1
|
Popović I, Dončević L, Biba R, Košpić K, Barbalić M, Marinković M, Cindrić M. Advancements in Adenine Nucleotides Extraction and Quantification from a Single Drop of Human Blood. Molecules 2024; 29:5630. [PMID: 39683788 DOI: 10.3390/molecules29235630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Adenine nucleotides (ANs)-adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP)-are essential for energy transfer and the supply of countless processes within cellular metabolism. Their concentrations can be expressed as adenylate energy charge (AEC), a measure of cellular metabolic energy that directly correlates with the homeostasis of the organism. AEC index has broad diagnostic potential, as reduced ATP levels are associated to various conditions, such as inflammatory diseases, metabolic disorders, and cancer. We introduce a novel methodology for rapid isolation, purification, and quantification of ANs from a single drop of capillary blood. Of all the stationary phases tested, activated carbon proved to be the most efficient for the purification of adenine nucleotides, using an automated micro-solid phase extraction (µ-SPE) platform. An optimized µ-SPE method, coupled with RP-HPLC and a run time of 30 min, provides a reliable analytical framework for adenine nucleotide analysis of diverse biological samples. AN concentrations measured in capillary blood samples were 1393.1 µM, 254.8 µM, and 76.9 µM for ATP, ADP, and AMP molecules aligning with values reported in the literature. Overall, this study presents a streamlined and precise approach for analyzing ANs from microliters of blood, offering promising applications in clinical diagnostics.
Collapse
Affiliation(s)
- Ivana Popović
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Lucija Dončević
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Renata Biba
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Karla Košpić
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Barbalić
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Mija Marinković
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Mario Cindrić
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
2
|
Hayter EA, Azibere S, Skrajewski LA, Soule LD, Spence DM, Martin RS. A 3D-printed, multi-modal microfluidic device for measuring nitric oxide and ATP release from flowing red blood cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3171-3179. [PMID: 35959771 PMCID: PMC10227723 DOI: 10.1039/d2ay00931e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, a 3D-printed multi-modal device was designed and fabricated to simultaneously detect nitric oxide (NO) and adenosine triphosphate (ATP) in red blood cell suspensions prepared from whole blood. Once a sample was injected into the device, NO was first detected (via amperometry) using a three-electrode, dual-opposed, electrode configuration with a platinum-black/Nafion coated gold working electrode. After in-line amperometric detection of NO, ATP was detected via a chemiluminescence reaction, with a luciferin/luciferase solution continuously pumped into an integrated mixing T and the resulting light being measured with a PMT underneath the channel. The device was optimized for mixing/reaction conditions, limits of detection (40 nM for NO and 30 nM for ATP), and sensitivity. This device was used to determine the basal (normoxic) levels of NO and ATP in red blood cells, as well as an increase in concentration of both analytes under hypoxic conditions. Finally, the effect of storing red blood cells in a commonly used storage solution was also investigated by monitoring the production of NO and ATP over a three-week storage time.
Collapse
Affiliation(s)
- Elizabeth A Hayter
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
| | - Samuel Azibere
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
| | - Lauren A Skrajewski
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - Logan D Soule
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - Dana M Spence
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave St. Louis, MO, USA, 63103.
- Center for Additive Manufacturing, Saint Louis University, USA
| |
Collapse
|
3
|
Geiger M, Hayter E, Martin R, Spence D. Red blood cells in type 1 diabetes and multiple sclerosis and technologies to measure their emerging roles. J Transl Autoimmun 2022; 5:100161. [PMID: 36039310 PMCID: PMC9418496 DOI: 10.1016/j.jtauto.2022.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- M. Geiger
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - E. Hayter
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - R.S. Martin
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - D. Spence
- Institute of Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author. 775 Woodlot Drive, East Lansing, MI 48824, USA.
