1
|
Wang D, Yu X, Yang Y. Investigating SNHG3 as a potential therapeutic approach for HCC stem cells. Gene 2025; 935:149022. [PMID: 39427830 DOI: 10.1016/j.gene.2024.149022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is a common malignant tumor worldwide. Long Non-Coding RNA (lncRNA) has gained attention in tumor biology, and this study aims to investigate the role of lncRNA SNHG3 in HCC, specifically in the self-renewal and maintenance of liver cancer stem cells. METHODS The expression of lncRNA SNHG3 was analyzed in HCC and adjacent normal tissue using the TCGA database. The expression levels of SNHG3 in HCC cell lines (Hep3B, HepG2, Huh7) were detected using qRT-PCR and Western blot techniques. Functional assays, including CCK-8, soft agar colony formation, and tumor sphere formation, were performed to evaluate the impact of SNHG3 on HCC stem cell functionality. MeRIP-qPCR was also used to investigate the regulatory role of SNHG3 in m6A modification of ITGA6 mRNA mediated by METTL3. RESULTS The study found that SNHG3 was significantly upregulated in HCC tissue and cell lines compared to normal liver tissue. SNHG3 expression correlated with the pathological stage, metastasis status, and tumor size of liver cancer. Inhibiting SNHG3 reduced proliferation, colony formation, and tumor sphere formation ability in HCC stem cells. SNHG3 also played a role in regulating the m6A modification and expression of ITGA6 through METTL3. CONCLUSION This study emphasizes the upregulation of lncRNA SNHG3 and its role in HCC stem cell self-renewal. SNHG3 may regulate the m6A modification of ITGA6 mRNA through its interaction with METTL3, impacting the function of liver cancer stem cells. These findings support the potential of targeting SNHG3 as a therapeutic approach for HCC.
Collapse
Affiliation(s)
- Dingmao Wang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Xiao Yu
- The 2nd Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China.
| |
Collapse
|
2
|
Peng Y, Long XD. The role of the ceRNA network mediated by lncRNA SNHG3 in the progression of cancer. Discov Oncol 2024; 15:514. [PMID: 39349640 PMCID: PMC11442963 DOI: 10.1007/s12672-024-01184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are a distinct class of RNAs with longer than 200 base pairs that are not translated into proteins. Small Nucleolar RNA Host Gene 3 (SNHG3) is a lncRNA and frequently dysregulated in various human cancers. OBJECTIVE This review provides a comprehensive analysis of current research on lncRNA SNHG3, focusing on its role within the competitive endogenous RNA (ceRNA) network and its implications in cancer. METHODS A systematic literature review was conducted using PubMed up to October 2023. The search strategy included keywords such as "lncRNA SNHG3", "competitive endogenous RNA", "cancer", and related terms. Studies were selected based on relevance to SNHG3's involvement in cancer pathogenesis and progression. RESULTS Disruptions in the ceRNA network involving lncRNA SNHG3 can impair normal cell growth and differentiation, significantly contributing to disease pathogenesis, particularly cancer. This review highlights SNHG3's substantial impact on various cancer processes and its potential as a diagnostic and therapeutic tool for aggressive cancers. CONCLUSION The findings underscore SNHG3's pivotal role in cancer prevention, diagnosis, and treatment, laying a foundation for future research in cancer management. Insights from this review emphasize the necessity for further exploration and development of SNHG3-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ying Peng
- Department of Pathology, the First Affiliated Hospital, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China
| | - Xi-Dai Long
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China.
- Department of Tumor Pathology, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Guangxi Zhuang Autonomous Region, Baise, 533000, China.
| |
Collapse
|
3
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Saeinasab M, Atlasi Y, M Matin M. Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS J 2024; 291:1353-1385. [PMID: 36282516 DOI: 10.1111/febs.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
5
|
Yue Y, Tao J, An D, Shi L. A prognostic exosome-related long non-coding RNAs risk model related to the immune microenvironment and therapeutic responses for patients with liver hepatocellular carcinoma. Heliyon 2024; 10:e24462. [PMID: 38293480 PMCID: PMC10826312 DOI: 10.1016/j.heliyon.2024.e24462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is the third largest cause of cancer mortality. Exosomes are vital regulators in the development of cancer. However, the mechanisms regarding the association of exosome-related long non-coding RNAs (lncRNAs) in LIHC are not clear. Methods LIHC RNA sequences and exosome-associated genes were collected according to The Cancer Genome Atlas (TCGA), Hepatocellular Carcinoma Cell DataBase (HCCDB) and ExoBCD databases, and exosome-related lncRNAs with prognostic differential expression were screened as candidate lncRNAs using Spearman's method and univariate Cox regression analysis. Candidate lncRNAs were then used to construct a prognostic model and mRNA-lncRNA co-expression network. Differentially expressed genes (DEGs) in low- and high-risk groups were identified and enrichment analysis was performed for up- and down-regulated DEGs, respectively. The expression of immune checkpoint-related genes, immune escape potential and microsatellite instability among different risk groups were further analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) and transwell assay were applied for detecting gene expression levels and invasion and migration ability. Results Based on 17 prognostical exosome-associated lncRNAs, four hub lncRNAs (BACE1_AS, DSTNP2, PLGLA, and SNHG3) were selected for constructing a prognostic model, which was demonstrated to be an independent prognostic variable for LIHC. High risk score was indicative of poorer overall survival, lower anti-tumor immune cells, higher genomic instability, higher immune escape potential, and less benefit for immunotherapy. The qRT-PCR test verified the expression level of the lncRNAs in LIHC cells, and the inhibitory effect of BACE1_AS on immune checkpoint genes levels. BACE1_AS silence also depressed the ability of migration and invasion of LIHC cells. Conclusion The Risk model constructed by exosome-associated lncRNAs could well predict immunotherapy response and prognostic outcomes for LIHC patients. We comprehensively reveal the clinical features of prognostical exosome-related lncRNAs and their potential ability to predict immunotherapeutic response of patients with LIHC and their prognosis.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Dan An
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Lei Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| |
Collapse
|
6
|
Tang J, Huang XX. Knockdown of long non-coding RNA SNHG3 inhibits proliferation, migration and invasion of human thyroid cancer via miR-339-5p/GPR62 axis. Heliyon 2023; 9:e19713. [PMID: 37809703 PMCID: PMC10559012 DOI: 10.1016/j.heliyon.2023.e19713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Previous studies have implicated SNHG3, a long non-coding RNA, in various human cancers, suggesting its oncogenic role. However, its specific involvement in thyroid cancer and the underlying molecular mechanisms remain unclear. Therefore, this study aims to elucidate the role of SNHG3 in human thyroid cancer and its interaction with the miR-339-5p/GPR62 axis. Understanding these mechanisms could provide insights into potential therapeutic targets for managing thyroid cancer. Results revealed significant upregulation of SNHG3 in human thyroid cancer tissues and cell lines. Knockdown of SNHG3 significantly suppressed proliferation, migration and invasion of CUTC5 and IHH-4 thyroid cancer cells. Knockdown of SNHG3 induces apoptosis in CUTC5 and IHH-4 cells and also inhibits the growth of xenografted tumors in vivo. Different in vitro assays revealed the interaction of SNHG3 with microRNA-339-5p (miR-339-5p) in thyroid cancer cells. Expression of miR-339-5p was significantly downregulated in thyroid cancer tissues and cell lines. However, the knockdown of SNHG3 caused significant upregulation of miR-339-5p. Interestingly, overexpression of miR-339-5p exerted tumor-suppressive effects in CUTC5 and IHH-4 cells via post-transcriptional suppression of GPR62. Knockdown of GPR62 significantly inhibited the proliferation, migration and invasion of CUTC5 and IHH-4 cells. Nonetheless, inhibition of miR-339-5p or overexpression of GPR62 avoids the growth inhibitory effects of SNHG3 knockdown in CUTC5 and IHH-4 cells. Results indicated that SNHG3 exerts oncogenic molecular function in thyroid cancer via miR-339-5p/GPR62 axis and may act as a therapeutic target for its management.
