1
|
Fischer V, Kretschmer M, Germain PL, Kaur J, Mompart-Barrenechea S, Pelczar P, Schürmann D, Schär P, Gapp K. Sperm chromatin accessibility's involvement in the intergenerational effects of stress hormone receptor activation. Transl Psychiatry 2023; 13:378. [PMID: 38065942 PMCID: PMC10709351 DOI: 10.1038/s41398-023-02684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Dexamethasone is a stress hormone receptor agonist used widely in clinics. We and others previously showed that paternal administration of dexamethasone in mice affects the phenotype of their offspring. The substrate of intergenerational transmission of environmentally induced effects often involves changes in sperm RNA, yet other epigenetic modifications in the germline can be affected and are also plausible candidates. First, we tested the involvement of altered sperm RNAs in the transmission of dexamethasone induced phenotypes across generations. We did this by injecting sperm RNA into naïve fertilized oocytes, before performing metabolic and behavioral phenotyping of the offspring. We observed phenotypic changes in discordance with those found in offspring generated by in vitro fertilization using sperm from dexamethasone exposed males. Second, we investigated the effect of dexamethasone on chromatin accessibility using ATAC sequencing and found significant changes at specific genomic features and gene regulatory loci. Employing q-RT-PCR, we show altered expression of a gene in the tissue of offspring affected by accessibility changes in sperm. Third, we establish a correlation between specific DNA modifications and stress hormone receptor activity as a likely contributing factor influencing sperm accessibility. Finally, we independently investigated this dependency by genetically reducing thymine-DNA glycosylase levels and observing concomitant changes at the level of chromatin accessibility and stress hormone receptor activity.
Collapse
Affiliation(s)
- Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Laboratory of Statistical Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Jasmine Kaur
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Sergio Mompart-Barrenechea
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - David Schürmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Lirussi L, Nilsen HL. DNA Glycosylases Define the Outcome of Endogenous Base Modifications. Int J Mol Sci 2023; 24:10307. [PMID: 37373453 DOI: 10.3390/ijms241210307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chemically modified nucleic acid bases are sources of genomic instability and mutations but may also regulate gene expression as epigenetic or epitranscriptomic modifications. Depending on the cellular context, they can have vastly diverse impacts on cells, from mutagenesis or cytotoxicity to changing cell fate by regulating chromatin organisation and gene expression. Identical chemical modifications exerting different functions pose a challenge for the cell's DNA repair machinery, as it needs to accurately distinguish between epigenetic marks and DNA damage to ensure proper repair and maintenance of (epi)genomic integrity. The specificity and selectivity of the recognition of these modified bases relies on DNA glycosylases, which acts as DNA damage, or more correctly, as modified bases sensors for the base excision repair (BER) pathway. Here, we will illustrate this duality by summarizing the role of uracil-DNA glycosylases, with particular attention to SMUG1, in the regulation of the epigenetic landscape as active regulators of gene expression and chromatin remodelling. We will also describe how epigenetic marks, with a special focus on 5-hydroxymethyluracil, can affect the damage susceptibility of nucleic acids and conversely how DNA damage can induce changes in the epigenetic landscape by altering the pattern of DNA methylation and chromatin structure.
Collapse
Affiliation(s)
- Lisa Lirussi
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Unit for Precision Medicine, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|
3
|
Li Y, Sun J, Ling Y, Ming H, Chen Z, Fang F, Liu Y, Cao H, Ding J, Cao Z, Zhang X, Bondioli K, Jiang Z, Zhang Y. Transcription profiles of oocytes during maturation and embryos during preimplantation development in vivo in the goat. Reprod Fertil Dev 2021; 32:714-725. [PMID: 32317096 DOI: 10.1071/rd19391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/30/2020] [Indexed: 11/23/2022] Open
Abstract
RNA sequencing performed on goat matured oocytes and preimplantation embryos generated invivo enabled us to define the transcriptome for goat preimplantation embryo development. The largest proportion of changes in gene expression in goat was found at the 16-cell stage, not as previously defined at the 8-cell stage, and is later than in other mammalian species. In all, 6482 genes were identified to be significantly differentially expressed across all consecutive developmental stage comparisons, and the important signalling pathways involved in each development transition were determined. In addition, we identified genes that appear to be transcribed only at a specific stage of development. Using weighted gene coexpression network analysis, we found nine stage-specific modules of coexpressed genes that represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the goat transcriptional networks. Their association with other embryo genes suggests that they may have important regulatory roles in embryo development. Our cross-mammalian species transcriptomic comparisons demonstrate both conserved and goat-specific features of preimplantation development.