| |
Collapse
|
4
|
Beamer E, Lacey A, Alves M, Conte G, Tian F, de Diego-Garcia L, Khalil M, Rosenow F, Delanty N, Dale N, El-Naggar H, Henshall DC, Engel T. Elevated blood purine levels as a biomarker of seizures and epilepsy. Epilepsia 2021; 62:817-828. [PMID: 33599287 DOI: 10.1111/epi.16839] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE There is a major unmet need for a molecular biomarker of seizures or epilepsy that lends itself to fast, affordable detection in an easy-to-use point-of-care device. Purines such as adenosine triphosphate and adenosine are potent neuromodulators released during excessive neuronal activity that are also present in biofluids. Their biomarker potential for seizures and epilepsy in peripheral blood has, however, not yet been investigated. The aim of the present study was to determine whether blood purine nucleoside measurements can serve as a biomarker for the recent occurrence of seizures and to support the diagnosis of epilepsy. METHODS Blood purine concentrations were measured via a point-of-care diagnostic technology based on the summated electrochemical detection of adenosine and adenosine breakdown products (inosine, hypoxanthine, and xanthine; SMARTChip). Measurements of blood purine concentrations were carried out using samples from mice subjected to intra-amygdala kainic acid-induced status epilepticus and in video-electroencephalogram (EEG)-monitored adult patients with epilepsy. RESULTS In mice, blood purine concentrations were rapidly increased approximately two- to threefold after status epilepticus (2.32 ± .40 µmol·L-1 [control] vs. 8.93 ± 1.03 µmol·L-1 [after status epilepticus]), and levels correlated with seizure burden and postseizure neurodegeneration in the hippocampus. Blood purine concentrations were also elevated in patients with video-EEG-diagnosed epilepsy (2.39 ± .34 µmol·L-1 [control, n = 13] vs. 4.35 ± .38 µmol·L-1 [epilepsy, n = 26]). SIGNIFICANCE Our data provide proof of concept that the measurement of blood purine concentrations may offer a rapid, low-volume bedside test to support the diagnosis of seizures and epilepsy.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Austin Lacey
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Giorgia Conte
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Faming Tian
- Sarissa Biomedical, Coventry, UK.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Laura de Diego-Garcia
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Mohamed Khalil
- Neurological Services, Beaumont Hospital, Dublin, Ireland
| | - Felix Rosenow
- Department of Neurology, Epilepsy Center Hessen, Marburg, Germany.,Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, LOEWE Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, Frankfurt on the Main, Germany
| | - Norman Delanty
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Neurological Services, Beaumont Hospital, Dublin, Ireland
| | - Nicholas Dale
- Sarissa Biomedical, Coventry, UK.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Hany El-Naggar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Neurological Services, Beaumont Hospital, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
5
|
Determination of Adenylate Nucleotides in Amphipod Gammarus fossarum by Ion-Pair Reverse Phase Liquid Chromatography: Possibilities of Positive Pressure Micro-Solid Phase Extraction. SEPARATIONS 2021. [DOI: 10.3390/separations8020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adenine nucleotides—adenosine monophosphate, diphosphate, and triphosphate—are of utmost importance to all living organisms, where they play a critical role in the energy metabolism and are tied to allosteric regulation in various regulatory enzymes. Adenylate energy charge represents the precise relationship between the concentrations of adenosine monophosphate, diphosphate, and triphosphate and indicates the amount of metabolic energy available to an organism. The experimental conditions of adenylate extraction in freshwater amphipod Gammarus fossarum are reported here for the first time and are crucial for the qualitative and quantitative determination of adenylate nucleotides using efficient and sensitive ion-pair reverse phase LC. It was shown that amphipod calcified exoskeleton impeded the neutralization of homogenate. The highest adenylate yield was obtained by homogenization in perchloric acid and subsequent addition of potassium hydroxide and phosphate buffer to achieve a pH around 11. This method enables separation and accurate detection of adenylates. Our study provides new insight into the complexity of adenylate extraction and quantification that is crucial for the application of adenylate energy charge as a confident physiological measure of environmental stress and as a health index of G. fossarum.
Collapse
|
6
|
Jayaraj RL, Narchi H, Subramanian R, Yuvaraju P. Development and validation of LC-MS/MS method for quantification of ATP, ADP and AMP in dried blood spot, liver and brain of neonate mice pups. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Electrochemical platform for the detection of adenosine using a sandwich-structured molecularly imprinted polymer-based sensor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Chaves NA, Alegria TGP, Dantas LS, Netto LES, Miyamoto S, Bonini Domingos CR, da Silva DGH. Impaired antioxidant capacity causes a disruption of metabolic homeostasis in sickle erythrocytes. Free Radic Biol Med 2019; 141:34-46. [PMID: 31163255 DOI: 10.1016/j.freeradbiomed.2019.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
This study examined particularly relevant redox pathways such as glycolysis, pentose phosphate pathway (PPP), metHb reductase and nucleotide metabolism, in order to better address how sickle cells deal with redox metabolism disruption. We also investigated the generation of specific oxidative lesions, and the levels of an unexplored antioxidant that could act as a candidate biomarker for oxidative status in sickle cell anemia (SCA). We adopted rigorous exclusion criteria to obtain the studied groups, which were composed by 10 subjects without hemoglobinopathies and 10 SCA patients. We confirmed that sickle cells overwhelm the antioxidant defense system, leading to an impaired antioxidant capacity that significantly contributed to the increase in cholesterol oxidation (ChAld) and hemolysis. Among the antioxidants evaluated, ergothioneine levels decreased in SCA (two-fold). We found strong correlations of ergothioneine levels with other erythrocyte metabolism markers, suggesting its use as an antioxidant therapy alternative for SCA treatment. Moreover, we found higher activities of MetHb reductase, AChE, G6PDH, HXK, and LDH, as well as levels of NADPH, ATP and hypoxanthine in sickle cells. On this basis, we conclude that impaired antioxidant capacity leaves to a loss of glycolysis and PPP shifting mechanism control and further homeostasis rupture, contributing to a decreased lifespan of sickle cells.