Collapse
Affiliation(s)
- Jin Tang
- Department of Clinical Laboratory, Hanzhong Central Hospital, Hanzhong 723000, Shaanxi, China
| | - Xiao-xia Huang
- Department of Clinical Laboratory, Hanzhong Central Hospital, Hanzhong 723000, Shaanxi, China
| |
Collapse
|
7
|
Thapa R, Afzal O, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Altamimi ASA, Subramaniyan V, Thangavelu L, Singh SK, Dua K. Unveiling the connection: Long-chain non-coding RNAs and critical signaling pathways in breast cancer. Pathol Res Pract 2023; 249:154736. [PMID: 37579591 DOI: 10.1016/j.prp.2023.154736] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/β-catenin, Notch, DNA damage response, TGF-β, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/β-catenin, Notch, TGF-β, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Vetriselvan Subramaniyan
- Department of Pharmacology, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Malaysia
| | - Lakshmi Thangavelu
- Center for Global Health Research , Saveetha Medical College , Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| |
Collapse
|
8
|
Zhang F, Lu J, Yang J, Dai Q, Du X, Xu Y, Zhang C. SNHG3 regulates NEIL3 via transcription factor E2F1 to mediate malignant proliferation of hepatocellular carcinoma. Immunogenetics 2023; 75:39-51. [PMID: 36114381 DOI: 10.1007/s00251-022-01277-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 02/06/2023]
Abstract
The involvement of small nucleolar RNA host gene 3 (SNHG3) in cancer regulation has been reported. This study attempted to deeply investigate the molecular regulatory mechanism of SNHG3 on malignant progression of hepatocellular carcinoma (HCC). According to TCGA analysis, high SNHG3 expression was a risk factor for poor prognosis of HCC patients. Therefore, we further detected the mRNA level of SNHG3 in HCC tissue and cells. It was found that SNHG3 was upregulated in HCC tissue and cells. Afterwards, CCK-8 and flow cytometry assays further proved that silencing SNHG3 inhibited HCC cell proliferation while inducing cell apoptosis and G0/G1 phase arrest. It was also attested in vivo experiments that silencing SNHG3 could reduce the volume and weight of tumors and downregulate the Ki-67 expression to suppress HCC tumor growth. Next, it was discovered that SNHG3 increased the binding of E2F1 and NEIL3 promoter region, thereby activating the transcription feature of NEIL3. Lastly, rescue assays indicated that NEIL3 participated in SNHG3-mediated HCC cell cycle, apoptosis and proliferation. All in all, this study revealed the specific regulatory mechanism of SNHG3 in HCC to enable SNHG3 a hopeful marker for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Fabiao Zhang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Jie Lu
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Jian Yang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Qiqiang Dai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Xuefeng Du
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yongfu Xu
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Caiming Zhang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China.
| |
Collapse
|
9
|
Habashy DA, Hamad MHM, Ragheb M, Khalil ZA, El Sobky SA, Hosny KA, Esmat G, El-Ekiaby N, Fawzy IO, Abdelaziz AI. Regulation of IGF2BP1 by miR-186 and its impact on downstream lncRNAs H19, FOXD2-AS1, and SNHG3 in HCC. Life Sci 2022; 310:121075. [PMID: 36243115 DOI: 10.1016/j.lfs.2022.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
10
|
Zhang L, Sun T, Wu XY, Fei FM, Gao ZZ. Delineation of a SMARCA4-specific competing endogenous RNA network and its function in hepatocellular carcinoma. World J Clin Cases 2022; 10:10501-10515. [PMID: 36312469 PMCID: PMC9602240 DOI: 10.12998/wjcc.v10.i29.10501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignancy worldwide, and the mortality rate continues to rise each year. SMARCA4 expression has been associated with poor prognosis in various types of cancer; however, the specific mechanism of action of SMARCA4 in HCC needs to be fully elucidated.
AIM To explore the specific mechanism of action of SMARCA4 in HCC.
METHODS Herein, the expression level of SMARCA4 as well as its association with HCC prognosis were evaluated using transcriptome profiling and clinical data of 18 different types of cancer collected from The Cancer Genome Atlas database. Furthermore, SMARCA4-high and -low groups were identified. Thereafter, gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify the function of SMARCA4, followed by construction of a SMARCA4-specific competing endogenous RNA (ceRNA) network using starBase database. The role of SMARCA4 in immunotherapy and its association with immune cells were assessed using correlation analysis.
RESULTS It was observed that SMARCA4 was overexpressed and negatively correlated with prognosis in HCC. Further, SMARCA4 expression was positively associated with tumor mutational burden, microsatellite stability, and immunotherapy efficacy. The SNHG3/THUMP3-AS1-miR-139-5p-SMARCA4 ceRNA network was established and could be assumed to serve as a stimulatory mechanism in HCC.
CONCLUSION The findings of this study demonstrated that SMARCA4 plays a significant role in progression and immune infiltration in HCC. Moreover, a ceRNA network was detected, which was found to be correlated with poor prognosis in HCC. The findings of this study could contribute towards the identification of predictive markers for immunotherapy and a novel mechanism of action for HCC treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Clinical Oncology, Jiaxing Second Hospital, Jiaxing 314000, Zhejiang Province, China
| | - Ting Sun
- Department of Clinical Oncology, Jiaxing Second Hospital, Jiaxing 314000, Zhejiang Province, China
| | - Xiao-Ye Wu
- Department of Clinical Oncology, Jiaxing Second Hospital, Jiaxing 314000, Zhejiang Province, China
| | - Fa-Ming Fei
- Department of Clinical Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| | - Zhen-Zhen Gao
- Department of Clinical Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang Province, China
| |
Collapse
|
11
|
Hu K, Yu H, Liu S, Liao D, Zhang Y. Systematic pan-cancer analysis on the expression and role of regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene 12. Front Mol Biosci 2022; 9:946507. [PMID: 36148010 PMCID: PMC9486007 DOI: 10.3389/fmolb.2022.946507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Regulator of chromatin condensation 1 (RCC1) is the major guanine nucleotide exchange factor of RAN GTPase, which plays a key role in various biological processes such as cell cycle and DNA damage repair. Small nucleolar RNA host gene 3 (SNHG3) and small nucleolar RNA host gene12 are long-stranded non-coding RNAs (lncRNAs) and are located on chromatin very close to the sequence of Regulator of chromatin condensation 1. Many studies have shown that they are aberrantly expressed in tumor tissues and can affect the proliferation and viability of cancer cells. Although the effects of Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 on cellular activity have been reported, respectively, their overall analysis on the pan-cancer level has not been performed. Here, we performed a comprehensive analysis of Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 in 33 cancers through the Cancer Genome Atlas and Gene Expression Database. The results showed that Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 were highly expressed in a variety of tumor tissues compared to normal tissues. The expression of Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 in BRCA, LGG and LIHC was associated with TP53 mutations. In addition, Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 expression was closely associated with the prognosis of patients with multiple tumors. Immunocorrelation analysis indicated that Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 showed a correlation with multiple immune cell infiltration. The results of enrichment analysis suggested that Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 was involved in the regulation of cell cycle, apoptosis and other pathways. We found that these effects were mainly mediated by Regulator of chromatin condensation 1, while the trend of small nucleolar RNA host gene 3/small nucleolar RNA host gene12 regulation was also consistent with regulator of chromatin condensation 1. The important role played by Regulator of chromatin condensation 1 in tumor diseases was further corroborated by the study of adjacent lncRNAs.These findings provide new and comprehensive insights into the role of Regulator of chromatin condensation 1/small nucleolar RNA host gene 3/small nucleolar RNA host gene12 in tumor development and show their potential as clinical monitoring and therapy.
Collapse
|
12
|
Whyte SS, Karns R, Min K, Cho J, Lee S, Lake C, Bondoc A, Yoon J, Shin S. Integrated analysis using ToppMiR uncovers altered miRNA- mRNA regulatory networks in pediatric hepatocellular carcinoma-A pilot study. Cancer Rep (Hoboken) 2022; 6:e1685. [PMID: 35859536 PMCID: PMC9875636 DOI: 10.1002/cnr2.1685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pediatric hepatocellular carcinoma (HCC) is a group of liver cancers whose mechanisms behind their pathogenesis and progression are poorly understood. AIM We aimed to identify alterations in the expression of miRNAs and their putative target mRNAs in not only tumor tissues of patients with pediatric HCC but also in corresponding non-tumorous background livers by using liver tissues without underlying liver disease as a control. METHODS AND RESULTS We performed a small-scale miRNA and mRNA profiling of pediatric HCC (consisting of fibrolamellar carcinoma [FLC] and non-FLC HCC) and paired liver tissues to identify miRNAs whose expression levels differed significantly from control livers without underlying liver disease. ToppMiR was used to prioritize both miRNAs and their putative target mRNAs in a gene-annotation network, and the mRNA profile was used to refine the prioritization. Our analysis generated prioritized lists of miRNAs and mRNAs from the following three sets of analyses: (a) pediatric HCC versus control; (b) FLC versus control; and (c) corresponding non-tumorous background liver tissues from the same patients with pediatric HCC versus control. No liver disease liver tissues were used as the control group for all analyses. Many miRNAs whose expressions were deregulated in pediatric HCC were consistent with their roles in adult HCC and/or other non-hepatic cancers. Our gene ontology analysis of target mRNAs revealed enrichment of biological processes related to the sustenance and propagation of cancer and significant downregulation of metabolic processes. CONCLUSION Our pilot study indicates that alterations in miRNA-mRNA networks were detected in not only tumor tissues but also corresponding non-tumorous liver tissues from patients with pediatric HCC, suggesting multi-faceted roles of miRNAs in disease progression. Our results may lead to novel hypotheses for future large-scale studies.