Collapse
Affiliation(s)
- Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jiangwen Sun
- Department of Computer Science, College of Science, Old Dominion University, Norfolk, VA 23529, USA
| | - Yinghui Ling
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hao Ming
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zhen Chen
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fugui Fang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ya Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hongguo Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jianping Ding
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaorong Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kenneth Bondioli
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA; and Corresponding authors. Emails: ;
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; and Corresponding authors. Emails: ;
| |
Collapse
|
4
|
Petri net-based model of the human DNA base excision repair pathway. PLoS One 2019; 14:e0217913. [PMID: 31518347 PMCID: PMC6743755 DOI: 10.1371/journal.pone.0217913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular DNA is daily exposed to several damaging agents causing a plethora of DNA lesions. As a first aid to restore DNA integrity, several enzymes got specialized in damage recognition and lesion removal during the process called base excision repair (BER). A large number of DNA damage types and several different readers of nucleic acids lesions during BER pathway as well as two sub-pathways were considered in the definition of a model using the Petri net framework. The intuitive graphical representation in combination with precise mathematical analysis methods are the strong advantages of the Petri net-based representation of biological processes and make Petri nets a promising approach for modeling and analysis of human BER. The reported results provide new information that will aid efforts to characterize in silico knockouts as well as help to predict the sensitivity of the cell with inactivated repair proteins to different types of DNA damage. The results can also help in identifying the by-passing pathways that may lead to lack of pronounced phenotypes associated with mutations in some of the proteins. This knowledge is very useful when DNA damage-inducing drugs are introduced for cancer therapy, and lack of DNA repair is desirable for tumor cell death.
Collapse
|
5
|
Steinacher R, Barekati Z, Botev P, Kuśnierczyk A, Slupphaug G, Schär P. SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation. EMBO J 2018; 38:embj.201899242. [PMID: 30523148 DOI: 10.15252/embj.201899242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
During active DNA demethylation, 5-methylcytosine (5mC) is oxidized by TET proteins to 5-formyl-/5-carboxylcytosine (5fC/5caC) for replacement by unmethylated C by TDG-initiated DNA base excision repair (BER). Base excision generates fragile abasic sites (AP-sites) in DNA and has to be coordinated with subsequent repair steps to limit accumulation of genome destabilizing secondary DNA lesions. Here, we show that 5fC/5caC is generated at a high rate in genomes of differentiating mouse embryonic stem cells and that SUMOylation and the BER protein XRCC1 play critical roles in orchestrating TDG-initiated BER of these lesions. SUMOylation of XRCC1 facilitates physical interaction with TDG and promotes the assembly of a TDG-BER core complex. Within this TDG-BERosome, SUMO is transferred from XRCC1 and coupled to the SUMO acceptor lysine in TDG, promoting its dissociation while assuring the engagement of the BER machinery to complete demethylation. Although well-studied, the biological importance of TDG SUMOylation has remained obscure. Here, we demonstrate that SUMOylation of TDG suppresses DNA strand-break accumulation and toxicity to PARP inhibition in differentiating mESCs and is essential for neural lineage commitment.
Collapse
Affiliation(s)
| | - Zeinab Barekati
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Petar Botev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Kuśnierczyk
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Nakamura T, Murakami K, Tada H, Uehara Y, Nogami J, Maehara K, Ohkawa Y, Saitoh H, Nishitani H, Ono T, Nishi R, Yokoi M, Sakai W, Sugasawa K. Thymine DNA glycosylase modulates DNA damage response and gene expression by base excision repair-dependent and independent mechanisms. Genes Cells 2017; 22:392-405. [PMID: 28318075 DOI: 10.1111/gtc.12481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/01/2017] [Indexed: 02/04/2023]
Abstract
Thymine DNA glycosylase (TDG) is a base excision repair (BER) enzyme, which is implicated in correction of deamination-induced DNA mismatches, the DNA demethylation process and regulation of gene expression. Because of these pivotal roles associated, it is crucial to elucidate how the TDG functions are appropriately regulated in vivo. Here, we present evidence that the TDG protein undergoes degradation upon various types of DNA damage, including ultraviolet light (UV). The UV-induced degradation of TDG was dependent on proficiency in nucleotide excision repair and on CRL4CDT2 -mediated ubiquitination that requires a physical interaction between TDG and DNA polymerase clamp PCNA. Using the Tdg-deficient mouse embryonic fibroblasts, we found that ectopic expression of TDG compromised cellular survival after UV irradiation and repair of UV-induced DNA lesions. These negative effects on cellular UV responses were alleviated by introducing mutations in TDG that impaired its BER function. The expression of TDG induced a large-scale alteration in the gene expression profile independently of its DNA glycosylase activity, whereas a subset of genes was affected by the catalytic activity of TDG. Our results indicate the presence of BER-dependent and BER-independent functions of TDG, which are involved in regulation of cellular DNA damage responses and gene expression patterns.