Collapse
Affiliation(s)
| | - Thiago Geronimo Pires Alegria
- USP - University of Sao Paulo, Institute of Biosciences, Department of Genetics and Evolutionary Biology, Sao Paulo, Brazil
| | - Lucas Souza Dantas
- USP - University of Sao Paulo, Institute of Chemistry, Department of Biochemistry, Sao Paulo, Brazil
| | - Luis Eduardo Soares Netto
- USP - University of Sao Paulo, Institute of Biosciences, Department of Genetics and Evolutionary Biology, Sao Paulo, Brazil
| | - Sayuri Miyamoto
- USP - University of Sao Paulo, Institute of Chemistry, Department of Biochemistry, Sao Paulo, Brazil
| | | | | |
Collapse
|
9
|
Nybo SE, Lamberts JT. Integrated use of LC/MS/MS and LC/Q-TOF/MS targeted metabolomics with automated label-free microscopy for quantification of purine metabolites in cultured mammalian cells. Purinergic Signal 2019; 15:17-25. [PMID: 30604179 PMCID: PMC6439090 DOI: 10.1007/s11302-018-9643-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/11/2018] [Indexed: 01/27/2023] Open
Abstract
Purine metabolites have been implicated as clinically relevant biomarkers of worsening or improving Parkinson's disease (PD) progression. However, the identification of purine molecules as biomarkers in PD has largely been determined using non-targeted metabolomics analysis. The primary goal of this study was to develop an economical targeted metabolomics approach for the routine detection of purine molecules in biological samples. Specifically, this project utilized LC/MS/MS and LC/QTOF/MS to accurately quantify levels of six purine molecules in samples from cultured N2a murine neuroblastoma cells. The targeted metabolomics workflow was integrated with automated label-free digital microscopy, which enabled normalization of purine concentration per unit cell in the absence of fluorescent dyes. The established method offered significantly enhanced selectivity compared to previously published procedures. In addition, this study demonstrates that a simple, quantitative targeted metabolomics approach can be developed to identify and quantify purine metabolites in biological samples. We envision that this method could be broadly applicable to quantification of purine metabolites from other complex biological samples, such as cerebrospinal fluid or blood.
Collapse
Affiliation(s)
- S Eric Nybo
- College of Pharmacy, Department of Pharmaceutical Sciences, Ferris State University, 220 Ferris Drive, Big Rapids, MI, 49307, USA
| | - Jennifer T Lamberts
- College of Pharmacy, Department of Pharmaceutical Sciences, Ferris State University, 220 Ferris Drive, Big Rapids, MI, 49307, USA.
| |
Collapse
|
10
|
da Silva DGH, Chaves NA, Miyamoto S, de Almeida EA. Prolonged erythrocyte auto-incubation as an alternative model for oxidant generation system. Toxicol In Vitro 2019; 56:62-74. [PMID: 30654084 DOI: 10.1016/j.tiv.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022]
Abstract
This study investigated the effects of incubation period and melatonin treatment on red blood cell (RBC) metabolism in an auto-incubation model of H2O2-induced oxidative stress. The study was carried out on three healthy adult donors by incubating RBCs in their own plasma at 37 °C, or under the influence of 1 mM H2O2 with and without 100 μM melatonin at different times (0, 1, 3 and 6 h). We assessed incubation period, treatment, as well as any interaction effects between these predictors on erythrocyte osmoregulation, hemolytic rate, oxidative stress markers, and adenylate nucleotide levels. We did not find any relevant effects of both incubation period and treatments on osmotic, antioxidant and adenylate parameters. On the other hand, hemolysis degree and biomolecule oxidation levels in the plasma increased over time, 3-fold and about 25%, respectively, regardless any treatment influence. H2O2 treatment more than doubled protein carbonyl groups, regardless time in plasma, and in a time-depending way in erythrocyte membrane extract, effects that were neutralized by melatonin treatment. Through multivariate analyses, we could expand the understanding of energy and redox metabolisms in the maintenance of cellular integrity and metabolic homeostasis. Another interesting observation was the 65-75% contribution of the oxidative lesion markers on hemolysis. Hence, these findings suggested a new and more intuitive RBC suspension model and reinforced the beneficial use of melatonin in human disorders.