Collapse
Affiliation(s)
- Senyo S. Whyte
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology & NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kyung‐Won Min
- Department of BiologyGangneung‐Wonju National UniversityGangneungRepublic of Korea
| | - Jung‐Hyun Cho
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Sanghoon Lee
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Charissa Lake
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Alexander Bondoc
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA,Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Je‐Hyun Yoon
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Soona Shin
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA,Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
13
|
Chen C, Wu Y, Chen K, Xia Z, Liu X, Zhang C, Zhao H, Shen A. Identification and Validation of Necroptosis-Related LncRNA Signature in Hepatocellular Carcinoma for Prognosis Estimation and Microenvironment Status. Front Genet 2022; 13:898507. [PMID: 35754846 PMCID: PMC9214229 DOI: 10.3389/fgene.2022.898507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is among malignancies with the highest fatality toll globally and minimal therapeutic options. Necroptosis is a programmed form of necrosis or inflammatory cell death, which can affect prognosis and microenvironmental status of HCC. Therefore, we aimed to explore the prognostic value of necroptosis-related lncRNAs (NRLs) in HCC and the role of the tumor microenvironment (TME) in immunotherapy. Methods: The RNA-sequencing data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). NRLs were identified by Pearson correlation analysis. The signature was constructed using the LASSO-Cox regression analysis and evaluated using the receiver operating characteristic curve (ROC) and the area under the Kaplan-Meier curve. The nomogram was built based on clinical information and risk score. Gene set enrichment analysis (GSEA), immunoassay, half-maximum inhibitory concentration (IC50) analysis of the risk group, and the HCC subtype identification based on NRLs were also carried out. Finally, we detected the expression of lncRNAs in HCC tissues and cell lines in vitro. Results: A total of 508 NRLs were screened out, and seven NRLs were constructed as a risk stratification system to classify patients into distinct low- and high-risk groups. Patients in the high-risk group had a significantly lower overall survival (OS) than those in the low-risk group. Using multivariate Cox regression analysis, we found that the risk score was an independent predictor of OS. Functional analysis showed that the immune status of different patients was different. The IC50 analysis of chemotherapy demonstrated that patients in the high-risk group were more sensitive to commonly prescribed drugs. qRT-PCR showed that three high-risk lncRNAs were upregulated in drug-resistant cells, and the expression in HCC tissues was higher than that in adjacent tissues. Conclusion: The prediction signature developed in this study can be used to assess the prognosis and microenvironment of HCC patients, and serve as a new benchmark for HCC treatment selection.
Collapse
Affiliation(s)
- Cong Chen
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yumeng Wu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Kang Chen
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zicong Xia
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaokan Liu
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chaojie Zhang
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hui Zhao
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Aiguo Shen
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| |
Collapse
|
14
|
ncRNA-Mediated High Expression of LPCAT1 Correlates with Poor Prognosis and Tumor Immune Infiltration of Liver Hepatocellular Carcinoma. J Immunol Res 2022; 2022:1584397. [PMID: 35615532 PMCID: PMC9126685 DOI: 10.1155/2022/1584397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose To investigate the expression of LPCAT1 in liver hepatocellular carcinoma (LIHC) and its relationship with prognosis and immune infiltration and predict its upstream nonencoding RNAs (ncRNAs). Method In this study, expression analysis and survival analysis for LPCAT1 in pan cancers were first performed by using The Cancer Genome Atlas (TCGA) data, which suggested that LPCAT1 might be a potential LIHC oncogene. Then, ncRNAs contributing to the overexpression of LPCAT1 were explored in starBase by a combination of expression analysis, correlation analysis, and survival analysis. Immune cell infiltration of LPCAT1 in LIHC was finally investigated via Tumor Immune Estimation Resource (TIMER). Result SNHG3 was observed to be the most promising upstream lncRNA for the hsa-miR-139-5p/LPCAT1 axis in LIHC. In addition, the LPCAT1 level was significantly positively associated with tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression in LIHC. Conclusion To summarize, the upregulation of LPCAT1 mediated by ncRNAs is associated with poor prognosis, immune infiltration, and immune checkpoint expression in LIHC.
Collapse
|
15
|
Shan DD, Zheng QX, Wang J, Chen Z. Small nucleolar RNA host gene 3 functions as a novel biomarker in liver cancer and other tumour progression. World J Gastroenterol 2022; 28:1641-1655. [PMID: 35581965 PMCID: PMC9048787 DOI: 10.3748/wjg.v28.i16.1641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the most life-threatening disease in the world. Mutations in and aberrant expression of genes encoding proteins and mutations in noncoding RNAs, especially long noncoding RNAs (lncRNAs), have significant effects in human cancers. LncRNAs have no protein-coding ability but function extensively in numerous physiological and pathological processes. Small nucleolar RNA host gene 3 (SNHG3) is a novel lncRNA and has been reported to be differentially expressed in various tumors, such as liver cancer, gastric cancer, and glioma. However, the interaction mechanisms for the regulation between SNHG3 and tumor progression are poorly understood. In this review, we summarize the results of SNHG3 studies in humans, animal models, and cells to underline the expression and role of SNHG3 in cancer. SNHG3 expression is upregulated in most tumors and is detrimental to patient prognosis. SNHG3 expression in lung adenocarcinoma remains controversial. Concurrently, SNHG3 affects oncogenes and tumor suppressor genes through various mechanisms, including competing endogenous RNA effects. A deeper understanding of the contribution of SNHG3 in clinical applications and tumor development may provide a new target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
16
|
Li Y, Wang X, Chen S, Wu B, He Y, Du X, Yang X. Long non-coding RNA small nucleolar RNA host genes: functions and mechanisms in hepatocellular carcinoma. Mol Biol Rep 2022; 49:2455-2464. [PMID: 34989961 DOI: 10.1007/s11033-021-07018-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive system, with a high degree of malignancy. Although treatment methods are constantly improving, the mortality of patients is still very high, and the small nucleolar RNA host gene (SNHG) plays an important role in the occurrence and development of cancer. It can activate downstream signaling molecules by acting on microRNA and microRNA target genes, promote the proliferation, invasion, and migration of HCC cells, and provide a new molecular target for the treatment of HCC. At present, the molecular mechanisms of HCC remain unclear. In this study, the mechanism and signaling pathway of SNHG in HCC are reviewed, which provides a theoretical basis for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Yuan Li
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xinxin Wang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Shiyong Chen
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Biao Wu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yu He
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xueqin Du
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiaojun Yang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China.
- School of People's Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
- Gansu Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China.
- Gansu Research Center of Prevention and Control Project for Digestive Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Zhang K, Fang T, Zhao D, Cen F, Yan X, Jin X. Circular RNA Circ_0008043 promotes the proliferation and metastasis of hepatocellular carcinoma cells by regulating the microRNA (miR)-326/RAB21 axis. Bioengineered 2022; 13:6600-6614. [PMID: 35220907 PMCID: PMC8973620 DOI: 10.1080/21655979.2022.2044260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with covalently closed structures that modulate the progression of hepatocellular carcinoma (HCC). Here, we explored whether circ_0008043 regulated the biological function of HCC cells. Quantitative real-time polymerase chain reaction (qPCR) was used to detect circ_0008043, microRNA (miR)-326, and RAB21 levels. Expression of E-cadherin, N-cadherin, and vimentin was assessed using qPCR. Cell proliferation, migration, and invasion were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony formation, and transwell assays. Xenograft tumors were used to evaluate cell growth in vivo. The interaction between miR-326 and circ_0008043 or RAB21 was assessed using dual-luciferase reporter analysis and RNA pull-down analysis. The data illustrated that circ_0008043 and RAB21 were highly expressed, while miR-326 was expressed at less levels in HCC tissues and cells. Interfering with circ_0008043 suppressed cellular proliferation, migration, invasion, and cell growth. Circ_0008043 was confirmed to be an miR-326 sponge that targets RAB21. Rescue experiments showed that inhibiting miR-326 abrogated the effect induced by knockdown of circ_0008043, and overexpressed RAB21 abolished the effect induced by miR-326 overexpression. In summary, silencing of circ_0008043 impeded HCC progression by regulating the miR-326/RAB21 axis. These data suggest that circ_0008043 may have clinical value in the treatment of HCC.
Collapse
Affiliation(s)
- Kangjun Zhang
- Hepatic Surgery Department, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Taishi Fang
- Hepatic Surgery Department, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Dong Zhao
- Hepatic Surgery Department, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Fulan Cen
- Department of Intensive Care Unit, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Xu Yan
- Hepatic Surgery Department, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Xin Jin
- Hepatic Surgery Department, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| |
Collapse
|
18
|
Xi X, Hu Z, Wu Q, Hu K, Cao Z, Zhou J, Liao J, Zhang Z, Hu Y, Zhong X, Bao Y. High expression of small nucleolar RNA host gene 3 predicts poor prognosis and promotes bone metastasis in prostate cancer by activating transforming growth factor-beta signaling. Bioengineered 2022; 13:1895-1907. [PMID: 35030969 PMCID: PMC8805939 DOI: 10.1080/21655979.2021.2020393] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bone metastasis is closely related to tumor death in prostate cancer (PC). Long noncoding RNA small nucleolar RNA host gene 3 (SNHG3) has been implicated in the initiation and progression of multiple human cancers. Nevertheless, the biological function of SNHG3 in PC has not been elucidated. Our results indicated that SNHG3 was upregulated in bone metastasis-positive PC tissues compared to bone metastasis-negative PC tissues and adjacent normal tissues. High expression of SNHG3 indicates advanced clinicopathological features and predicts poor prognosis in patients with PC. Meanwhile, SNHG3 knockdown suppressed the proliferation, migration, and invasion abilities of PC cells and inhibited PC cell metastasis to the bone. Mechanistically, SNHG3 enhanced the expression of transforming growth factor beta receptor 1 (TGFBR1) and activated transforming growth factor-Beta (TGF-β) signaling by targeting miR-214-3p. Our study demonstrated the novel role of the SNHG3/miR-214-3p/TGF-β axis in tumor growth and bone metastasis in PC, indicating that SNHG3 may act as a biomarker and promising therapeutic target against PC.
