment with 3-MA (50 μmol/L). In NVP-BEZ235-treated SU-2 cells, more punctate patterns of microtubule-associated protein LC3 immunoreactivity was observed, and the level of membrane-bound LC3-II was significantly increased. A combination of IR with NVP-BEZ235 significantly increased the apoptosis of SU-2 cells, as shown in the increased levels of BID, Bax, and active caspase-3, and decreased level of Bcl-2. Furthermore, the combination of IR with NVP-BEZ235 led to G1 cell cycle arrest. Moreover, NVP-BEZ235 significantly attenuated the repair of IR-induced DNA damage as reflected by the tail length of the comet. CONCLUSION NVP-BEZ235 increases the radiosensitivity of GSCs in vitro by activating autophagy that is associated with synergistic increase of apoptosis and cell-cycle arrest and decrease of DNA repair capacity.
Collapse
|
32
|
WANG XIAOBIN, MA ZHIKUN, XIAO ZHENG, LIU HUI, DOU ZHONGLING, FENG XIAOSHAN, SHI HAIJUN. Chk1 knockdown confers radiosensitization in prostate cancer stem cells. Oncol Rep 2012; 28:2247-54. [DOI: 10.3892/or.2012.2068] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/18/2012] [Indexed: 11/06/2022] Open
|