Collapse
Affiliation(s)
- Danilo Grünig Humberto da Silva
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil.
| | - Nayara Alves Chaves
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Eduardo Alves de Almeida
- Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau (FURB), Blumenau, Brazil
| |
Collapse
|
11
|
Cortese M, Delporte C, Dufour D, Noyon C, Chaumont M, De Becker B, Reye F, Rousseau A, Eker OF, Nève J, Piagnerelli M, Boudjeltia KZ, Robaye B, Van Antwerpen P. Validation of a LC/MSMS method for simultaneous quantification of 9 nucleotides in biological matrices. Talanta 2018; 193:206-214. [PMID: 30368292 DOI: 10.1016/j.talanta.2018.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/23/2022]
Abstract
Nucleotides play a role in inflammation processes: cAMP and cGMP in the endothelial barrier function, ADP in platelet aggregation, ATP and UTP in vasodilatation and/or vasoconstriction of blood vessels, UDP in macrophages activation. The aim of this study is to develop and validate a LC/MS-MS method able to quantify simultaneously nine nucleotides (AMP, cAMP, ADP, ATP, GMP, cGMP, UMP, UDP and UTP) in biological matrixes (cells and plasma). The method we developed, has lower LOQ's than others and has the main advantage to quantify all nucleotides within one single injection in less than 10 min. The measured nucleotides concentrations obtained with this method are similar to those obtained with assay kits commercially available. Analysis of plasma and red blood cells from healthy donors permits to estimate the physiological concentration of those nucleotides in human plasma and red blood cells, such information being poorly available in the literature. Furthermore, the protocol presented in this paper allowed us to observe that AMP, ADP, ATP concentrations are modified in human red blood cells and plasma after a venous stasis of 4 min compared to physiological blood circulation. Therefore, this specific method enables future studies on nucleotides implications in chronic inflammatory diseases but also in other pathologies where nucleotides are implicated in.
Collapse
Affiliation(s)
- Melissa Cortese
- RD3 - Pharmacognosy, Bioanalysis and Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP 205/05, Boulevard du Triomphe, B-1050 Bruxelles, Belgium; Analytical Platform of the Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP 205/05, Boulevard du Triomphe, B-1050 Bruxelles, Belgium.
| | - Cédric Delporte
- RD3 - Pharmacognosy, Bioanalysis and Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP 205/05, Boulevard du Triomphe, B-1050 Bruxelles, Belgium; Analytical Platform of the Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP 205/05, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| | - Damien Dufour
- RD3 - Pharmacognosy, Bioanalysis and Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP 205/05, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| | - Caroline Noyon
- RD3 - Pharmacognosy, Bioanalysis and Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP 205/05, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| | - Martin Chaumont
- Department of Cardiology, Erasme University Hospital, Route de Lennik 808, B-1070 Bruxelles, Belgium
| | - Benjamin De Becker
- Department of Cardiology, Erasme University Hospital, Route de Lennik 808, B-1070 Bruxelles, Belgium
| | - Florence Reye
- RD3 - Pharmacognosy, Bioanalysis and Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP 205/05, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| | - Alexandre Rousseau
- Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Route de Gozée 706, B-6110 Montigny-le-Tilleul, Belgium
| | - Omer Faruk Eker
- Service de neuroradiologie interventionnelle, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Jean Nève
- RD3 - Pharmacognosy, Bioanalysis and Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP 205/05, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| | - Michael Piagnerelli
- Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Route de Gozée 706, B-6110 Montigny-le-Tilleul, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Route de Gozée 706, B-6110 Montigny-le-Tilleul, Belgium
| | - Bernard Robaye
- Institute of Interdisciplinary Research in human and molecular Biology, Université Libre de Bruxelles, Campus de Charleroi - Gosselies (Biopark), CP300, rue des Professeurs Jeener et Brachet 12, B-6041 Charleroi, Belgium
| | - Pierre Van Antwerpen
- RD3 - Pharmacognosy, Bioanalysis and Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP 205/05, Boulevard du Triomphe, B-1050 Bruxelles, Belgium; Analytical Platform of the Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP 205/05, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| |
Collapse
|
12
|