Collapse
Affiliation(s)
- Xinhua Xi
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhengbo Hu
- Department of Orthopedics, Shaoguan First People's Hospital Affiliated Southern Medical University, Shaoguan, Guangdong, China
| | - Qiang Wu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Konghe Hu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhengguo Cao
- Department of Urology, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Jun Zhou
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Junjian Liao
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhipeng Zhang
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yongyu Hu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Xueren Zhong
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yongzheng Bao
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| |
Collapse
|
19
|
Zhang L, Li M, Cui Z, Chai D, Guan Y, Chen C, Wang W. Systematic analysis of the role of SLC52A2 in multiple human cancers. Cancer Cell Int 2022; 22:8. [PMID: 34991609 PMCID: PMC8739691 DOI: 10.1186/s12935-021-02432-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In humans, riboflavin must be obtained through intestinal absorption because it cannot be synthesized by the body. SLC52A2 encodes a membrane protein belonging to the riboflavin transporter protein family and is associated with a variety of diseases. Here, we systematically explore its relevance to multiple human tumors. METHODS We analyzed the association of SLC52A2 with 33 tumors using publicly available databases such as TCGA and GEO. We verified the SLC52A2 expression in hepatocellular carcinoma, gastric cancer, colon cancer, and rectal cancer using immunohistochemistry. RESULTS We report that SLC52A2 was highly expressed in almost all tumors, and the immunohistochemical results in the hepatocellular, gastric, colon, and rectal cancers were consistent with the above. SLC52A2 expression was linked to patient overall survival, disease-specific survival, progression-free interval, diagnosis, mutations, tumor mutational burden, microsatellite instability, common immune checkpoint genes, and immune cells infiltration. Enrichment analysis showed that SLC52A2 was mainly enriched in oocyte meiosis, eukaryotic ribosome biogenesis, and cell cycle. In hepatocellular carcinoma, the SLC52A2 expression is an independent prognostic factor. The SNHG3 and THUMPD3-AS1/hsa-miR-139-5p-SLC52A2 axis were identified as potential regulatory pathways in hepatocellular carcinoma. CONCLUSION In conclusion, we have systematically described for the first time that SLC52A2 is closely associated with a variety of tumors, especially hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.,Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Man Li
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.,Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Zhoujun Cui
- Department of General Surgery, People's Hospital of Rizhao, 126 Tai'an Road, Donggang District, Rizhao, 276800, Shandong Province, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.,Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yongjun Guan
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.,Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
20
|
Deng Y, Zhang F, Sun ZG, Wang S. Development and Validation of a Prognostic Signature Associated With Tumor Microenvironment Based on Autophagy-Related lncRNA Analysis in Hepatocellular Carcinoma. Front Med (Lausanne) 2022; 8:762570. [PMID: 34970559 PMCID: PMC8712323 DOI: 10.3389/fmed.2021.762570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Objective: The present study aimed to establish a prognostic signature based on the autophagy-related long non-coding RNAs (lncRNAs) analysis in patients with hepatocellular carcinoma (HCC). Methods: Patients with HCC from The Cancer Genome Atlas (TCGA) were taken as the training cohort, and patients from the International Cancer Genome Consortium (ICGC) were treated as the validation cohort. Autophagy-related lncRNAs were obtained via a co-expression network analysis. According to univariate and multivariate analyses, a multigene prognostic signature was constructed in the training cohort. The predictive power of the signature was confirmed in both cohorts. The detailed functions were investigated using functional analysis. The single-sample gene set enrichment analysis (ssGSEA) score was used to evaluate the tumor microenvironment. The expression levels of immunotherapy and targeted therapy targets between the two risk groups were compared. Finally, a nomogram was constructed by integrating clinicopathological parameters with independently predictive value and the risk score. Results: Four autophagy-related lncRNAs were identified to establish a prognostic signature, which separated patients into high- and low-risk groups. Survival analysis showed that patients in the high-risk group had a shorter survival time in both cohorts. A time-independent receiver-operating characteristic (ROC) curve and principal component analysis (PCA) confirmed that the prognostic signature had a robust predictive power and reliability in both cohorts. Functional analysis indicated that the expressed genes in the high-risk group are mainly enriched in autophagy- and cancer-related pathways. ssGSEA revealed that the different risk groups were associated with the tumor microenvironment. Moreover, the different risk groups had positive correlations with the expressions of specific mutant genes. Multivariate analysis showed that the risk score also exhibited excellent predictive power irrespective of clinicopathological characteristics in both cohorts. A nomogram was established. The nomogram showed good discrimination, with Harrell's concordance index (C-index) of 0.739 and good calibration. Conclusion: The four autophagy-related lncRNAs could be used as biological biomarkers and therapeutic targets. The prognostic signature and nomogram might aid clinicians in individual treatment optimization and clinical decision-making for patients with HCC.
Collapse
Affiliation(s)
- Yan Deng
- Department of Hepatobiliary Surgery, Jing Zhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jing Zhou, China
| | - Feng Zhang
- Department of Ophthalmology, Jing Zhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jing Zhou, China
| | - Zhen-Gang Sun
- Department of Hepatobiliary Surgery, Jing Zhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jing Zhou, China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, Jing Zhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jing Zhou, China
| |
Collapse
|
21
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
22
|
Sletten AC, Davidson JW, Yagabasan B, Moores S, Schwaiger-Haber M, Fujiwara H, Gale S, Jiang X, Sidhu R, Gelman SJ, Zhao S, Patti GJ, Ory DS, Schaffer JE. Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis. Nat Commun 2021; 12:5214. [PMID: 34471131 PMCID: PMC8410784 DOI: 10.1038/s41467-021-25457-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Dyslipidemia and resulting lipotoxicity are pathologic signatures of metabolic syndrome and type 2 diabetes. Excess lipid causes cell dysfunction and induces cell death through pleiotropic mechanisms that link to oxidative stress. However, pathways that regulate the response to metabolic stress are not well understood. Herein, we show that disruption of the box H/ACA SNORA73 small nucleolar RNAs encoded within the small nucleolar RNA hosting gene 3 (Snhg3) causes resistance to lipid-induced cell death and general oxidative stress in cultured cells. This protection from metabolic stress is associated with broad reprogramming of oxidative metabolism that is dependent on the mammalian target of rapamycin signaling axis. Furthermore, we show that knockdown of SNORA73 in vivo protects against hepatic steatosis and lipid-induced oxidative stress and inflammation. Our findings demonstrate a role for SNORA73 in the regulation of metabolism and lipotoxicity.
Collapse
Affiliation(s)
- Arthur C Sletten
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Busra Yagabasan
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Samantha Moores
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Hideji Fujiwara
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah Gale
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Rohini Sidhu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Susan J Gelman
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Shuang Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel S Ory
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jean E Schaffer
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Zhan T, Gao X, Wang G, Li F, Shen J, Lu C, Xu L, Li Y, Zhang J. Construction of Novel lncRNA-miRNA-mRNA Network Associated With Recurrence and Identification of Immune-Related Potential Regulatory Axis in Hepatocellular Carcinoma. Front Oncol 2021; 11:626663. [PMID: 34336642 PMCID: PMC8320021 DOI: 10.3389/fonc.2021.626663] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases globally. Despite continuous improvement of treatment methods, high postoperative recurrence rate remains an urgent problem. In order to determine the mechanism underlying recurrence of liver cancer and identify prognostic genes, data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were integrated and analyzed. Differentially expressed genes (DEGs) between HCC tissue and normal liver tissue were identified, and a protein-protein interaction network was constructed to find hub genes. Clinical correlation analysis and disease-free survival (DFS) analysis were performed using the R language and GEPIA to identify relapse-related genes. Correlation analysis was used to identify a potential regulatory axis. Dual-luciferase reporter gene assay was used to confirm the reliability of the long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA regulatory axis. Immune infiltration analysis was performed using the TIMER database. Correlations between immune gene markers and ASF1B were verified using quantitative real-time polymerase chain reaction (RT-qPCR). In this work, we found that nine lncRNAs and five mRNAs were significantly overexpressed in HCC tissues from patients with recurrence. SNHG3, LINC00205, ASF1B, AURKB, CCNB1, CDKN3, and DTL were also closely related to HCC grade and stage. Survival analysis showed that these seven DEGs were significantly correlated with poor DFS. Correlation analysis identified SNHG3-miR-214-3p-ASF1B as a potential regulatory axis. Dual-luciferase reporter gene assay showed that SNHG3 and ASF1B directly bound to miR-214-3p. ASF1B was negatively regulated by miRNA-214-3p, and overexpression of SNHG3 could inhibit the expression of miRNA-214-3p. In addition, ASF1B was positively correlated with immune infiltration. A reduction in ASF1B could markedly inhibit the expression of CD86, CD8, STAT1, STAT4, CD68, and PD1 in HCC cells. Flow cytometry showed that SNHG3 promoted the PD-1 expression by regulating ASF1B. Meanwhile, elevated ASF1B predicted poor prognosis of HCC patients in subgroups with decreased B cells, CD8+ T cells, or neutrophils, and those with enriched CD4+ T cells. In conclusion, we found that a novel lncRNA SNHG3/miR-214-3p/ASF1B axis could promote the recurrence of HCC by regulating immune infiltration.