Collapse
Affiliation(s)
- Tomohumi Nakamura
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Kouichi Murakami
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Haruto Tada
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yoshihiko Uehara
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Jumpei Nogami
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Kazumitsu Maehara
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Yasuyuki Ohkawa
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Hisato Saitoh
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Hideo Nishitani
- Graduate School of Life Science, University of Hyogo, Kamigori, 678-1297, Japan
| | - Tetsuya Ono
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ryotaro Nishi
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Masayuki Yokoi
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Wataru Sakai
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
7
|
Weber AR, Krawczyk C, Robertson AB, Kuśnierczyk A, Vågbø CB, Schuermann D, Klungland A, Schär P. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun 2016; 7:10806. [PMID: 26932196 PMCID: PMC4778062 DOI: 10.1038/ncomms10806] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/22/2016] [Indexed: 12/18/2022] Open
Abstract
Cytosine methylation in CpG dinucleotides is an epigenetic DNA modification dynamically established and maintained by DNA methyltransferases and demethylases. Molecular mechanisms of active DNA demethylation began to surface only recently with the discovery of the 5-methylcytosine (5mC)-directed hydroxylase and base excision activities of ten–eleven translocation (TET) proteins and thymine DNA glycosylase (TDG). This implicated a pathway operating through oxidation of 5mC by TET proteins, which generates substrates for TDG-dependent base excision repair (BER) that then replaces 5mC with C. Yet, direct evidence for a productive coupling of TET with BER has never been presented. Here we show that TET1 and TDG physically interact to oxidize and excise 5mC, and proof by biochemical reconstitution that the TET–TDG–BER system is capable of productive DNA demethylation. We show that the mechanism assures a sequential demethylation of symmetrically methylated CpGs, thereby avoiding DNA double-strand break formation but contributing to the mutability of methylated CpGs. Cytosine methylation is a dynamic DNA modification with the involvement of the base excision repair pathway suspected to be involved in demethylation. Here the authors show that TET1 and TDG interact to target modified bases and coordinate BER to avoid double strand breaks.
Collapse
Affiliation(s)
- Alain R Weber
- Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel CH-4058, Switzerland
| | - Claudia Krawczyk
- Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel CH-4058, Switzerland
| | - Adam B Robertson
- Department of Molecular Microbiology, Oslo University Hospital, Rikshospitalet, NO-0372 Oslo, Norway
| | - Anna Kuśnierczyk
- Proteomics and Metabolomics Core Facility, PROMEC, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | - Cathrine B Vågbø
- Proteomics and Metabolomics Core Facility, PROMEC, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | - David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel CH-4058, Switzerland
| | - Arne Klungland
- Department of Molecular Microbiology, Oslo University Hospital, Rikshospitalet, NO-0372 Oslo, Norway
| | - Primo Schär
- Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel CH-4058, Switzerland
| |
Collapse
|
8
|
Abstract
DNA methylation has long been considered a very stable DNA modification in mammals that could only be removed by replication in the absence of remethylation - that is, by mere dilution of this epigenetic mark (so-called passive DNA demethylation). However, in recent years, a significant number of studies have revealed the existence of active processes of DNA demethylation in mammals, with important roles in development and transcriptional regulation, allowing the molecular mechanisms of active DNA demethylation to be unraveled. In this article, we review the recent literature highlighting the prominent role played in active DNA demethylation by base excision repair and especially by TDG.
Collapse
Affiliation(s)
- Shannon R Dalton
- Cancer Biology Program, Epigenetics & Progenitor Cells Program, Fox Chase Cancer Center, PA 19111, USA
| | | |
Collapse
|