Gonzalez-Rivera ML, Martinez-Morales F, Alonso-Castro AJ, Lopez-Rodriguez JF, Zapata-Morales JR, Aranda Romo S, Aragon-Martinez OH. Validated and rapid measurement of the ferric reducing antioxidant power in plasma samples. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0512-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Aragon-Martinez OH, Martinez-Morales F, Isiordia-Espinoza MA, Luque Contreras D, Zapata Morales JR, Gonzalez-Rivera ML. Bacterial resistance and failure of clinical cure could be produced by oxidative stress in patients with diabetes or cardiovascular diseases during fluoroquinolone therapy. Med Hypotheses 2017; 103:32-34. [PMID: 28571804 DOI: 10.1016/j.mehy.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/03/2017] [Indexed: 01/12/2023]
Abstract
Fluoroquinolone agents are used widely for the treatment of infectious diseases which are a common cause of deaths around the world. The level of oxidative stress in patients taking fluoroquinolone antibiotics has not been considered a factor to reduce the clinical efficacy of this kind of drugs. Patients with diabetes and/or cardiovascular diseases present abnormal levels of oxidative stress in the blood stream. In this regards, our hypothesis supposes that patients with diabetes and/or cardiovascular disease suffering a bacterial disease could experience a therapeutic failure and bacterial resistance when treated with fluoroquinolones. The crucial mechanism could be an inefficient blood distribution of the drug via red blood cell dysfunction induced by oxidative stress that might reduce the pharmacokinetic-pharmacodinamic ratios. In this way, we review the scientific information to support our hypothesis alongside possible implications. Additionally, this work exhibits the urgent need of studies considering these conditions for quinolone agents.
Collapse
Affiliation(s)
- Othoniel H Aragon-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico.
| | - Flavio Martinez-Morales
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Mario A Isiordia-Espinoza
- Departamento de Investigación, Escuela de Odontología, Universidad Cuauhtémoc, San Luis Potosí, S.L.P., Mexico
| | - Diana Luque Contreras
- Departamento de Farmacología y Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Juan R Zapata Morales
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Maria L Gonzalez-Rivera
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| |
Collapse
|
14
|
Jimmerson LC, Bushman LR, Ray ML, Anderson PL, Kiser JJ. A LC-MS/MS Method for Quantifying Adenosine, Guanosine and Inosine Nucleotides in Human Cells. Pharm Res 2017; 34:73-83. [PMID: 27633886 PMCID: PMC5177511 DOI: 10.1007/s11095-016-2040-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE To develop and validate a method for the simultaneous measurement of adenosine, guanosine, and inosine derived from mono (MP) and triphosphate (TP) forms in peripheral blood mononuclear cells (PBMCs), red blood cells (RBCs) and dried blood spots (DBS). METHODS Solid phase extraction of cell lysates followed by dephosphorylation to molar equivalent nucleoside and LC-MS/MS quantification. RESULTS The assay was linear for each of the three quantification ranges: 10-2000, 1.0-200 and 0.25-50 pmol/sample for adenosine, guanosine, and inosine, respectively. Intraassay (n = 6) and interassay (n = 18) precision (%CV) were within 1.7 to 16% while accuracy (%deviation) was within -11.5 to 14.7% for all three analytes. Nucleotide monophosphates were less concentrated than triphosphates (except for inosine) and levels in PBMCs were higher than RBCs for all three nucleotides (10, 55, and 5.6 fold for ATP, GTP and ITP, respectively). DBS samples had an average (SD) of -26% (22.6%) lower TP and 184% (173%) higher MP levels compared to paired RBC lysates, suggesting hydrolysis of the TP in DBS. CONCLUSION This method was accurate and precise for physiologically relevant concentrations of adenosine, guanosine and inosine nucleotides in mono- and triphosphate forms, providing a bioanalytical tool for quantitation of nucleotides for clinical studies.
Collapse
Affiliation(s)
- Leah C Jimmerson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, 12850 E. Montview Blvd, V20 C238, Aurora, Colorado, 80045, USA
| | - Lane R Bushman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, 12850 E. Montview Blvd, V20 C238, Aurora, Colorado, 80045, USA
| | - Michelle L Ray
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, 12850 E. Montview Blvd, V20 C238, Aurora, Colorado, 80045, USA
| | - Peter L Anderson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, 12850 E. Montview Blvd, V20 C238, Aurora, Colorado, 80045, USA
| | - Jennifer J Kiser
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, 12850 E. Montview Blvd, V20 C238, Aurora, Colorado, 80045, USA.
| |
Collapse
|
15
|
Measurement of levofloxacin in human plasma samples for a reliable and accessible drug monitoring. Clin Biochem 2017; 50:73-79. [DOI: 10.1016/j.clinbiochem.2016.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 09/04/2016] [Accepted: 09/08/2016] [Indexed: 11/23/2022]
|