Collapse
Affiliation(s)
- Tian Zhan
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiang Gao
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guoguang Wang
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fan Li
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jian Shen
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Lu
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuan Li
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Kang B, Qiu C, Zhang Y. The Effect of lncRNA SNHG3 Overexpression on Lung Adenocarcinoma by Regulating the Expression of miR-890. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1643788. [PMID: 34306585 PMCID: PMC8285187 DOI: 10.1155/2021/1643788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
The lncRNA small nucleolar host gene 3 (SNHG3) was discovered to play an important role in the occurrence and development of lung adenocarcinoma (LUAD). However, the underlying molecular mechanism of SNHG3 in LUAD remains unclear. In the present study, SNHG3 expression levels in LUAD tissues and cell lines were analyzed using reverse transcription-quantitative PCR. The effects of SNHG3 on the proliferation, apoptosis, migration, and invasion of LUAD cells were determined using Cell Counting Kit-8, colony formation, flow cytometry, wound healing, and Transwell chamber assays, respectively. The specific underlying mechanism of SNHG3 in LUAD was investigated using bioinformatics analysis and a dual luciferase reporter assay. The results revealed that SNHG3 expression levels were downregulated in LUAD tissues and cell lines. Functionally, SNHG3 overexpression suppressed the proliferation, migration, and invasion of LUAD cells, while promoting apoptosis. Mechanistically, microRNA- (miR-) 890 was identified as a potential target of SNHG3, and its expression was negatively regulated by SNHG3. Notably, SNHG3 was found to promote LUAD progression by targeting miR-890. In conclusion, the findings of the present study revealed that lncRNA SNHG3 promoted the occurrence and progression of LUAD by regulating miR-890 expression.
Collapse
Affiliation(s)
- Baojie Kang
- Department of Respiratory, Weifang Yidu Central Hospital, Weifang City, Shandong, China
| | - Caihong Qiu
- Department of Respiratory, Weifang Yidu Central Hospital, Weifang City, Shandong, China
| | - Ying Zhang
- Department of ICU, Zibo Central Hospital, Zibo City, Shandong, China
| |
Collapse
|
25
|
Guo X, Zheng J, Yu MJ, Piao HZ, Zhao HY. Long noncoding RNA SNHG3 promotes glioma tumorigenesis by sponging miR-485-5p to upregulate LMX1B expression. Kaohsiung J Med Sci 2021; 37:851-862. [PMID: 34153159 DOI: 10.1002/kjm2.12411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/07/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
LIM homeobox transcription factor 1-beta (LMX1B) has recently been found to be highly expressed in advanced gliomas and is associated with poor survival. However, the regulatory molecular mechanism of LMX1B expression in gliomas remains unclear. In this study, bioinformatics analysis showed that miR-485-5p may be the potential upstream regulator of LMX1B, and long noncoding RNA (lncRNA) small nucleolar RNA host gene 3 (SNHG3) may function as a competitive endogenous RNA to sponge miR-485-5p. In addition, the expression of SNHG3 and LMX1B in advanced glioma tissues was significantly upregulated, while the expression of miR-485-5p was significantly downregulated. SNHG3 overexpression reduced the expression of miR-485-5p; increased the expression of LMX1B; and promoted the proliferation, migration, and invasion of glioma cells. In contrast, miR-485-5p overexpression reduced the expression of LMX1B and inhibited cell proliferation, migration, and invasion. The luciferase reporter assay and RNA immunoprecipitation assay further confirmed the interaction between SNHG3 and miR-485-5p and between miR-485-5p and LMX1B. In addition, subcutaneous and orthotropic xenograft models confirmed that lncRNA SNHG3 silencing or miR-485-5p overexpression significantly reduced the growth of glioma xenografts and prolonged survival time. These results indicate that lncRNA SNHG3 can regulate the expression of LMX1B by sponging miR-485-5p, thereby promoting the proliferation, migration, and invasion of glioma cells. This study provides the first evidence that the SNHG3/miR-485-5p/LMX1B axis is involved in glioma tumorigenesis and highlights the potential of SNHG3 and miR-485-5p as therapeutic targets for glioma.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming-Jun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao-Zhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Hong-Yu Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Huang PS, Chang CC, Wang CS, Lin KH. Functional roles of non-coding RNAs regulated by thyroid hormones in liver cancer. Biomed J 2021; 44:272-284. [PMID: 33077406 PMCID: PMC8358202 DOI: 10.1016/j.bj.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Recent reports have shown the important role of the non-coding part of human genome RNA (ncRNA) in cancer formation and progression. Among several kinds of ncRNAs, microRNAs (miRNA) play a pivotal role in cancer biology. Accumulating researches have been focused on the importance of non-coding genes in various diseases. In addition to miRNAs, long non-coding RNAs (lncRNAs) have also been extensively documented. Recently, the study of human liver cancer has gradually shifted to these non-coding RNAs that were originally considered "junk". Notably, dysregulated ncRNAs maybe influence on cell proliferation, angiogenesis, anti-apoptosis, and metastasis. Thyroid hormones play critical roles in human development and abnormalities in thyroid hormone levels are associated with various diseases, such as liver cancer. Thyroid hormone receptors (TR) act as ligand-activated nuclear transcription factors to affect multiple functions through the gene-level regulation in the cells and several studies have revealed that thyroid hormone associated with ncRNAs expression. TR actions are complex and tissue- and time-specific, aberrant expression of the various TR isoforms have different effects and are associated with different types of tumor or stages of development. In this review, we discuss various aspects of the research on the thyroid hormones modulated ncRNAs to affect the functions of human liver cells.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia yi, Chia yi, Taiwan
| | - Chia-Siu Wang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia yi, Chia yi, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
27
|
Overexpression of lncRNA SNGH3 Predicts Unfavorable Prognosis and Clinical Outcomes in Human Cancers: Evidence from a Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2020:7974034. [PMID: 32802874 PMCID: PMC7335396 DOI: 10.1155/2020/7974034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed to play a crucial role in human disease, especially in tumor development and progression. Small nucleolar RNA host gene (SNHG3), a newly identified lncRNA, has been found dysregulated in various cancers. Nevertheless, the results remain controversial. Thus, we aim to analyze the comprehensive data to elaborate the association between SNHG3 expression and clinical outcomes in multiple cancers. We searched PubMed, Web of Science, Cochrane Library, Embase, and MEDLINE database to identify eligible articles. STATA software was applied to calculate the hazard ratio (HR) and odds ratio (OR) with 95% confidence interval (95% CI) for survival outcomes and clinical parameters, respectively. Besides, the data from The Cancer Genome Atlas (TCGA) dataset was extracted to verify the results in our meta-analysis. There were thirteen studies totaling 919 cancer patients involved in this meta-analysis. The results demonstrated that high SNHG3 expression was significantly associated with poor overall survival (OS) (HR = 2.53, 95% CI: 1.94-3.31) in cancers, disease-free survival (DFS) (HR = 3.89, 95% CI: 1.34-11.3), and recurrence-free survival (RFS) (HR = 2.42, 95% CI: 1.14-5.15) in hepatocellular carcinoma. Analysis stratified by analysis method, sample size, follow-up time, and cancer type further verified the prognostic value of SNHG3. Additionally, patients with high SNHG3 expression tended to have more advanced clinical stage, higher histological grade, earlier distant metastasis, and earlier lymph node metastasis. Excavation of TCGA dataset valuated that SNHG3 was upregulated in various cancers and predicted worse OS and DFS. Overexpressed SNHG3 was strongly associated with poor survival and clinical outcomes in human cancers and therefore can serve as a promising biomarker for predicting patients' prognosis.
Collapse
|
28
|
Yu L, Ren Y. Long Noncoding RNA Small Nucleolar RNA Host Gene 3 Mediates Prostate Cancer Migration, Invasion, and Epithelial-Mesenchymal Transition by Sponging miR-487a-3p to Regulate TRIM25. Cancer Biother Radiopharm 2021; 37:451-465. [PMID: 33416420 DOI: 10.1089/cbr.2020.3988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Long noncoding RNA small nucleolar RNA host gene 3 (SNHG3) is related to the proliferation and metastasis of cancer cells. This study aims to reveal the role of SNHG3 in prostate cancer (PCa), which may help prevent PCa metastasis. Methods: SNHG3 plasmid, SNHG3 siRNA, miR-487a-3p mimic, miR-487a-3p inhibitor, TRIM25 plasmid, and TRIM25 siRNA were transfected or cotransfected into LNCaP and PC-3 cells. The proliferation, migration, and invasion of PCa cells were measured by Cell Counting Kit-8, wound-healing, and transwell assays, respectively. The expressions of SNHG3, miR-487a-3p, E-cadherin, N-cadherin, Snail, and TRIM25 in PCa tissues and cells were measured by quantitative reverse transcription polymerase chain reaction or western blot. Results: SNHG3 expression level was upregulated in PCa tissues and cells. SNHG3 overexpression and miR-487a-3p inhibitor promoted cell viability, migration, invasion, and N-cadherin and Snail levels, and inhibited E-cadherin level in LNCaP cells, while SNHG3 silencing and miR-487a-3p mimic had the opposite effects on PC-3 cells. The inhibitory effect of miR-487a-3p mimic on the migration, invasion, and epithelial-mesenchymal transition (EMT) of LNCaP cells was inversed by both SNHG3 and TRIM25 plasmids. Similarly, the function of miR-487a-3p inhibitor in PC-3 cells was also inversed by SNHG3 siRNA and TRIM25 siRNA. Conclusion: SNHG3 mediates PCa migration, invasion, and EMT by sponging miR-487a-3p to regulate TRIM25. The Clinical Trial Registration number: Y20180831.
Collapse
Affiliation(s)
- Lihang Yu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Yu Ren
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
29
|
Bai ZZ, Li HY, Li CH, Sheng CL, Zhao XN. M1 Macrophage-Derived Exosomal MicroRNA-326 Suppresses Hepatocellular Carcinoma Cell Progression Via Mediating NF-κB Signaling Pathway. NANOSCALE RESEARCH LETTERS 2020; 15:221. [PMID: 33263825 PMCID: PMC7710788 DOI: 10.1186/s11671-020-03432-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/11/2020] [Indexed: 05/05/2023]
Abstract
Accumulating evidence has shown that microRNA (miR) derived from M1 macrophage-derived exosomes can regulate the progression of hepatocellular carcinoma (HCC). However, the effect of miR-326 derived from M1 macrophage-derived exosomes on HCC has not been reported. Therefore, the objective of the present study was to explore the mechanism of exosomal miR-326 from M1 macrophages in regulating HCC cell progression. RT-qPCR detected miR-326 expression in HCC cell lines. miR-326 expression in HCC was altered by transfection, and the effect of miR-326 on CD206 and NF-κB expression, cell proliferation, colony formation, migration, apoptosis and invasion was detected. Subsequently, exosomes were isolated from M1 macrophages. RT-qPCR identified miR-326 expression in M1 macrophage-derived exosomes. miR-326 expression in M1 macrophage-derived exosomes was changed by transfection. M1 macrophage-derived exosomes were co-cultured with HCC cells to figure out their effects on the biological progress of HCC cells. Finally, in vivo experiments were performed to verify the in vitro results. MiR-326 was decreased in HCC cells and enriched in M1 macrophage-derived exosomes. Up-regulating miR-326 would inhibit HCC cell proliferation, colony formation, migration, invasion, and CD206 and NF-κB expression and promoted apoptosis, and inhibited the growth of HCC tumors in vivo, while down-regulating miR-326 showed opposite effects. M1 macrophage-derived exosomes inhibited HCC cell proliferation, colony formation, migration, invasion, and CD206 and NF-κB expression and enhanced apoptosis, while overexpression of miR-326 enhanced the effect of M1 macrophage-derived exosomes on HCC cells. It is revealed that M1 macrophages-derived exosomal miR-326 suppresses proliferation, migration and invasion as well as advances apoptosis of HCC through down-regulating NF-κB expression.
Collapse
Affiliation(s)
- Zhen-Zi Bai
- Infectious Department, The Third Hospital of Jilin University, No. 126 Sendai Avenue, Changchun, 130033, Jilin, China
| | - Hong-Yan Li
- Infectious Department, The Third Hospital of Jilin University, No. 126 Sendai Avenue, Changchun, 130033, Jilin, China
| | - Cheng-Hua Li
- Infectious Department, The Third Hospital of Jilin University, No. 126 Sendai Avenue, Changchun, 130033, Jilin, China
| | - Chuan-Lun Sheng
- Infectious Department, The Third Hospital of Jilin University, No. 126 Sendai Avenue, Changchun, 130033, Jilin, China
| | - Xiao-Nan Zhao
- Infectious Department, The Third Hospital of Jilin University, No. 126 Sendai Avenue, Changchun, 130033, Jilin, China.
| |
Collapse
|
30
|
Zhu J, Wang L, Zhou Y, Hao J, Wang S, Liu L, Li J. Comprehensive analysis of the relationship between competitive endogenous RNA (ceRNA) networks and tumor infiltrating-cells in hepatocellular carcinoma. J Gastrointest Oncol 2020; 11:1381-1398. [PMID: 33457008 DOI: 10.21037/jgo-20-555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The innovation of immune checkpoint blockade (ICB) represents a promising shift in the treatment of advanced hepatocellular carcinoma (HCC). However, response to ICB has varied largely due to the high tumor heterogeneity and complex tumor microenvironment (TME). The competitive endogenous RNA (ceRNA) network also plays an important role in tumor occurrence and progression, but its relation with tumor-infiltrating immune cells (TICs) remains largely unexplored in HCC. The overriding objective of our study was thus to construct a prognosis-related risk model and to further evaluate the relationship between ceRNA networks and TICs. Methods Differentially expressed gene (DEG) analysis was performed to identify the differentially expressed RNAs. Lasso and multivariable Cox regression analyses were used to construct risk models, which were assessed by the area under the receiver operating characteristic curve (AUC of ROC) and Kaplan-Meier (K-M) curves. Then, a single-sample gene set enrichment analysis (ssGSEA) algorithm was adopted to dissect the TICs in HCC samples. Nomograms were constructed and calibration curves were used to verify the discrimination and accuracy of the nomograms. Finally, integration analysis was performed to validate the correlation of ceRNA and TICs. Results In the study, 7 differentially expressed RNAs [5 messenger RNA s (mRNAs) and 2 micro RNAs (miRNAs)] were incorporated to construct a ceRNA risk model. The AUC of the 1-, 3-, and 5-year overall survival (OS) were 0.784, 0.685, and 0.691 respectively. Likewise, 7 types TICs were in the TICs signature model and the AUC of the 1-, 3-, and 5-year OS were 0.706, 0.731, and 0.721 respectively. The integration analysis showed that 7 pairs of mRNA-TICs and 1 pair of miRNA-TICs had a close relation (all correlation coefficients >0.2, P<0.001). Conclusions Through constructing two risk models based on ceRNA network and TICs, we identified the hub RNAs and key TICs in the progression and prognosis of HCC, and further explored the relationship between ceRNA and TME. Importantly, targeting these hub RNAs may facilitate the remodeling of the TME and be a potential therapeutic alternative to enhancing the response to ICB, thus improving the prognosis of HCC patients.
Collapse
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Liang Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yifan Zhou
- Department of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jun Hao
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuai Wang
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lei Liu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jipeng Li
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
31
|
Xu B, Mei J, Ji W, Bian Z, Jiao J, Sun J, Shao J. LncRNA SNHG3, a potential oncogene in human cancers. Cancer Cell Int 2020; 20:536. [PMID: 33292213 PMCID: PMC7640707 DOI: 10.1186/s12935-020-01608-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are composed of > 200 nucleotides; they lack the ability to encode proteins but play important roles in a variety of human tumors. A large number of studies have shown that dysregulated expression of lncRNAs is related to tumor oncogenesis and progression. Emerging evidence shows that SNHG3 is a novel oncogenic lncRNA that is abnormally expressed in various tumors, including osteosarcoma, liver cancer, lung cancer, etc. SNHG3 primarily competes as a competitive endogenous RNA (ceRNA) that targets tumor suppressor microRNAs (miRNAs) and ceRNA mechanisms that regulate biological processes of tumors. In addition, abnormal expression of SNHG3 is significantly correlated with patient clinical features. Upregulation of SNHG3 contributes to biological functions, including tumor cell proliferation, migration, invasion and EMT. Therefore, SNHG3 may represent a potential diagnostic and prognostic biomarker, as well as a novel therapeutic target.
Collapse
Affiliation(s)
- Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, P. R. China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Jun Sun
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China.
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
32
|
Sun B, Han Y, Cai H, Huang H, Xuan Y. Long non-coding RNA SNHG3, induced by IL-6/STAT3 transactivation, promotes stem cell-like properties of gastric cancer cells by regulating the miR-3619-5p/ARL2 axis. Cell Oncol (Dordr) 2020; 44:179-192. [PMID: 32930970 DOI: 10.1007/s13402-020-00560-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chemotherapy is, next to surgery and radiotherapy, the mainstay regimen for the clinical management of gastric cancer. This therapy is, however, heavily compromised by the acquisition of resistance. Here, we aimed to clarify the potential involvement of long non-coding RNA SNGH3 in the acquisition of cisplatin resistance and stemness in gastric cancer. METHODS Cell viability and proliferation were measured using Cell Counting Kit-8 and colony formation assays, respectively. Stem cell-like cell growth was evaluated using a mammosphere formation assay. RNA levels of SNHG2, OCT-4, SOX-2, CD44, miR-3619-5p and ARL2 were determined using qRT-PCR, whereas protein levels of OCT-4, SOX-2, CD44, ARL2, STAT3 and pSTAT3 were determined using Western blotting. Dual luciferase reporter assays were employed to interrogate regulatory interactions between STAT3, SNHG3, miR-3619-5p and ARL2, respectively. Direct binding of STAT3 to the SNHG3 promoter was investigated using a chromatin immunoprecipitation assay. RESULTS We found that IL-6 triggered stem cell-like properties in cisplatin-treated gastric cancer cells and activated STAT3, which in turn transcriptionally regulated SNHG3 expression. SNHG3 expression up-regulation positively correlated with cisplatin resistance and stemness of gastric cancer cells, while SNHG3 down-regulation inhibited stem cell-like properties. In addition, we found that SNHG3 up-regulated ARL2 expression through sponging miR-3619-5p, which predominantly mediated the oncogenic properties of SNHG3 in this disease. CONCLUSIONS Our data indicate an involvement of aberrant SNHG3 over-expression in the acquisition of both cisplatin resistance and stemness of gastric cancer cells, and of the IL-6/STAT3/SNHG3/miR-3619-5p/ARL2 signaling cascade in the oncogenic properties of SNHG3.
Collapse
Affiliation(s)
- Bo Sun
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Yang Han
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Hong Cai
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Hua Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Yi Xuan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
33
|
He S, Yang J, Jiang S, Li Y, Han X. Circular RNA circ_0000517 regulates hepatocellular carcinoma development via miR-326/IGF1R axis. Cancer Cell Int 2020; 20:404. [PMID: 32863763 PMCID: PMC7448484 DOI: 10.1186/s12935-020-01496-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play vital roles in hepatocellular carcinoma development. However, the role and mechanism of circRNA hsa_circ_0000517 (circ_0000517) in hepatocellular carcinoma development were largely unknown. METHODS 45 paired tumor and adjacent nontumor samples were collected from hepatocellular carcinoma patients. The levels of circ_0000517, miR-326 and insulin-like growth factor type 1 receptor (IGF1R) were detected via quantitative reverse transcription polymerase chain reaction or western blot. Cell viability, colony ability, migration, invasion and glycolysis were assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, western blot, transwell assay, glucose consumption, lactate production or adenosine triphosphate (ATP) production. The target correlation between miR-326 and circ_0000517 or IGF1R was analyzed via dual-luciferase reporter analysis. The function of circ_0000517 in vivo was assessed via xenograft model. RESULTS circ_0000517 expression was elevated in hepatocellular carcinoma tissues and cell lines. circ_0000517 knockdown suppressed cell viability, colony formation, migration, invasion and glycolysis. miR-326 was sponged via circ_0000517 and miR-326 knockdown reversed the effect of circ_0000517 silence on hepatocellular carcinoma development. miR-326 overexpression inhibited hepatocellular carcinoma development through targeting IGF1R. circ_0000517 knockdown decreased IGF1R expression by modulating miR-326. circ_0000517 downregulation reduced xenograft tumor growth. CONCLUSION circ_0000517 knockdown repressed hepatocellular carcinoma development in vitro and in vivo by modulating miR-326 and IGF1R.
Collapse
Affiliation(s)
- Shuwei He
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000 Henan China
| | - Jianzeng Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000 Henan China
| | - Shitao Jiang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000 Henan China
| | - Yuan Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000 Henan China
| | - Xingmin Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000 Henan China
| |
Collapse
|
34
|
A novel ceRNA axis involves in regulating immune infiltrates and macrophage polarization in gastric cancer. Int Immunopharmacol 2020; 87:106845. [PMID: 32763781 DOI: 10.1016/j.intimp.2020.106845] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/05/2020] [Accepted: 07/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Increasing evidence suggests that the lncRNA-miRNA-mRNA regulatory network is highly correlated with gastric cancer (GC) development. However, a prognosis-associated lncRNA-miRNA-mRNA network remains to be identified in GC. METHODS Differentially expressed genes (DEGs) were screened by integrating 6 microarray datasets using the RRA method. Hub genes were identified by analysing their degrees in a PPI (protein-protein interaction) network. Upstream miRNAs and lncRNAs of hub genes were predicted by miRTarBase and miRNet, respectively. Key genes, miRNAs and lncRNAs were identified by evaluating their expression and prognosis in GEPIA and Kaplan-Meier plotter, respectively. A key lncRNA-miRNA-mRNA network was constructed in Cytoscape, and the correlations were analysed in the ENCORI database. We also evaluated the mRNA expression of ceRNA axes in the TIMER and Oncomine databases and their correlation with prognosis in GC patients with different clinical features using Kaplan-Meier plotter. In addition, correlations between mRNA and immune infiltrating cells in GC were investigated by the TIMER database. Finally, several experiments were conducted to verify our analyses. RESULTS Forty-two upregulated and 86 downregulated DEGs were obtained from the "RRA" integrated analysis. Eight of the 20 hub genes were identified as key genes by analysing their expression and prognosis. Seventeen miRNAs were predicted to target key genes, and low expression of 4 miRNAs suggested poor outcome in GC. Furthermore, 155 lncRNAs were predicted to target 4 key miRNAs, and only 5 lncRNAs were highly expressed, suggesting poor outcomes in patients with GC. Then, the H19-miR-29a-3p-COL1A2 axis was constructed by correlation analysis. In addition, COL1A2 was positively correlated with lymphatic metastasis, immune infiltrating cell levels, markers of monocytes, tumour-associated macrophages (TAMs), and M2 macrophages but not M1 macrophages in GC. The experimental results revealed that the H19-miR-29a-3p-COL1A2 axis may promote macrophage polarization from M1 to M2 in GC. CONCLUSIONS A novel lncRNA-miRNA-mRNA axis was identified and may be involved in regulating immune cell infiltration and macrophage polarization, which may provide new treatment strategies for GC.
Collapse
|
35
|
He S, Guo Z, Kang Q, Wang X, Han X. Circular RNA hsa_circ_0000517 modulates hepatocellular carcinoma advancement via the miR-326/SMAD6 axis. Cancer Cell Int 2020; 20:360. [PMID: 32774154 PMCID: PMC7397604 DOI: 10.1186/s12935-020-01447-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common malignant heterogeneous disease in primary liver tumors. Circular RNA hsa_circ_0000517 (hsa_circ_0000517) is connected with HCC prognosis. Nevertheless, there are few studies on the role and mechanism of hsa_circ_0000517 in HCC. METHODS Expression of hsa_circ_0000517, miR-326, and SMAD family member 6 (SMAD6) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, colony formation, cell cycle, migration, and invasion were determined though Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, wound healing, or transwell assays. Protein levels of Cyclin D1, matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), SMAD6, and proliferating cell nuclear antigen (PCNA) were examined with western blot analysis. The relationship between hsa_circ_0000517 or SMAD6 and miR-326 was determined via dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The role of hsa_circ_0000517 in vivo was confirmed via xenograft assay. RESULTS Hsa_circ_0000517 and SMAD6 were up-regulated while miR-326 was down-regulated in HCC tissues and cells. Hsa_circ_0000517 down-regulation repressed cell proliferation, colony formation, migration, and invasion, and induced cell cycle arrest in HCC cells in vitro, and constrained tumor growth in vivo. Notably, hsa_circ_0000517 regulated SMAD6 expression via acting as a competing endogenous RNA (ceRNA) for miR-326. And the repressive influence on malignant behaviors of HCC cells mediated by hsa_circ_0000517 inhibition was reversed by miR-326 inhibitors. Moreover, SMAD6 elevation overturned the inhibitory impacts of miR-326 mimics on malignant behaviors of HCC cells. CONCLUSIONS Hsa_circ_0000517 depletion repressed HCC advancement via regulating the miR-326/SMAD6 axis.
Collapse
Affiliation(s)
- Shuwei He
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000 China
- Henan Medical Key Laboratory of Molecular Imaging, No. 1 Jianshe East Road, Zhengzhou, Henan 450000 China
| | - Zhengwu Guo
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000 China
- Henan Medical Key Laboratory of Molecular Imaging, No. 1 Jianshe East Road, Zhengzhou, Henan 450000 China
| | - Qian Kang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000 China
- Henan Medical Key Laboratory of Molecular Imaging, No. 1 Jianshe East Road, Zhengzhou, Henan 450000 China
| | - Xu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000 China
- Henan Medical Key Laboratory of Molecular Imaging, No. 1 Jianshe East Road, Zhengzhou, Henan 450000 China
| | - Xingmin Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000 China
- Henan Medical Key Laboratory of Molecular Imaging, No. 1 Jianshe East Road, Zhengzhou, Henan 450000 China
| |
Collapse
|
36
|
Dacheng W, Songhe L, Weidong J, Shutao Z, Jingjing L, Jiaming Z. RETRACTED: LncRNA SNHG3 promotes the growth and metastasis of colorectal cancer by regulating miR-539/RUNX2 axis. Biomed Pharmacother 2020; 125:110039. [PMID: 32187965 DOI: 10.1016/j.biopha.2020.110039] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Authors and Editor-in-Chief. The corresponding author notified the journal that “LncRNA SNHG3 did not affect colorectal cancer cell invasion, which was inconsistent with our published results”. As the results were unreliable the authors requested its retraction. The journal was also alerted to suspected image similarities within Figure 2D, that appear to be present in another publication, as detailed here: https://pubpeer.com/publications/7855CA1A494A20F55AAE1463D1B648. The journal requested the authors provide an explanation and source data relating to the affected figure. The Authors did not provide an explanation in response to these concerns. The Editor-in-Chief assessed this case and decided to retract the article.
Collapse
Affiliation(s)
- Wen Dacheng
- Department of Gastrointestinal Nutrition and Hernia Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| | - Li Songhe
- Department of Ophthalmology, the First Hospital of Jilin University, Chaoyang District, Changchun, 130021, China.
| | - Jiang Weidong
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| | - Zhao Shutao
- Department of Gastrointestinal Nutrition and Hernia Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| | - Liu Jingjing
- Department of Gastrointestinal Nutrition and Hernia Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| | - Zhu Jiaming
- Department of Gastrointestinal Nutrition and Hernia Surgery, the Second Hospital of Jilin University, Nanguan District, Changchun, 130041, China
| |
Collapse
|
37
|
Lin C, Zou Y, Li R, Liu D. Long non‑coding RNA PRNCR1 exerts oncogenic effects in tongue squamous cell carcinoma in vitro and in vivo by sponging microRNA‑944 and thereby increasing HOXB5 expression. Int J Mol Med 2020; 46:119-130. [PMID: 32319550 PMCID: PMC7255465 DOI: 10.3892/ijmm.2020.4581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/21/2020] [Indexed: 01/26/2023] Open
Abstract
A long non-coding RNA (lncRNA) called prostate cancer-associated non-coding RNA 1 (PRNCR1) serves crucial roles in the aggressive phenotypes of colorectal cancer and non-small cell lung cancer. However, there is little research on the expression profile, clinical value and detailed functions of PRNCR1 in tongue squamous cell carcinoma (TSCC). The aim of the present study was to determine PRNCR1 expression in TSCC and to examine the involvement of PRNCR1 in TSCC progression. The molecular mechanisms behind the oncogenic effects of PRNCR1 in TSCC cells were also investigated. PRNCR1 was revealed to be upregulated in TSCC tumors and cell lines. The high PRNCR1 expression showed a significant correlation with tumor size, clinical stage, lymph node metastasis, and shorter overall survival times among patients with TSCC. A PRNCR1-knockdown reduced TSCC cell proliferation, migration and invasion, and increased apoptosis in vitro. Additionally, the PRNCR1-knockdown slowed down in vivo tumor growth of TSCC cells. With regards to the mechanism, PRNCR1 acted as a competing endogenous RNA on microRNA-944 (miR-944) in TSCC cells, and the effects of the PRNCR1-knockdown were reversed by an miR-944-knockdown. HOXB5 was validated as a direct target gene of miR-944 in TSCC cells, and HOXB5 expression was found to be positively regulated by PRNCR1. Furthermore, resumption of HOXB5 expression reversed the tumor-suppressive actions of miR-944 in TSCC cells. In conclusion, PRNCR1 acts as an oncogenic lncRNA in TSCC through the upregulation of HOXB5 by sponging miR-944, thereby indicating a potential therapeutic target in TSCC.
Collapse
Affiliation(s)
- Cong Lin
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Yanan Zou
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Ruijing Li
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Daofeng Liu
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| |
Collapse
|
38
|
Ai J, Sun J, Zhou G, Zhu T, Jing L. Long non-coding RNA GAS6-AS1 acts as a ceRNA for microRNA-585, thereby increasing EIF5A2 expression and facilitating hepatocellular carcinoma oncogenicity. Cell Cycle 2020; 19:742-757. [PMID: 32089066 PMCID: PMC7145326 DOI: 10.1080/15384101.2020.1729323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/22/2019] [Accepted: 12/29/2019] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNA termed GAS6 antisense RNA 1 (GAS6-AS1) plays an essential role in gastric and non-small cell lung cancers. Nonetheless, the function of GAS6-AS1 in hepatocellular carcinoma (HCC) has not been so far studied in detail. In this study, reverse-transcription quantitative PCR was performed to measure GAS6-AS1 expression in HCC samples. A series of functional experiments, including MTT assay, colony formation assay, flow-cytometric analysis, and transwell migration and invasion assays, was performed to determine the influence of GAS6-AS1 knockdown on the malignant phenotype of HCC. The results showed that GAS6-AS1 was significantly upregulated in HCC tissue samples and cell lines. Increased GAS6-AS1 expression was associated with tumor size, Edmondson grade, and Tumor-Node-Metastasis (TNM) stage among patients with HCC. The overall survival of patients with HCC characterized with high expression of GAS6-AS1 was significantly shorter in comparison to that of patients with low level of GAS6-AS1. Functional experiments indicated that knockdown of GAS6-AS1 suppressed HCC cell proliferation, colony formation, migration, and invasion in vitro; promoted apoptosis in vitro; and decreased tumor growth in vivo. Of note, GAS6-AS1 was validated as a competing endogenous RNA (ceRNA) for microRNA-585 (miR-585) and consequently increased the expression of eukaryotic translation initiation factor 5A2 (EIF5A2). Finally, rescue experiments confirmed the association among GAS6-AS1, miR-585, and EIF5A2 in HCC cells. Our study provides substantial evidence that the GAS6-AS1/miR-585/EIF5A2 pathway plays an important role in HCC progression and that might be considered as a potential target for therapeutic approaches in HCC.
Collapse
Affiliation(s)
- Jing Ai
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Junhui Sun
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Guanhui Zhou
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tongyin Zhu
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Li Jing
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
39
|
Wang X, Chen X, Tian Y, Jiang D, Song Y. Long Noncoding RNA RGMB-AS1 Acts as a microRNA-574 Sponge Thereby Enhancing the Aggressiveness of Gastric Cancer via HDAC4 Upregulation. Onco Targets Ther 2020; 13:1691-1704. [PMID: 32158233 PMCID: PMC7047994 DOI: 10.2147/ott.s234144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/11/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The long noncoding RNA RGMB-AS1 plays an important part in the genesis and progression of multiple human cancers. Nonetheless, little is known regarding its expression, roles, and mechanisms of action in gastric cancer (GC). This study was aimed at investigating the relationship between RGMB-AS1 and GC and illustrating the mechanisms of action of RGMB-AS1 therein. METHODS RGMB-AS1 expression in GC was measured via reverse-transcription quantitative PCR. A series of experiments including Cell Counting Kit-8 assay, flow-cytometric analysis of apoptosis, Transwell migration and invasion assays, and in vivo tumorigenesis experiment were conducted to test the effects of RGMB-AS1 on the malignant phenotype of GC cells. The molecular events behind the oncogenic actions of RGMB-AS1 in GC were elucidated through subcellular fractionation, RNA immunoprecipitation assay, bioinformatics analysis and luciferase reporter assay. RESULTS RGMB-AS1 upregulation was confirmed in GC tissues and cell lines. Higher RGMB-AS1 expression was associated with adverse clinical parameters and negatively correlated with patient overall survival. RGMB-AS1 knockdown inhibited GC cell proliferation, facilitated apoptosis, and reduced migration and invasion in vitro. Further experiments revealed that RGMB-AS1 knockdown decreased the tumor growth of GC cells in vivo. Mechanistically, RGMB-AS1 functioned as a competing endogenous RNA upregulating histone deacetylase 4 (HDAC4) by sponging microRNA-574 (miR-574). Rescue experiments indicated that miR-574 inhibition and HDAC4 reintroduction reversed the effects of the RGMB-AS1 knockdown on GC cells. CONCLUSION The RGMB-AS1-miR-574-HDAC4 regulatory network contributes to the malignancy of GC, thereby offering a novel target for the diagnosis, prognosis, and/or treatment of GC.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin130041, People’s Republic of China
| | - Xin Chen
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin130041, People’s Republic of China
| | - Yueli Tian
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin130041, People’s Republic of China
| | - Dongqiang Jiang
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin130041, People’s Republic of China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin130041, People’s Republic of China
| |
Collapse
|